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Abstract 

   

In this paper, we review several main mathematical and computational models of 

vertebrate limb development and their roles in accounting for different aspects of this 

process. The main aspects of limb development have been modeled, including 

outgrowth and shaping of the limb bud, establishment of molecular gradients within 

the bud, and formation of the skeleton. These processes occur interdependently 

during development, although (as described in this review), there are various 

interpretations of the biological relationships among them. A wide range of 

mathematical and computational methods have been used to study these processes, 

including ordinary and partial differential equation systems, cellular automata and 

discrete, stochastic models, finite difference methods, finite element methods, the 

immersed boundary method, and various combinations of the above. Multiscale 

mathematical modeling and associated computational simulation have become 

integrated into the study of limb morphogenesis and pattern formation to an extent 

with few parallels in the field of developmental biology. These methods have 

contributed to the design and analysis of experiments employing microsurgical and 

genetic manipulations, evaluation of alternative hypotheses for limb bud outgrowth, 

interpretation of the effects of natural mutations, and the formulation of scenarios for 

the origination and evolution of the limb skeleton. 
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1. Introduction 

The development of the vertebrate limb is one of the best studied examples of 

multicellular organogenesis (Tickle, 2003; Newman and Müller, 2005; Newman and 

Bhat, 2007). The process involves outgrowth from the body wall of tetrapods (i.e., 

amphibians, reptiles, birds, mammals: vertebrates other than fish) of two pairs of 

mesenchyme (embryonic connective tissue) masses covered by a specialized 

ectoderm (embryonic skin, continuous with the rest of the body surface). All tetrapod 

limbs contain endoskeletons composed of rods and nodules of cartilage or bone, 

separated by discontinuities, or joints. Thus, understanding limb development 

involves addressing two main problems: that of limb bud outgrowth and shaping and 

that of skeletal pattern formation (Fig. 1). 

 The outgrowth and shaping problem lends itself to mathematical and 

computational modeling that takes into account the physical properties of the involved 

tissues (reviewed in Hopyan et al., 2011). The limb bud mesenchymal mass – the 

mesoblast – is a deformable viscoelastic material that is immiscible with the 

surrounding flank mesenchyme when it first emerges from the body. Its constituent 

cells can change the mesoblast size and shape by dividing either isotropically or 

directionally, and they can intercalate among one another, stretching and distorting 

the tissue mass. Surrounding the mesoblast is an epithelial sheet underlain by an 

acellular basement membrane, both with mechanical properties of their own. The 

epithelium is also the source of molecular signals that induce and modulate the 

cellular behaviors of the underlying mesenchyme. 

The endoskeletons of all vertebrate limbs exhibit repetitive motifs and are 

variations on a common morphological theme, so understanding their generation is 

particularly well-suited to mathematical models in which a generic skeletogenic 

mechanism can be hypothesized and its parameters varied according to plausibly 

variant developmental scenarios. The nature of the patterns, and of experimental 

results on skeletal patterning of randomized limb mesenchymal cells in vivo and in 

vitro, have led to most such models being based on the physics of self-organizing 
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systems (e.g., Turing-type reaction-diffusion processes) applied to the molecular 

biology of cell-cell and cell-ECM interactions (reviewed in Newman et al., 2008).  

A different view of skeletogenesis, which has been influential over the past four 

decades, treats the skeletal pattern as a downstream readout by the cells’ genomes of 

spatial coordinates, the values of which are specified by graded concentrations of, or 

duration of exposure to, “positional information” (PI) molecules (Wolpert, 1971; 

Summerbell et al., 1973; reviewed in Towers and Tickle, 2009). Here the generic 

aspects of the final pattern (i.e., the quasi-periodic arrangement of the discrete 

elements), is ignored. The establishment and dynamics of the monotonic positional 

gradients in this PI framework are also amenable to mathematical modeling (see 

below). There is increasing recognition based on experimental tests, however, that the 

spatial patterns in question, usually of diffusible morphogen molecules and Hox and 

related transcription factors, are not sufficient to account for the actual features of the 

skeletal pattern without including the self-organizational properties of the limb 

mesenchyme (see, e.g., Wolpert and Tickle, 2010). Most likely the PI gradients 

fine-tune the details of the skeletal elements during their formation (Tamura et al., 

2011). 

Although limb bud outgrowth and shaping are thus conceptually separate 

problems from the formation of the skeleton, some of the molecules that control 

skeletogenesis also influence outgrowth and shaping (Newman and Müller, 2005). 

Limb bud shape and its developmental transformation also influence the outcomes of 

proposed skeletogenic mechanisms. For example, in small spatial domains such as 

limb bud, the spatial patterns resulting from reaction-diffusion and related 

self-organizing processes are strongly influenced by the domains’ boundary 

conditions, size, and shape (Borckmans et al., 1995; Zhu et al., 2009a; 2009b; 2010). 

In what follows we first present a brief biological background and then describe 

the main models that have been used to characterize limb bud growth and shaping, 

and the generation of molecular gradients in the mesoblast. Next we present a 

detailed description of models employing self-organizing dynamics of skeletal 

patterning in vitro and in vivo. In the concluding section we discuss the prospects for 
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bringing together the various mathematical and computational approaches reviewed 

here. In particular, we will describe the general form of a comprehensive model that 

includes a self-organizing skeletogenic component that evolves in developmental time 

in the context of an autonomous limb bud growth and shaping mechanism, and whose 

generated skeletal elements are customized by the local concentrations of 

dynamically changing PI morphogens and transcription factors. A comprehensive 

review of limb development models has recently appeared (Glimm et al., 2012), which 

in contrast to this contribution is directed primarily towards a non-mathematical 

audience. 

 

2. Biological Background       

Limb bud outgrowth and shaping 

The limb emerges from the embryonic body wall, or flank, under the influence of a 

diffusible morphogen, fibroblast growth factor 8 (FGF8), secreted by the ectoderm 

overlying the prospective limb mesenchyme. In birds and mammals, as outgrowth 

proceeds, a thickened ridge of ectoderm running anteroposteriorly (AP axis: thumb to 

little finger) along the limb bud tip, the apical ectodermal ridge (AER), forms and 

serves as the source of the FGF8. Early effects of FGF8 are to transform the 

prospective limb mesenchyme into a more cohesive and mechanically active material 

than the flank mesenchyme from which it is derived (Damon et al., 2008). This has 

been suggested to be responsible for its “phase separating” from the adjacent flank, 

rounding up, and propelling itself forward (Damon et al., 2008).  

Factors secreted by the AER, including FGF8, are also responsible for keeping 

the mesenchyme of the limb tip in a developmental labile state, primarily by 

suppressing its capacity to condense (see below) and differentiate into cartilage 

(Kosher et al., 1979). Cartilage is not easily reshaped, so the main determinants of 

limb shaping act at the distal (distant from the body) end of the developing limb, even 

as the more proximal (close to the body) regions are undergoing chondrogenesis. 

This results in a proximodistal (PD) temporal sequence of development. Factors that 
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regulate the formation of the AER and its AP length (discussed in the subsection on 

non-skeletally-isomorphic patterns, below), are indirectly involved in limb bud shaping. 

In addition, biologically plausible mechanisms of the spatiotemporal development of 

the skeleton (discussed in the subsection on skeletal pattern formation, below), must 

incorporate the suppressive effect of the AER. 

After the limb bud has emerged, its outgrowth and shaping are the result of the 

behaviors of the mesenchymal cells in the context of the surrounding ectoderm. Here 

the morphogens secreted by the ectoderm are also important. For many years the 

standard view was that the effect of the morphogens, FGFs in particular, were 

mitogenic, i.e., promoting cell division, and that limb bud outgrowth resulted from a 

proliferation gradient with its maximal value at the distal tip. Some of the mathematical 

models of outgrowth and shaping described in the following section are based on this 

biological mechanism. Recent work, however, has shown that the mesenchymal cells 

of the limb bud exhibit a chemotactic migratory response to FGF gradients (Li and 

Muneoka, 1999) and oriented movement and growth (Boehm et al., 2010; 

Wyngaarden et al., 2010). The orientation of the cells is dependent on Wnt signaling, 

while FGF signaling affects cell velocity (Gros et al., 2010). Limb mesenchyme may 

also exhibit oriented convective flow, as seen in gastrulating mesoderm (Zamir et al., 

2006) (see Hopyan et al., 2011, for a review of oriented cell behaviors in the 

developing limb). These new findings are increasingly being incorporated into 

mathematical models of limb outgrowth and shaping. 

Some models have considered the possibility that the dorsal and ventral 

ectoderm act as a mechanical constraint that guides the flow of the limb mesenchyme. 

While there is some evidence for such a role for the ectoderm (Borkhvardt, 2000), 

there are also studies indicating that the dorsal ectoderm (though possibly not its 

underlying basement membrane) in not absolutely required for normal limb shaping 

(Martin and Lewis, 1986). 

Non-skeletally-isomorphic patterns of morphogens and other molecules  

The original formulation of the PI concept suggested that the AP, and PD axes, 
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described above, and the dorsoventral (DV: back to front) axis defined a coordinate 

system of molecules that were interpreted by the mesenchymal cells so as to assume 

their position-specific fate (Wolpert, 1969). The PI molecules were specifically 

postulated to be non-isomorphic to the developing or final limb skeletal patterns. That 

is, they were proposed to serve an informational (i.e., eliciting portions of the pattern 

that are hypothesized to be independently encoded in the genome) rather than a 

prepatterning role (Wolpert, 1969).  

It soon became clear that the limb axes are not specified independently of each 

other (Bowen et al., 1989), that the putative molecular determinants of the axes are 

mutually regulatory (Laufer et al., 1994; Yang and Niswander, 1995), and that some 

are indeed dispensable for the generation of the basic skeletal pattern (Litingtung et 

al., 2002). The specification of skeletal pattern by positional information is also 

inconsistent with evidence that quasi-periodic limb-like skeletons can form from 

dissociated, randomized mesenchymal cells repacked into ectodermal hulls (Zwilling, 

1964; Ros et al,, 1994). Nevertheless, the assumption that the major features of the 

skeletal pattern are set by cells’ exposure to continuous, non-skeletally isomorphic, 

fields of diffusible molecules produced by signaling centers oriented according to the 

three classical anatomical axes remains a popular theme in models of limb 

development (e.g., Bénazet and Zeller, 2009; Towers et al., 2012, citing Meinhardt, 

1978). 

In any case, experimental and theoretical studies on the generation of gradients 

of non-skeletally-isomorphic morphogens and non-diffusible molecules (such as Hox 

transcription factors) in the developing limb continue to be of significance. This is 

because, as mentioned above, such factors are important determinants of limb 

outgrowth and shaping (which indirectly affects the number, size and shape of the 

skeletal elements that form within the growing bud), and also because the presence of 

different concentrations of these factors, for various durations, during chondrogenesis, 

influences the character of elements formed, fine-tuning and customizing the skeletal 

structures (see, e.g., Tamura et al., 2011). 

Key signaling centers for establishing these gradients are the AER, mentioned 
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above as the major source of FGF8, and the zone of polarizing activity (ZPA), the limb 

bud’s major source of the morphogen Sonic hedgehog (Shh). The AER is essential for 

limb outgrowth, shaping and skeletogenesis (Saunders, 1948). Sonic hedgehog was 

thought to be the AP positional information determinant, but its absence (along with a 

transcriptional regulator of its function, Gli3) actually leads to increased numbers of 

digits via the impairment of its role in limb bud shaping (Litingtung et al., 2002). This 

indicates that Shh is a modulator of skeletogenesis rather than part of its core 

generative mechanism. 

A recent integrative description of the interplay among signaling centers 

responsible for gradient systems in the developing mouse limb postulates feedback 

loops involving the morphogens FGF, Shh, Wnt and bone morphogenetic factor 4 

(BMP4), and Hoxd-class, Gli3 and Hand2 transcription factors (Zeller et al., 2009). 

This model is relevant to the demonstrated roles of these gradients in the 

maintenance and localization of the AER and ZPA, notwithstanding its underlying 

assumption that they determine the skeletal pattern according to the PI framework. 

Indeed, like other PI-based models, that of Zeller et al. (2009) does not attempt to 

account for the actual placement of skeletal elements. 

Skeletal pattern formation  

Initially the mesenchymal cells of the limb mesoblast are distributed uniformly within 

an ECM rich in the polysaccharide hyaluronan. Before these cells differentiate into 

chondrocytes, they transiently condense into tight aggregates at discrete sites where 

the cartilaginous elements will ultimately form. Precartilage condensations (and 

before them, more subtle proto-condensations), form when the ECM changes locally 

in composition, first becoming richer in the glycan binding proteins known as galectins 

(Bhat et al., 2011) and later in glycoproteins such as fibronectin. These aggregations 

are further consolidated through cell-cell adhesive interactions mediated by 

cell-surface attachment molecules (CAMs) such as N-CAM (Widelitz et al., 1993), 

N-cadherin (Oberlender and Tuan, 1994), and possibly cadherin-11 (Luo et al., 2005).  

All the precartilage mesenchymal cells of the limb mesoblast are capable of 
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producing the skeletogenic ECM molecules and CAMs but only those at sites 

destined to form skeletal elements do so. There must be communication among the 

cells to divide the labor in this respect. Galectins can act as morphogens as well as 

adhesion molecules (reviewed in Gabius, 2010) and one of these molecules, CG 

(chicken galectin)-1A, plays both roles in the avian limb bud earlier than any other 

known factors (Bhat et al., 2011). Another galectin, CG-8, is part of a mutually 

excitatory loop with CG-1A at the level of gene expression, but antagonizes the latter’s 

condensation activating activity at the protein interaction level (Bhat et al., 2011). Later 

in the chondrogenesis pathway diffusible factors of the TGF-β family are produced. 

These promote the production of fibronectin (Leonard et al., 1991) and cadherins 

(Tsonis et al., 1994) and positively regulate their own synthesis in limb bud 

mesenchyme (Miura and Shiota, 2000a). 

Although the AER is a unique source of a particular outgrowth-promoting subset 

of FGFs, the entire limb ectoderm produces morphogens of this class (Mariani and 

Martin, 2003). The FGFs produced by the ectoderm affect the developing limb tissues 

through three distinct FGF receptors. The cells of the apical zone express FGF 

receptor 1 (FGFR1) (Peters et al., 1992; Szebenyi et al., 1995). Signaling through this 

receptor presumably mediates the suppressive effect of the AER in this region of the 

developing limb. As the chicken limb elongates, cells begin to condense at discrete 

foci, but only at a sufficient distance (~0.3 mm) from the AER. Cells at sites of incipient 

condensation express FGFR2 rather than FGFR1 (Peters, et al., 1992; Szebenyi et al., 

1995; Ornitz and Marie, 2002; Moftah et al., 2002). Activation of these 

FGFR2-expressing cells by FGFs induces a laterally-acting (that is, peripheral to the 

condensations) inhibitory effect which suppresses cartilage differentiation (Moftah et 

al., 2002). Signaling via the Notch pathway, which is initiated by cell-cell contact, also 

plays a part in this lateral inhibitory effect (Fujimaki et al., 2006). 

The result of the pattern-forming process is that a stereotypical arrangement of 

first, cartilage elements, and then the bones that replace them in most tetrapod 

species, emerge in a proximodistal fashion. Almost invariably there is one element 

(the humerus or femur, referred to generically as the “stylopod”) attached to the body, 
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two elements (the radius and ulna, or tibia and fibula: the “zeugopod”), and a species- 

or limb type-characteristic number of wrist elements, followed by fingers or toes (the 

“autopod”). 

This summary indicates that the limb bud mesenchyme is subject to a variety of 

intrinsic and extrinsic interactions that have both activatory and inhibitory effects on 

precartilage condensation and chondrogenesis. Collectively these cellular and 

molecular interactions constitute a core mechanism for the generation of the 

cartilaginous primordia of the limb skeleton. Several of the models described in the 

following section explicitly incorporate these processes, characterizing parameter 

choices and other conditions under which biologically realistic skeletal patterns are 

formed.  

3. Mathematical Models 

Models primarily involving growth and shaping of the limb bud 

Dillon and Othmer (1999; reviewed in Dillon, 2001) presented a continuum 

mathematical and computational model coupling fluid flow and elastic boundaries (the 

immersed boundary method; Peskin, 2002), to describe limb bud growth in 2D. They 

provided one of the first computational tools for exploring the effects of mutations and 

experimental interventions on the relation of gene expression patterns and growth in 

the developing limb. The model incorporates the effect of morphogens (i.e., FGFs and 

Shh) with sources at the AER and the ZPA, the dynamics of which are governed by 

reaction-diffusion-advection equations. Since spatiotemporal profiles of these factors 

are generated in the model and contribute to growth and shaping of the bud (the 

proximodistal gradient of FGF is suggested to induce a gradient of cell division, for 

example), the model can also be considered in the class (described below) dealing 

with the generation of morphogen patterns that are non-isomorphic to the skeleton.  

In the Dillon-Othmer model a viscous fluid domain of constant density 

representing the limb bud mesoblast is surrounded by a moving boundary 

incorporating the mechanical and biochemical properties of the ectoderm. The fluid 
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motion is described by the Navier-Stokes equations 
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     (1) 

Here U  is the local source strength for growth which depends on morphogens 1c  

and 2c  ( c  for simplicity), the location x of the tissue within the limb bud and the age t 

of the limb. The variable v  is the fluid velocity,   is the fluid density, p  is the 

pressure, and   is the fluid viscosity. The term F  is the force density that limb bud 

ectoderm exerts on the fluid surrounding it. The evolution of the morphogens is 

modeled by a reaction-diffusion-advection system 

2( ) ( )
c

vc D c R c
t


   


.         (2) 

D  is the diffusion matrix for the morphogens and )(cR  is the production rate. The 

Dillon-Othmer model was unique in its consideration of the relationship between 

growth as a physical process, the potential effects of morphogens on the parameters 

of growth, and the objective of reconciling empirically measured shapes and growth 

rates distributions of identified morphogens during the course of development. While 

some of the physical and biological assumptions of the model have been reevaluated 

in light of new information (see below), it (along with the extension by the same group 

(Dillon et al, 2003; see below)) remains the only one to date to integrate the two main 

non-skeletogenic processes. 

In a later 2D treatment, Murea and Hentschel (2007) studied limb outgrowth as a 

free boundary problem, controlled by a creeping flow of the expanding mesoblast with 

a nutrient-driven volume source and an ectodermal boundary with nonuniform surface 

tension. Unlike in Dillon and Othmer (1999), no assumption was made concerning a 

proximodistal gradient of mitoses, a departure that was later validated empirically 

(Boehm et al., 2010; see below). The authors also suggested that the high viscosity 
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and low Reynolds number of the mesenchyme justifies, rather than the full 

Navier-Stokes equation, the use of the simpler Stokes equation  

3
v p f S


      .         (3) 

Here p  is a pseudopressure field or “tissue pressure,” defined by airp P p  , 

where P  is the pressure of the fluid and   is the viscosity of the fluid. The gradient 

of p  yields the velocity of the limb bud’s outgrowth. 

A novel finite element algorithm was developed to deal with a free boundary in 

nonconvex domains (i.e., the proximal portions of the growing bud, which have 

straight anterior and posterior edges). The introduction of a variable surface tension in 

the ectoderm (a lower value at the tip) ensures that the limb bud expands in a 

proximodistal direction rather than ballooning out. This is a biologically plausible 

solution to this problem (see Borkhvardt, 2000), which in the model of Dillon and 

Othmer (1999) was implemented by the ad hoc elastic tethering of opposite points on 

the ectoderm. 

Morishita and Iwasa (2008) explored the potential of a discrete model of 

“growth-based morphogenesis” to describe changes of organ morphology during limb 

development. Like the fluid mechanics-based model described above, this discrete 

model describes the growth of the vertebrate limb bud as an interaction between 

tissues with different physical properties. The model represents the mesenchyme and 

epithelium each by a network of nodes, denoted respectively as M- and E-nodes. To 

model the dynamics of the AER, a key component in regulating limb outgrowth, the 

authors used the following reaction-diffusion equation defined on the nodal network: 

   ( ) ( ) ( ) ( ) ( ) ( ) .M M M M AER M M

i i j i k i i

j k

c t dt c t D c t c t c c t dt c t dt
 

       
 
   (5) 

M

ic is the AER-signal concentration at the M-node i, 
AER

kc is the AER-signal 

concentration at the E-node k of AER. The AER signal is assumed to diffuse only 

between linked nodes with a diffusion constant D . The chemical flux at each node is 

proportional to the difference between the focal node and its neighbors. The first 

http://www.springerlink.com/content/?Author=Yoshihiro+Morishita
http://www.springerlink.com/content/?Author=Yoh+Iwasa
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summation term includes all M-nodes j linked with the node i, and the second 

summation includes all E-nodes k linked with the node i. 
AER

kc  is assumed to be 

constant.   is a degradation rate of the AER-signal at each M-node.  

By running model simulations under their growth-based morphogenesis 

assumption (which has recently been questioned; see below), the authors concluded 

that: (1) the ratio of limb bud length to limb bud width is determined by the spatial 

pattern of volume sources realized through cell proliferation in the mesenchyme; (2) 

elastic balance between mesenchyme and epithelium is required for normal 

morphogenesis; (3) normal elongation of limb bud is not observed if the domain with 

high proliferation activity does not dynamically change with the growth and 

deformation. Compared to the viscous flow/FEA approach, the adaptivity and simple 

computational implementation of this discrete model make it useful in analyzing the 

control of organ morphology by the spatiotemporal pattern of volume sources. 

Boehm et al. (2010) presented a fluid dynamics model (like Dillon and Othmer, 

1999 and Murea and Hentschel, 2007), but in 3D, using a finite element computational 

approach (like Mura and Hentschel, 2007). The model employs the Navier-Stokes 

equations to represent the mesenchyme as a viscous incompressible fluid whose 

volume increases corresponding to s , a distributed source term (as used in the earlier 

two models), representing the patterns of cell division, for which a set of new data 

were provided. As in Hentschel and Murea (2007), omission of the convection term 

was justified by the high viscosity of the limb bud mesenchyme: 

1
[ ] 0,

Re

,

v
p v

t

v s


    



  

        (4) 

where v is velocity, p  is pressure, and Re is the Reynolds number. The source term 

s  was directly calculated from the new atlas of cell cycle times. 

Numerical simulations, supported by new measurements and parameter 

optimization, suggest that contrary to long-held assumptions, local sources of 
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isotropic proliferation were not sufficient to account for the shape of the growing limb 

bud (a feature not only of the models of Dillon and Othmer, 1999 and Morishita and 

Iwasa et al., 2008, discussed above, but also of the cellular automata-based limb bud 

shaping model of Poplawski et al., 2007). An example of the simulations of Boehm et 

al. (2010) is shown in Fig. 2. The limb mesoblast is represented as an incompressible 

fluid with a distributed source term, s representing the patterns of cell division. The final 

growth pattern (A) shows a discrete region of very high proliferation at the distal tip 

(red/yellow) and shrinking areas dorsal and ventrally (blue). The resulting tissue 

displacements (B) generate a shape (green surface in C, D) which shows a good 

correspondence to the real shape (blue in D), but only for a distribution of proliferation 

rates in conflict with experimental values. 

The authors thus concluded that directional cell activities (i.e., oriented cell 

division, as well as oriented cell motility; Wyngaarden et al., 2010), not incorporated in 

these simulations, are likely to be the driving forces for limb outgrowth. This 

theoretical prediction led to the discovery of a highly branched and extended cell 

shape composed of dynamically extending and retracting filopodia and a distally 

oriented bias in Golgi position, as well as a bias in the orientation of cell division 

(Boehm et al., 2010).  

An integrated view of the newly appreciated role of directional activities in limb 

bud outgrowth, including the tissue-level expulsive forces generated by the 

mechanically excitable flank acting on the forming limb bud (Damon et al., 2008), is 

presented by Hopyan et al. (2011). 

 

Models primarily involving dynamics of morphogens non-isomorphic to the skeleton  

No evidence has ever been found for a genomic representation of the limb skeletal 

pattern that would permit non-isomorphic distributions of morphogens, or duration of 

exposure to them, to be interpreted in a cell-autonomous fashion so as to differentiate 

into spatially appropriate portions of the skeleton. Nonetheless, the assumption that 

such an interpretive mechanism exists (as required by the PI model), has motivated 

many experimental studies tracking the spatiotemporal dynamics of candidate PI 
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morphogens, as well as several mathematical and computational models of these 

dynamics. 

An early example of such work is found in two papers by Meinhardt (Meinhardt, 

1983a,b). The model addressed a number of issues in limb developmental biology, 

such as the positioning of the limbs along the body axis and the regeneration of limb 

structures in urodele (tail-bearing) amphibians, both outside the scope of this Review, 

but also the development of the limb skeleton, which is within our range of topics. The 

novel concept of this paper, which was applied to each of the developmental problems, 

is the formation of new structures, including gradient sources, at the interface of two 

or more distinct tissues or populations of cells. Meinhardt calls this a “boundary 

model” to contrast it with the “gradient hypothesis” proposed by the developers of the 

PI idea (Tickle et al., 1975). In the latter, each cell’s positional identity is determined by 

the local values of two chemical concentrations or exposure-duration gradients, 

whereas in the former, the direct confrontation of independently induced cell 

populations set up gradients unrelated to the determinants of the original tissues, 

which modulate the further spatially nonuniform development of one or both of the 

interacting cell types (Meinhardt, 1983a). 

The Meinhardt boundary model has proved useful in accounting for the properties 

of several developmental systems (reviewed in Meinhardt, 2008), despite the lack of 

experimental support for notion that gradients purportedly established by this 

mechanism in the limb are used as positional information to specify locations of 

skeletal elements. Non-skeletally isomorphic gradients do have a role in fine tuning 

skeletal element identities, however (see below), making the boundary model and 

later accounts of non-isomorphic pattern formation of continuing relevance to limb 

development. 

The gradient system considered in Meinhardt (1983a) is presumed to specify 

positional identity along the AP axis of the limb bud. In a second paper in this series 

Meinhardt proposed to unify the generation of PD positional information with that of 

AP positional information via the same boundary model (Meinhardt, 1983b). This 

contrasts with the original PI model for this system, which used the idea that there is 
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an endogenous cellular clock that caused cells in a non-differentiating distal 

environment (the “progress zone”; Summerbell et al., 1973) to take on more distal 

fates in proportion to the duration of their residence there. Meinhardt suggested an 

alternative “bootstrap” model by which proximal differentiating cells signal (by the 

boundary confrontation mechanism) to the AER, causing it to keep the levels of the 

morphogen it produces elevated above the values employed to specify the distal-most 

positional identities of the limb (Meinhardt, 1983b).               

Although the described papers do not present detailed mathematical models, 

they reframed Turing’s partial differential equation (PDE)-based chemical 

reaction-diffusion model in a fashion relevant to developmental systems as “local 

autoactivation with lateral inhibition” (LALI) mechanisms (reviewed in Meinhardt and 

Gierer, 2000 and Meinhardt, 2008). Coming before anything was known about the 

molecular nature of the AER and ZPA signals, Meinhardt insightfully modeled the 

spatiotemporal dynamics of generic morphogens using the LALI mechanism.  

The general form for such Turing-type systems is 

2 ( )
C

D C R C
t


  


,          (6) 

where C  is a vector ( nccc ,..., 21 ) representing the concentrations of morphogens 

produced by the cells of the developing organ (e.g., the limb bud) with net rate )(CR , 

and D  is a diagonal matrix, the terms of which are the diffusion constants of the 

morphogens in the tissue. Generalized Turing systems with mixed boundary 

conditions, inhomogeneous domains and spatially varying diffusivities were studied in 

Benson et al. (1992), Dillon, (1993), and Dillon et al. (1994) among others. As will be 

seen below, they have proved useful not only in the analysis of spatiotemporal 

dynamics of non-isomorphic morphogen patterns, but also provide the underlying 

modeling framework for most accounts of morphogen patterns isomorphic to the limb 

skeleton.  
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Othmer and coworkers (Dillon et al., 2003) extended their earlier growth and 

morphogen patterning model (Dillon and Othmer, 1999) by incorporating newer 

findings on the Shh signaling pathway, specifically the involvement of the Shh 

receptor Patched (Ptc) and the associated membrane signal transduction factor, 

Smoothened (Smo) (Williams et al., 1999; Denef et al., 2000). The problem they 

addressed was related to experiments in which the spatial profile of Ptc and of 

Smo-mediated signaling were altered by ectopically introduced Shh. These 

experiments were difficult to interpret without unsupported assumptions concerning 

the diffusion rates of different forms of Shh.  

In modeling the network of interactions by reaction-diffusion equations in both 1D 

and in 2D (where the mutual feedback interactions of FGF from the AER and Shh 

from the ZPA (Niswander et al., 1994) were represented), the authors incorporated 

new terms for key Shh receptor and mediator proteins, coupled in the 2D case (in 

addition to terms for FGF) with the Navier-Stokes fluid mechanics equations of their 

earlier treatment. These models were then used to simulate the effects of ectopic 

sources of Shh, reproducing experimental results, which in some cases were 

counterintuitive.  

This approach thus exemplified how “reaction” and “diffusion” in biological 

Turing-type systems could depart from their purely chemical and physical versions, 

while behaving in a formally similar manner. The signaling network studied involved 

Shh, the Shh transmembrane receptor Patched (Ptc), and Smoothened (Smo), a 

transmembrane protein mediating Shh signaling through phosphorylation of the Gli 

family of transcription factors. Part of the reaction-diffusion system describing the 

interaction of Shh and Ptc can be described briefly as follows: 

[rate of change of Shh] = [diffusion of Shh] – [association of Shh and Ptc] + 

[disassociation of Shh-Ptc complex] – [degradation of Shh] + [Shh production], 

[rate of change of Ptc] = - [association of Shh and Ptc] + [disassociation of Shh-Ptc 

complex] – [association of Smo and Ptc] + [disassociation and degradation 

of Smo-Ptc complex] + [Ptc productions by itself and by Smo] – 

[degradation of Ptc], 
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[rate of change of Shh-Ptc complex] = [association of Shh and Ptc] - [disassociation 

and degradation of Shh-Ptc complex], 

The system describing interaction of Smo and Ptc is similar. Smo has two forms: the  

active and inactive forms. Active Smo associates with free Ptc and inactive Smo 

interacts with the Shh-Ptc complex. By introducing these additional biologically based 

interactions into their model, the authors were able simulate the different effects of 

Shh under the assumption that different forms of Shh have the same diffusion 

constant (Fig. 3). The figure compares simulated and experimental distributions of Shh 

at successive times after implantation of Shh beads (upper row) or ZPA tissue (lower 

row). Notably, the simulation reproduce the experimentally observed 

posterior–anterior ptc expression wave followed by restriction of expression near the 

implant site. Although the assumption of equal diffusion coefficients may not be 

entirely valid for Shh (see Farshi et al., 2011), the approach of Dillon et al. (2003) was 

useful in demonstrating the potential impact of network complexity on the physical 

parameters of the simpler physical systems that serve as paradigms for these 

developmental models. 

A different aspect of the generation of non-isomorphic morphogen patterns in the 

developing limb was addressed in a reaction-diffusion model by Hirashima et al. 

(2008). These authors, like Dillon et al. (2003), studied the role of coupled dynamics 

of positive feedback and feed-forward interaction between FGF expression at the 

AER and Shh expression at the ZPA, in their case addressing the question of why, 

given the positive effect FGF on the production of Shh, the sources of the two 

morphogens remain spatially separated. The model was implemented on a simplified 

one dimensional domain with AER at the left boundary point and ZPA in the region at 

a chosen distance from the AER. In accordance with the limb bud’s properties, FGF 

molecules diffuse from the AER and Shh diffuses from the mesenchymal cells, 

following the usual diffusion equations. To model the feed-forward regulation, the 

authors postulated a repressor that inhibits Shh expression. The coupled dynamics of 

the repressor and Shh expressions were described as follows: 
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The right hand side of the first equation stipulates that the level of repressor R  

increases with the extracellular FGF concentration F  with Hill coefficient 2h . 

inS denotes the expression level of Shh in the mesenchymal cells. 

,, , ,  and R S R S in     are parameters for production and degradation of R  and Shh. 

S  is the rate of transport of Shh to the outside of the cells. 1 2 3, ,  and K K K  are the 

dissociation constants, and 1 2 3, ,  and h h h  are the Hill coefficients. 

Drawing on experimental evidence (Lu et al., 2006), the model postulates the Fgf 

expression level in the AER cells, denoted by ( )inF t , to be stimulated by the 

extracellular Shh concentration S ,  

( ) ( ) ( ),
h

in F inh h

d S
F t F t

dt S K
    


       (8) 

where F  and   are the FGF production rate and degradation rate, respectively. 

  is the rate of active transport of FGF to the extracellular space. K  and h  are 

the dissociation constant that gives half-maximal output and the Hill coefficient, 

respectively, h  being assigned different values in different instances of the model. 

The feedback regulation between the AER and the ZPA makes the distance between 

them robust to parameter changes, a factor important for their developmental roles. 

Although several papers have appeared subsequently on the interactions between 

the AER and ZPA morphogens (e.g., Bastida et al., 2009 and Bénazet et al., 2009, 

see below), the signaling center spacing model of Hirashima et al., 2008 has yet to be 

subjected to decisive tests. 
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Introducing two additional regulatory interactions that influence the expression of 

the AER and ZPA morphogens FGF and Shh, namely another morphogen, BMP4, 

and a secreted antagonist of BMP4, Gremlin1 (Grem1), Bénazet et al. (2009) used an 

ordinary differential equation (ODE) approach (i.e., setting aside for the analysis the 

contribution of diffusion or other spatial transport of these released factors considered 

in PDE approaches) to devise a self-regulatory system of interlinked signaling 

feedback loops. The system has the following form, 
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where B , G , S  and F  represent the concentrations of BMP4, Grem1, Shh and 

AER sourced FGF (AER-FGF), respectively.  

Based on experimental results (for the network connectivity; the kinetic details 

being largely undetermined), BMP4 is inhibited by Grem1 following Michaelis-Menten 

kinetics, and d  is the maximum inhibition rate per unit of G  with 0K  the half 

saturation. 1/ Ba  is the half-life of the BMP4 protein and BMP4 levels are increased 

at the constant rate .l  Grem1 is positively controlled by both BMP4 and Shh. Hill 

functions are used to model Grem1, with the maximal velocities 1Gp  and 2Gp , and 

the half-maximal induction concentrations corresponding to 1K  and 2K , 

respectively. The half-life of Grem1 is 1/ Ga . The negative regulation of AER- FGF by 

BMPs is modeled by a Hill function. Fp is the maximal velocity and 3K  is the half 

maximal induction concentration. 1/ Fa  is the half-life of FGF protein. The positive 
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regulation of Shh by AER-FGFs is modeled by a Hill function with maximal velocity 

Sp , half maximal induction concentration 4K  and a half-life 1/ Sa . n  is a common 

Hill exponent in all equations.  

Numerical simulations of this system reproduced the experimental result that 

BMP4 and Shh activities are mutually antagonistic. Whereas the ODE model did not 

provide an account of spatial distribution of the morphogens, it enabled simulation of 

temporal changes in expression of the genes during development. Simulation results, 

for example, indicated that BMP4, which functions upstream of the genes specifying 

Grem1 and Shh, first initiates Grem1 expression (at a time corresponding to 

embryonic day 9), but increasing levels of Grem1 then lowered BMP4 activity rapidly 

(corresponding to embryonic day 10), which in turn induced the rise of Shh, Grem1, 

and AER-FGF activities in combination with low and persistent BMP4 activity (seen at 

embryonic day 11).  

The simulations suggested that the interactions considered could explain why 

intact epithelial-mesenchymal feedback signaling buffers low expression of Shh. 

Specifically, without an intact Grem1-Bmp4 feedback loop, the loss of one copy of Shh 

caused a reduction in the number of digits formed, reproducing an experimental result. 

Other experiments, however, indicate that Shh is not required for the formation of 

digits, and indeed more digits can form when it is absent than when it is present 

(Litingtung et al., 2002; Galli et al., 2010). 

As with all the other models focused on morphogens non-isomorphic to the 

skeletal pattern, the underlying assumption of the approach of Bénazet et al. (2009) is 

that the generated gradients provide positional information for the specification of the 

skeletal pattern. Experimental verification of this approach would involve 

demonstration of a genomic “look-up table” or other representation of the mapping 

between morphogen distributions and cell fates to specify the “interpretation” 

component of the PI framework (Wolpert, 1969). No such representation has been 

adduced thus far, and consequently there are no published mathematical or 
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computational models in this paradigm that simulate the arrangement of limb skeletal 

elements. 

Models involving dynamics of morphogens isomorphic to the skeletal pattern 

Wilby and Ede (1975) were the earliest to formulate a mathematical model that 

produced discrete skeletal elements in a limb-like arrangement. In doing so they 

explicitly contrasted the modeling strategy of employing a spatially periodic gradient to 

generate the periodic aspects of the skeleton to the positional information approach, 

which used one or more monotonic gradients along and required numerous 

thresholds to encode the interpretation of the gradient(s). These authors rejected, 

based on its purported instability, a Turing-type reaction-diffusion mechanism for the 

generation of the quasiperiodic patterns of the skeleton in favor of one based on 

automata theory, in which cells followed simple rules for differentiation, division, and 

movement based in part on what their neighbors were signaling. The rules were as 

follows:  

(1) cells are sensitive to their internal concentration of a freely diffusible 

morphogen M; 

(2) at concentrations of M below a lower threshold T1 cells are inactive; 

(3) at concentrations of M above T1, cells synthesize M; 

(4) at concentrations of M above a higher threshold T2 cells actively 

destroy M ; 

(5) the transformations “inactive to synthetic” and “synthetic to destructive” 

are irreversible. 

These rules are summarized in the following scheme:  

         

        [M] > T1                     [M] > T2 

[Inactive]          [Synthetic]           [Destructive] 

In the model, diffusion is simulated as a flux F of morphogen concentration M 

between adjacent cells where ([ ] [ ] )i jF d M M    per time unit, d being an 
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arbitrary diffusion constant and [ ]iM  and [ ] jM  the concentrations of M in adjacent 

cells. The constant d includes the term 
21/ h  required by Fick’s first law, where h is 

the distance between cells.  

The interactions of synthesis, destruction, and diffusion cause a “trailing” peak of 

M to stabilize between two areas of destruction and the “leading” peak to initiate a 

new area of destruction. The end result is a periodic pattern and periodic residual 

gradient. Linking the initiation of destruction of M with the differentiation of cartilage 

allows patterning and differentiation to proceed simultaneously but leaves the residual 

gradient available for further patterning. 

Wilby and Ede also presented a modification of their model that simulated 

partitioning of the pattern along the proximodistal axis by generating a set of limb 

shapes representing the regions added by growth in each developmental stage, while 

physically removing the proximal areas once they have been patterned. This “growth 

increment” version of the model produces a set of small cartilage elements, orientated 

along the PD axis and showing a distinct posterior-anterior polarity. The model entails 

an inherent connection between shaping and skeletal patterning of the limb, and 

indicated that models of its class (i.e., those generating periodicities) could 

straightforwardly account for normal and abnormal (e.g., mutant) limb development, 

the results of experimental manipulations such as ZPA grafting and mesoblast 

reaggregation, and the skeletal forms of extinct tetrapods. 

Since the time of Wilby and Ede’s model there has been increased acceptance of 

the applicability of reaction-diffusion-type mechanisms to developmental pattern 

formation. In particular, increased cell and molecular knowledge has shown (as 

mentioned above) that “reaction” and “diffusion” functions can be embodied in complex 

biological processes while still retaining the formal features of the elegant 

symmetry-breaking schemes of Turing (1952) and Meinhardt and Gierer (2000) (see 

Kondo and Miura, 2010 for a review). Moreover, the sensitivity of reaction-diffusion 

systems to variation of parameters and boundary conditions that motivated Wilby and 

Ede (1975) to seek a more stable alternative becomes less problematic when the 
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evolutionary dimension is considered. A reaction-diffusion mechanism can provide a 

range of patterns during the origination of a character such as the limb skeleton, with 

some forms gradually become stabilized by canalizing selection over time (see 

Newman et al., 2006). Thus, while the paper of Wilby and Ede (1975) represented a 

clear conceptual advance in the modeling of limb development, its influence was felt in 

its emphasis on the limb’s inherent periodicity rather than in the relatively ad hoc 

mechanism it presented. 

A few years later, Newman and Frisch (1979) modeled limb development as a 

quasiperiodic pattern-generating process, but in contrast to Wilby and Ede (1975) 

they invoked the ability of the reaction-diffusion mechanism to produce chemical 

standing waves. They reasoned that precartilage condensations could be induced by 

peaks of a morphogenetic agent, which they identified with the recently characterized 

ECM protein, fibronectin, found to be elevated in the condensations (Tomasek et al., 

1982). Because fibronectin was known to have both soluble and tissue-bound forms 

they suggested that it acted as both a diffusible morphogen and an aggregating factor. 

The authors modeled the generation of chemical prepatterns isomorphic to the 

skeletal elements using the following PDE system (anticipating those later employed 

by Meinhardt, 1983a,b and Dillon and Othmer, 1999 for the dynamics of 

non-isomorphic gradients; see above) to describe the production and diffusion of 

fibronectin in a 3-dimensional tissue:  

02  rccD  ,       (10) 

 

where c is the molecule’s spatially dependent concentration. Although Eq. 10 was not 

solved in a time-dependent fashion (and indeed the activator-inhibitor circuitry 

required for the pattern forming instability was not made explicit), it was shown that 

the system has stationary solutions (for fixed domains) of the form (see also Newman 

et al.; 1988): 

       )()()( zZyYxX         (11) 

with 
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where x is the AP axis, y the DV axis and z the PD axis. The x axis is the dimension 

along which the digits are arrayed. It varies in length in different species, and even 

between fore and hind limbs of the chicken embryo, where it remains constant during 

development in the former and expands distally in the latter. The y axis remains of 

constant length in all developing vertebrate limbs, corresponding to the presence of 

only single elements in the DV direction at all points along a mature limb.  

The z axis varies in length during development as the limb grows out in the PD 

direction. However, this dimension does not comprise the entire PD length, but only 

the distal, unpatterned portion of the limb bud within which reaction-diffusion dynamics 

occurs. This was called the “diffusion chamber” in Newman and Frisch (1979) and 

variously, the “active” and “LALI” (local autoactivation-lateral inhibition; see above) 

zones in subsequent versions of the model (see below), and its length, zl , based on 

experimental measurements of the unpatterned apical mesenchyme (Summerbell, 

1976), actually decreases as the limb grows longer.  

A set of stationary solutions of Eq. 10 was provided for different fixed values of 

zl during chicken fore limb development, where xl and yl are essentially unchanged. 

The numbers of peaks (defined by the sine wave solutions) in the x and y directions 

were shown to be constrained by a dispersion relation, subject to a constant, called 

the “Saunders number,” S.   
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In this representation, the distance zl acts as a control parameter for transitions 
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in the number of parallel elements (i.e., a single stylopod, two zeugopodal elements, 

three digits), which increases even though the distance yl  is held constant. Because 

of the nature of reaction-diffusion systems, as reflected in expression (13), an 

increase in yl , which occurs in other types of limbs during development, would lead 

to a further increase in digit number. 

Hentschel et al. (2004) extended the approach of Newman and Frisch (1979) by 

incorporating a representation of the positively autoregulatory morphogen TGF-β in a 

system of partial differential equations for skeletal patterning. Since TGF-β is a potent 

inducer of fibronectin production (reviewed in Newman, 1988), the system also 

contained an expression for that effect, as well as for the slow diffusion of 

mesenchymal cells and their positive haptotaxis up gradients of fibronectin, where 

their density increase is identified with precartilage condensation.  

The cells of the developing avian and mouse limbs are regionally differentiated 

with respect to three functionally different receptors for fibroblast growth factors 

(reviewed in Ornitz and Marie, 2002), which are skeletally non-isomorphic 

morphogens produced by both the AER (where FGFs are essential for its activity) and, 

to a lesser extent, the dorsal and ventral ectoderms (Sun et al., 2002).  

Indeed, the four main types of precartilage mesenchymal cells in the developing 

limb can be defined by their disjoint expression of the three FGF receptors (FGFRs) 

(Szebenyi et al., 1995). Hentschel et al. (2004) denoted the cells expressing FGFR1, 

FGFR2 and FGFR3, respectively, by R 1 , R 2 + R
'

2 and R 3 . (See Filion and Popel, 

2004, for a reaction-diffusion scheme also employing an FGF and its receptors). The 

cells designated as R
'

2  are a subset of those bearing FGFR2, but at a slightly later 

stage, when they have begun to produce fibronectin. In their model the authors 

presented equations for the spatially and temporarily varying densities and dynamics 

of interconversion of these different cell types. Based on evidence that the cells that 

initially bear FGFR2 are the source of a laterally acting inhibitor of precartilage 

condensation (Moftah et al., 2002), the authors also incorporated an equation for the 
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dynamics of this uncharacterized inhibitor. The result was an eight-equation PDE 

system representing the “core mechanism” of limb skeletal pattern formation: 
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In this scheme, c , ac , ic  and   denote, respectively, the spatially and 

temporarily varying concentrations of FGFs (produced by the ectoderm), TGF-



  

(produced throughout the mesenchyme), a diffusible inhibitor of chondrogenesis 

produced by R 2  cells, and fibronectin, produced by R
'

2  cells. In addition, As 

noted,
'

221 ,, RRR  and 3R  are densities of the different kinds of cells, but since FGFR3 

is only expressed by differentiated cartilage cells, which are immobile, 

'

221 RRRR   is the density of the mobile cells of the developing limb. A schematic 

representation of the model of Hentschel et al. (2004) is shown in Fig. 4.  

Hentschel and coworkers presented simulations based on a 2D version of their 

model using biologically motivated simplifications of the dynamics. The model 

remained a purely continuum one, however, with distributions of the various cell types 

appearing as density functions. Moreover, like the model of Newman and Frisch (1979) 

on which it was based, the simulations were confined to obtaining stationary solutions 

of the morphogen and cell distributions in domains of fixed size representing the 
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unpatterned portion of the limb bud at successive stages of development.    

These limitations have been overcome by adopting a hybrid discrete-continuous 

computational approach to simulating the interaction of cells and morphogens in the 

developing limb. Izaguirre et al. (2004) and Cickovski et al. (2005) introduced a 

multi-model computational framework integrating continuous equations and discrete 

models. The framework consists of three main parts. The Cellular Potts model (CPM; 

Graner and Glazier, 1992; Glazier and Graner, 1993), describing cell and ECM 

behavior, a reaction-diffusion PDE system describing the formation of skeletal 

prepatterns in a growing domain, and an ODE model comprising gene regulatory 

networks (GRNs), the multistable stationary states of which represent differentiated 

cell types.  

The CPM, the discrete, agent-based component of the framework also referred to 

as the Glazier-Graner-Hogeweg model (Scianna and Preziosi, 2013), performs 

energy minimization calculations on generalized cells, which can be actual cells or 

adjoining regions of the ECM, represented in the model as simply-connected domains 

of pixels. A contact energy ContactE , defined between pairs of generalized cells, 

describes the net adhesion/repulsion at their interface. An area (2D) or volume (3D) 

energy, VolumeE , penalizes the deviation of a cell from its target value in the 

minimization calculation. The effective energy E  is a function of ContactE  and 

VolumeE , as well as cell differentiation and division, and responses to external chemical 

stimuli. E contains true energies (e.g., cell-cell adhesion) and terms that mimic 

energies (e.g., chemical fields modeling the cell’s response to chemotactic and 

haptotactic gradients): 

Contact Volume ChemicalE E E E   ,        (15) 

and is minimized in the CPM in the dissipative limit using Metropolis Monte Carlo 

dynamics (Metropolis et al., 1953). 

Simulations of limb skeletal development were performed on a 2D plane by 
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Izaguirre et al. (2004) using as the reaction-diffusion component the well-studied but 

ad hoc Schnakenberg 2-equation PDE system (Murray, 2002), a simple two-state 

transition function between nonaggregating and aggregating cells, responsive to 

threshold values of the presumed activating morphogen and, as in Newman and 

Frisch (1979), a succession of fixed spatial domains. Cickovski et al. (2005) improved 

on this by using a simplified version of the biologically motivated PDE system of 

Hentschel et al. (2004), chemical fields and response functions to represent both 

chemotaxis and haptotaxis of cells to elevated levels of fibronectin (produced in 

response to elevated levels of activating morphogen (TGF-), as specified in a more 

elaborate cell-type transition map than that of Izaguirre et al., 2004), and the 

dynamical establishment of the morphogenetically active zone by a balance of cell 

multiplication and the inhibitory effect of a distally sourced inhibitory gradient (FGF) 

representing the AER. All of this was computed on a 3D CPM grid (i.e., with the third, 

dorsoventral, dimension made explicit), where it produced an increasing number of 

parallel elements in a proximodistal sequence, as in the living embryo (Cickovski et al., 

2005). 

In contrast to Cickovski et al. (2005), who modeled only “noncondensing” and 

“condensing” cells, Chaturvedi et al. (2005) employed a cell-state transition map using 

the full range of cell types in the model of Hentschel et al. (2004), R 1 , R 2 , 2R  and 

R 3 . Another difference between these two studies was that whereas Cickovski et al. 

(2005) permitted the width of the active zone to change in an emergent fashion by 

incorporating the movement of proliferating cells away from the high point of FGF at 

the AER, Chaturvedi et al. (2005) changed the aspect ratio of the active zone by 

programmatic alteration of the values of the morphogen diffusion coefficients. 

Successive stationary patterns were then computed as in Newman and Frisch (1979).  

Cickovski et al. (2005) and Chaturvedi et al. (2005) thus each incorporated 

realistic aspects of the biology into their respective models, but in the absence of 

relevant experimental data, and in consideration of necessary simplifications for 

feasible 3D simulations, some of the choices made were arbitrary and mutually 
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exclusive. Examples of these studies’ results are shown in Fig. 5. Panel (A) shows a 

simulation from Chaturvedi et al (2005) of the active zone TGF-β profile over 

successive times (vertical axis); panel (B) shows three simulations of the cell density 

profiles (condensed cells shown in gray).for successive times during limb 

development, from Cickovski et al. (2005), 

While the model of Hentschel et al. (2004) was based on available cell biological 

and molecular genetic circuitry of the developing limb, the finding of arithmetically 

increasing numbers of skeletal elements seen in these two computational 

implementations is mechanistically “underdetermined.” For example, similar patterns 

and pattern transitions were seen in a model based on chemotaxis, a mechanism not 

known at the time to be involved in mesenchymal condensation (Myerscough et al., 

1998; however, see Mammoto et al., 2011 for evidence that chemotaxis operates 

during tooth bud formation). 

In both Cickovski et al. (2005) and Chaturvedi et al. (2005) the elaborate 

“reactor-diffusion” dynamics of the full model of Hentschel et al. (2004) were reduced 

to a simpler form in different computationally convenient, but biologically and 

mathematically informal, ways. A preferable strategy for evaluating the validity of the 

model, however, is to perform the reduction in a mathematically rigorous fashion, 

using explicit biological idealizations. In this way, any deficiencies in its predictions 

can be traced to known assumptions. Alber et al. (2004), in one of the few purely 

analytical mathematical results in this field, studied the conditions under which the full 

system (Eqs. 14) was guaranteed to have smooth solutions that exist globally in time. 

It was also shown by introducing arbitrarily small diffusion of fibronectin, that the 

number of conditions necessary for the global existence of smooth solutions can be 

significantly reduced. By itself, however, this analysis was not sufficient to 

characterize the asymptotics of the long-time solutions determining the system’s final 

patterns, or to identify the parameter set within which biologically relevant simulations 

could be performed.  

The main obstacle to applying the standard parabolic equations approach was 

the presence of the terms proportional to ∇2
ρ in the equations for the moving cells. 
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The change of variables introduced in (Friedman and Tello 2002) was used and the 

contraction mapping theorem (Fontelos, Friedman and Hu 2002) was applied for 

proving the existence of a solution for t ∈ (0,T ), with T >0 sufficiently small. 

The full system in fact is “morphodynamic,” in the sense that cell movement by 

haptotaxis occurs simultaneously with the generation of morphogen patterns and cell 

differentiation (Salazar-Ciudad et al. 2003). Under the alternative but also biologically 

plausible “morphostatic” assumption (Salazar et al., 2003), however, which postulates 

that the distribution of the key morphogens and the induced cell differentiation pattern 

relaxes faster than the evolution of the overall cell density, it became possible to 

analytically extract from the full eight-equation system a simplified two-equation 

subsystem governing the interaction of two of the key morphogens: the activator and 

an activator-dependent inhibitor of precartilage condensation formation (Alber et al., 

2008). The reduced system has the form: 
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The above equations incorporate diffusion and decay of morphogens, along with the 

terms U(ca) and V(ca), which describe the production of activator and inhibitor by the 

cells. These production rates depend on the concentration ca of the activator itself.  

 The exact forms of these production terms U(ca) and V(ca) are as follows 

1( ) [ ( ) ( )] ,
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where 

 max( ) ( / ) /[1 ( / ) ],n n

a a a a aJ c J c s c s  max( ) ( / ) /[1 ( / ) ],q q

i a i a aJ c J c c   and 

1 2( ) /( ).a a ac c c   
1

aJ and the Michaelis-Menten type functions ),( aa cJ ),( ac and 

)( ai cJ  are the rates at which the various cell types release TGF-β and the inhibitor, 

and these cells have a same equilibrium density eqR (see Hentschel et al., 2004). The 
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system is subject to no-flux boundary conditions and zero initial concentrations for ca 

and ci.  

The reaction kinetic parameters   and   appear in the production rates of 

activator and inhibitor morphogens and their values dramatically affect the generated 

patterns. In the model   describes the feedback strength of the activator morphogen, 

and   denotes the activator morphogen concentration which separates the linear 

response phase from the saturation response phase (Alber et al., 2008). Biologically, 

these parameters are proposed to be related to the distributions of Hox gene products 

in the apical zone at the different phases of limb development (Nelson et al., 1996), 

with the rationale that Hox proteins are transcription factors that regulate the levels of 

developmentally important signals such as the activating and inhibitory morphogens 

(Svingen et al., 2006).  

The full model of Hentschel et al. (2004) contains expressions for activating and 

inhibitory morphogens and their interactions with cells (which are reduced to Eqs. 

16-17 under the morphostatic assumption). Also, by the evolution of the distribution of 

the AER morphogen FGF (concentration denoted by c ) and the dependency of the 

mass of 1R  precartilage mesenchymal cells on this factor, the resulting patterns are 

caused to develop in a progressive spatiotemporal direction, as in the actual limb. In 

addition to this polarity of growth, and the transitions in element number induced by 

the AER-regulated change in aspect ratio of the LALI zone, as with any 

reaction-diffusion-type system the shape and boundary values of the relevant domain 

will effect the details of the patterns generated. Two aspects of limb development that 

have generally been subjects of separate mathematical modeling efforts – limb bud 

shaping and skeletogenesis (see above) – are thus interrelated and should eventually 

be incorporated into unified models.       

Recently, a moving grid discontinuous Galerkin (DG) finite element method was 

introduced for modeling skeletal pattern formation in the vertebrate limb (Zhu et al., 

2009a,b). The DG method provides means for converting an ordinary or partial 

differential equation system into a problem represented by a system of algebraic 
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equations in a more restricted space than that of the original system. It employs 

“independent” polynomials on every element to approximate the system’s behavior in 

the restricted space and provides more flexibility than the continuous Galerkin finite 

element method. This method enables numerical solutions of reaction-diffusion 

systems on deforming and moving grids in domains with complicated geometries and 

moving boundaries. (See Madzvamuse et al., 2005 for an allied approach.) To 

approximate the irregular geometries of limb buds, the cubic spline interpolation 

technique (de Boor 2001) was used in (Zhu et al., 2009a,b). This method 

approximates the curved boundary of a limb bud by piece-wise cubic polynomials and 

maintains global smoothness of the obtained spline curve. 

   Based on the earlier-described proposed mechanism spatiotemporal skeletal 

pattern formation (Hentschel et al., 2004; Newman and Bhat, 2007), reaction and 

diffusion of morphogens occurs in the LALI zone, the activator morphogen induces 

pattern elements in the active zone (the proximal portion of the LALI zone), and these 

elements become consolidated in the frozen zone. As the frozen zone grows, the LALI 

zone’s width shrinks and its shape deforms. The LALI zone, which denoted by ( )t , 

resides at the distal tip of the developing limb. Because the morphogen system 

denoted by Eqs. 16-17 is defined on a moving domain, ( )t , all spatial variables 

( , )x y  are functions of time, t . By the Reynolds transport theorem (Kundu, 1990), the 

system (16) on a moving domain will be 
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is the velocity of a spatial point ( ( ), ( ))x t y t  in the moving LALI zone ( )t . 

The moving velocity ( ( ), ( ), )a x t y t t  of the LALI zone is determined by the aspect 

ratio of the LALI zone at different stages, which determines the number of parallel 

elements in the reaction-diffusion model (Newman and Frisch, 1979; Hentschel et al., 
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2004; Zhu et al., 2009b). Since the natural shape of a developing limb is nonstandard, 

the discontinuous Galerkin finite element method (Zhu et al., 2009a; Zhu et al., 2009b) 

was used to describe the complicated geometries and solve the system (3) on the 

moving domain ( )t  numerically.  

The core chondrogenic mechanism of the developing limb in the presence of an 

FGF gradient was simulated using the computational model described above, which 

permits simulation of LALI systems in domains of varying size and shape. The model 

predicts the normal proximodistal pattern of skeletogenesis as well as distal 

truncations resulting from AER removal (Saunders, 1948) (Fig. 6), and a variety of 

limb bud-deforming mutations and other conditions (Zhu, et al., 2009b; Zhu, et al., 

2010). 

A biologically valid model of limb skeletogenesis should not only be capable of 

simulating the limbs of present-day animals, but also provide a mechanistic rationale 

for the appearance of a limb-type skeletal pattern at the fin-limb transition at the origin 

of the tetrapods (Hinchliffe et al., 2002). Zhu et al. (2010) thus sought to test whether 

their model, with adjusted kinetic parameters and limb bud contours, but conserved 

regulatory network topology and AP FGF gradient dynamics and emergent zone 

assignments, could reproduce the features of fossil limb skeletons, including some 

from extinct fish-like ancestors and ichthyosaurs, i.e., swimming dinosaurs. Since the 

embryology is unknown for the extinct species, the authors designed a range of 

hypothetical developmental scenarios. The simulation end-points shown alongside 

drawings of fossil limbs in Fig. 7 indicate that their model exhibits sufficient flexibility to 

reproduce the general features of limb skeletons of a variety of pre-tetrapods (such as 

the lobe-finned fish Tiktaalik; Shubin et al., 2006) with limb-like appendages. 

Relevance of morphodynamic effects 

Computational tractability of the LALI-type models described above have typically 

involved making the morphostatic assumption that pattern formation is 

mechanistically separated from cell movement. A more authentic treatment, however, 

would be morphodynamic, as in Hentschel et al. (2004), where the cellular “reactors” 
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that generate the morphogens and extracellular molecules which mediate cell 

condensation undergo rearrangement simultaneously with (and in reaction to) their 

production of these agents. For small, local cell translocations the full morphodynamic 

process may yield the same results as the idealized morphostatic one, but as seen in 

the work of Salazar-Ciudad and Jernvall on the positioning of tooth cusps, 

morphodynamic effects can have dramatic consequences for developmental and 

evolutionary change (Salazar-Ciudad and Jernvall, 2005; 2010). 

After the appearance of the reaction-diffusion model of Newman and Frisch 

(1979), Oster and coworkers adapted the LALI formalism to a mechanical 

interpretation in which pattern formation and morphogenesis (i.e., mesenchymal 

condensation) were reflections of a single process, the contraction of the intercellular 

matrix by mechanical stresses exerted locally by the cells themselves. A patterned (as 

opposed to global) contraction was effected in their model by invoking elastic 

attenuation by ECM away from the centers of contraction. They analogized their 

mechanism to a reaction-diffusion process, in which contraction was proposed to play 

the role of a short-range activator, and elastic attenuation that of a long-range inhibitor 

(Oster et al, 1983). 

Although this model thus featured a pattern-forming mechanism of which cell 

movement was an intrinsic component, several observations tended to disconfirm it. 

One was the recognition that in contrast to fibrous collagen ECMs (e.g., Stopak and 

Harris, 1982), the amorphous hyaluronan-glycoprotein matrix of the limb 

mesenchyme cannot sustain the cell traction-dependent deformations required by the 

model of Oster et al. (1983). Moreover, in vivo evidence indicated that the limb 

skeletal pattern was set well before condensation of the skeletal primordia occurred 

(Wolpert and Hornbruch, 1990).  

Recent work, however, has revived consideration of patterning mechanisms that 

depend on cell movement. A study of the role of the multifunctional galectin proteins in 

chick limb development (Bhat et al., 2011, discussed in Section 2, above), identified 

an early stage of skeletal development in which “protocondensations” are mediated by 

CG-1A, a galectin that acts as both a morphogen and a matricellular adhesion protein. 
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The regulatory network formed by CG-1A and its modulatory partner CG-8 constitute 

a LALI-type system with distinct morphodynamic properties. In particular, a PDE 

model adhering closely to the cell-molecular interactions identified in Bhat et al. (2011) 

readily produces periodically patterned skeletal primordia only when a cell flux term is 

included in the system of equations (T. Glimm, personal communication). 

Heuristic models relating to the LALI framework for skeletogenesis 

A series of special-purpose models have been presented over the past decade that 

while not attempting to represent the development of the limb skeleton in anything like 

its multiscale complexity, are instead directed toward testing the sufficiency of the 

LALI framework for skeletal pattern formation. In some cases the simplification was in 

the system modeled, allowing for simulation of detailed cellular behaviors and 

quantitative comparisons with broad ranges of experimental variability. On other 

cases highly simplified reaction-diffusion models have been used to assess their 

generic capacity to account for some puzzling genetic variations of the limb skeleton.    

In the category of simpler experimental settings, Miura and Shiota (2000b) 

produced planar “micromass” cultures of limb bud mesenchyme. In this in vitro system, 

patterns of precartilage condensations form and cartilage nodules differentiate with a 

time-course and on a spatial scale similar to that in the embryo ( Leonard et al.,  

1991; Downie et al., 1994). Miura and Shiota grew their cultures within collagen or 

agarose gels of different densities and found that the condensation pattern became 

less coarse with increased gel density. Using a computational model that 

implemented the assumptions of a reaction-diffusion mechanism, a cell sorting 

mechanism based on differential adhesion, and the cell traction model of Oster et al. 

(1983), they determined that the experimental data were consistent with the first two 

mechanisms, but not the third.     

Later, a multiscale, stochastic, discrete approach was used to model 

chondrogenic pattern formation in the micromass system (Kiskowski et al., 2004; 

Christley et al., 2007). Both models were calibrated using experimentally determined 

or biologically plausible data on rates of cell and activator and inhibitor morphogen 



  

 37 

movement. In Kiskowski et al. (2004), cells and the molecules they produce (with 

formal properties of a positively autoregulatory activator, an inhibitor, and 

fibronectin-type ECM) were modeled as mobile single-pixel agents that implemented 

rules concerning production and response to the molecules (also represented as 

single pixels). The importance of lateral inhibition for achieving authentic 

condensation pattern statistics was exemplified in this study: when the strength of this 

branch of the core cell-molecular regulatory was attenuated the regularity of the 

pattern was correspondingly degraded.  

In Christley et al. (2007), cell and molecular dynamics were simulated on distinct 

spatial and temporal scales with cells represented as spatially extended multipixel 

objects that could change their shape. Simulation results indicated that cells can form 

condensation patterns by undergoing small displacements of less than a cell diameter, 

packing more closely at sites of ECM accumulation by changing their shapes, while 

maintaining a relatively uniform cell density across the entire spatial domain. In both 

Kiskowski et al., 2004 and Christley et al., 2007 regions of parameter were identified 

in which both condensation size and spacing fell within the envelope of experimentally 

determined values.  

 The simulations in Christley et al. (2007) disclosed two distinct dynamical regimes 

for pattern self-organization involving transient or stationary inductive patterns of 

morphogens. In the transient regime patterns of activator and inhibitor morphogen 

concentrations appeared for a brief period of time after which the patterns degraded. 

In the stationary regime a spatial pattern of morphogen concentrations formed that 

remained stable over time. Sensitivity analysis of key parameters indicated 

robustness in pattern formation behavior with some realistic variation in the 

morphological outcomes. For example, formation of both spots and stripes of 

precartilage condensation (as seen in the cultures) could be produced by the model 

under slightly different parameter choices. 

 As noted above (Section 2), FGF family morphogens not only suppress pattern 

formation distally in the intact limb, but also act as modulators of the presumed 

reaction-diffusion network by, for example, eliciting a lateral inhibitor of condensation 
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in cells that bear the FGFR2 receptor (Moftah et al., 2002). Drawing on observations 

from the micromass culture system, Miura and Maini (2004) investigated the effect of 

FGF4 on the speed of the emergence of the condensation pattern. They showed 

analytically, and confirmed by numerical simulations, that the rate of pattern 

emergence can change abruptly with small parameter changes if the system is 

governed by a diffusion-driven instability. Representing the system in terms of the 

Gierer-Meinhardt reaction-diffusion model indicated that a change in a single 

parameter can in principle explain two experimentally determined effects of FGF on 

limb mesenchyme cells: reinforcement of lateral inhibition and earlier appearance of 

pattern. 

 In the category of highly schematic models of features of the intact limb, Miura et 

al. (2006) studied the digital pattern in Doublefoot (Dbf) mutant mice, which have 

supernumerary digits due to overexpansion of the limb bud. In this mouse strain thin 

digits exist in the proximal part of the hand or foot, which sometimes become normal 

abruptly in the distal part, an effect difficult to explain in the positional information (PI) 

framework. By numerical simulation of the simplest possible Turing-type 

reaction–diffusion model on a growing domain, they found that exactly the same 

“mixed-mode” patterning behavior was reproduced. They then analytically related this 

pattern outcome to the saturation of activator kinetics in the model. Their analysis led 

to the prediction that the inverse of the typical Dbf pattern, i.e., thin proximodistal 

channels within thick digits, was also consistent with the reaction-diffusion mechanism, 

and they in fact found an example of this among their mutant embryos. 

 In another example of the application of simplified models, Glimm et al. (2012), 

sought to understand the patterning effects of modulating the reaction parameters of a 

Turing-type system by a graded modifier orthogonal to the standing wave solution. 

This, of course, potentially represents the effect of Shh emanating from the ZPA under 

the assumption that the digits are patterned by a reaction-diffusion process. Using a 

generalized representation of a reaction-diffusion system as well as the specific case 

of the Schnakenberg equations (Murray, 2002), the authors present both analytical 

and numerical results demonstrating the subtle and often counterintuitive effects of 
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modulatory gradients on Turing patterns (Fig. 8). Examples of anomalies in limb 

development such as the loss of a middle finger in mouse embryos that were 

genetically modified such that a shallower Shh gradient was present in the limb buds 

(Harfe et al., 2004), the formation of an ectopic digit posterior to mouse digit V when 

the Hedgehog signaling pathway was abrogated in the limb ectoderm (Bouldin et al., 

2010), and the fusion of digits seen in human Triphalangeal thumb-polysyndactyly 

syndrome, in which a limb-specific enhancer of Shh expression is duplicated (Sun et 

al. 2008; Wieczorek et al., 2010; Klopocki et al. 2008), all of which are difficult to 

reconcile with the PI model, prove to be consistent with the results of the analysis 

gradient-Turing mechanism interactions.  

 

4. Conclusions and Discussion  

In this review we have described a variety of mathematical modeling approaches to 

the study of vertebrate limb development. These include models focusing on 

outgrowth and shaping of the limb bud, models concerned with the establishment of 

morphogen gradients such as FGF and Shh that are non-isomorphic to the skeletal 

pattern, several of which control outgrowth and shaping and some of which modulate 

the details of the skeletal elements, and models concerned with the generation and 

arrangement of the skeleton itself. 

The relevant biological mechanisms operate at a variety of temporal and spatial 

scales and involve cell-cell signaling, gene expression regulation, including cell-type 

transitions, cell movement, and viscoelastic behavior of both epithelial and 

mesenchymal tissues. Modeling this broad range of biological processes has required 

a correspondingly rich set of mathematical techniques, among which are continuum 

approaches, immersed boundary and finite element methods, discrete methods such 

as cellular automata and stochastic systems, and partial differential equations. The 

limb thus constitutes one of the most comprehensive systems for experiment-based 

modeling in the field of developmental biology. 

In addition to the insights mathematical modeling has made to understanding 
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vertebrate limb development, the problems raised by this system have also stimulated 

the generation of new modeling strategies. Specifically, the limb problem motivated 

what may have been the first biological application of Turing-type reaction-diffusion 

system in which experimental data on cell and molecular properties and tissue 

dimensions were taken into consideration, as well as sensitivity of pattern properties 

to the changing size of a small (i.e., wavelength-comparable) domain (Newman and 

Frisch, 1979). CompuCell and CompuCell3D (http://www.compucell3d.org/), versatile 

and widely used multiscale simulation environments incorporating the Cellular Potts 

model (CPM) (Glazier and Graner, 1993, Scianna and Preziosi, 2013) for cell and 

ECM behavior, along with reaction-diffusion equations for morphogen dynamics and 

cell transition dynamics via ordinary differential equations, were first tested on the limb 

(Izaguirre et al., 2004; Cickovski et al., 2005; Chaturvedi et al., 2005). Such multiscale 

approaches, coupling discrete stochastic and deterministic continuous submodels, 

are increasingly seen as crucial to new hypothesis generation based on large data 

sets, and have been invaluable in other areas of developmental biology (Schnell et al., 

2008), and in cell biological and multicellular problems (Chauvière and Preziosi, 2010; 

Anderson et al., 2007; Asthagiri and Arkin, 2012) including blood clot formation (Xu et 

al., 2012) and cancer (Deisboeck and Stamatakos, 2010).  

The problem of limb development, furthermore, motivated what may be the first 

detailed mathematical investigation of the analytical properties of an experimentally 

based multidimensional set of coupled reaction-diffusion equations for a 

developmental process (Alber et al., 2004), and the formulation of a new 

discontinuous Galerkin moving grid approach grids for the finite element modeling of 

reaction-diffusion systems (Zhu et al., 2009a). 

Several unresolved questions concerning limb morphogenesis and pattern 

formation continue to be under active investigation and are likely to yield to combined 

experimental, mathematical and computational approaches in the coming years. 

These include the relation of Hox gene activity to the core reaction-diffusion 

mechanism of skeletogenesis (J. Sharpe, personal communication), the development 

of a realistic morphodynamic (sensu Salazar-Ciudad et al., 2003) model incorporating 

https://owa.nd.edu/owa/redir.aspx?C=nKF-TB-IcUKAh8BqNBWuWxeqhOdxXc9INakJp5UjiXZmWbcywKMS6c6bPr_ARxgU4WO3pCIG2jw.&URL=http%3a%2f%2fwww.compucell3d.org%2f
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cell flux to represent the newly identified dynamics of early “protocondensation” 

formation in the embryonic limb (Bhat et al., 2011) (T. Glimm, personal 

communication), and the reconciliation of the variously proposed oriented cell and 

tissue rearrangements that drive limb bud outgrowth (Hopyan et al., 2011).  

The model by Boehm et al. (2010) has taken the use of quantitative 

measurements to inform models and establish causal mechanisms for the generation 

of limb bud outgrowth and shape to an unprecedented level. Although the complexity 

of the core skeletal patterning process and the abundance of molecular components 

involved in the molding of individual skeletal elements will probably preclude analysis 

of these mechanisms at a similar level of resolution in the near term, its possibility is a 

motivating ideal. In the meantime, phenomenological and heuristic models, and those 

that simulate simplified experimental systems such as pattern formation in the 

micromass cell culture system will continue to contribute to the overall picture. The 

success of multidisciplinary, multiscale strategies over the last several decades in 

building a coherent understanding of limb development provides encouragement 

regarding the next phase of this research. 
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Figure Legends 

 

Fig. 1. Development of a representative vertebrate limb (a chicken forelimb). The limb 

bud at successive stages is shown as if transparent and its outgrowth and shaping and 

the progress of chondrogenesis within it are both shown. The lighter gray regions 

represent precartilage; the darker-gray regions represent definitive cartilage. The 

single proximal element that forms first is the humerus (the femur in the leg); the two 

elements of the mid-wing form next, the radius and the ulna (the tibia and fibula in the 

leg); the distal-most, last-forming, elements are the digits. Below, the proximodistal, 

anteroposterior, and dorsoventral axes are indicated on an illustration of a human 

hand. (Modified from Forgacs and Newman, 2005). 

Fig. 2. Results of computational optimization of a finite-element model for limb bud 

shaping.. (Slightly modified from Boehm et al., 2011)  Limb orientations are as shown 

in Fig. 1. 

Fig. 3. Computational and experimental Patched (Ptc) responses to Sonic hedgehog 

(Shh) bead implants (upper panels) and ZPA tissue implants (lower panels). (Upper) 

Numerical simulations of Ptc concentration 2, 6, and 18 h after bead implants (A, C, 

and E, respectively). (Lower) Ptc concentration 12, 16, and 20 h after tissue implant (A, 

C, and E, respectively). Experimental results are from Drossopoulou et al. (2000) for 

ptc transcript expression 2, 6, and 16 h post-bead implants and for ZPA grafts, 4, 8, 

and 16 h post-implant (B, D, and F, respectively). The figures for numerical simulations 

were rescaled. (From Dillon et al., 2003). 

Fig, 4. Schematic representation of the biochemical genetic circuitry underlying 

the pattern-forming instability described in the model of Hentschel et al. (2004), 

superimposed on a two-dimensional representation of the 5-day limb bud. The colored 

rectangles represent the distribution of the densities of the cell types designated in the 

model, defined by the expression of the various FGF receptors in the different zones. 

The apical zone contains a high density of cells expressing FGFR1 (green). In this 
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zone, cell rearrangement is suppressed by the FGFs emanating from the AER. The 

active zone is the site of the spatiotemporal regulation of mesenchymal cell 

condensation. Pattern formation begins with the establishment of populations of cells 

expressing FGF receptor 2 (red). The lower part of the figure gives an enlarged version 

of part of this zone. The curved arrows indicate the positively autoregulatory (i.e., 

TGF-); the straight lines ending in circles indicate the laterally acting inhibitor. When 

condensed cells leave the proximal end of the active zone and enter the frozen zone 

they differentiate into cartilage cells, which express FGFR3 (blue), and their 

spatiotemporal pattern becomes fixed. At different stages of development the active 

zone will contain different numbers of elements; eventually the frozen zone will 

encompass the entire pattern. The length of the dorsoventral axis (normal to the plane 

of the figure; see Fig. 8.13) is collapsed to zero in this simplified model. PD, 

proximodistal axis; AP, anteroposterior axis. (Based on Hentschel et al., 2004; figure 

modified from Forgacs and Newman, 2005.)  

Fig. 5. Sequential generation of morphogen and condensation patterns in two 

multiscale 3D simulations of limb development based on the model of Hentschel et al. 

(2004). (A) Time series of the concentration of the diffusible morphogen TGF-β 

displayed in cross-sections of the active zone (per Hentschel et al., 2004) of the chick 

limb at successive stages of development, with time increasing in the upward direction 

(Chaturvedi et al., 2005). (B) A three-dimensional simulation of mesenchymal cell 

distribution during chick limb development. Cells that have undergone condensation 

are shown in gray (Cickovski et al., 2005). Whereas the cell density was represented 

as a continuous variable in Hentschel et al. (2004), both of these studies employed the 

Cellular Potts Model (Glazier and Graner, 1993) to represent cell position and motion 

(though only the morphogen profile is shown in (A). In each study simulations were 

performed using the CompuCell3D multimodel simulation framework 

(http://www.compucell3d.org/). (Panel A from Chaturvedi (2005). Panel B, slightly 

modified from Cickovski et al.,2005, from Forgacs and Newman, 2005). 

http://www.compucell3d.org/
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Fig. 6. Simulations of AER removal with the model of Zhu et al. (2010). (Left two 

columns) Drawings of AER removal experiments, based on Saunders (1948). The top 

images show an intact chicken wing bud at an early stage of development and the limb 

skeleton that it generates. The middle images show a wing bud at the same early stage 

with the AER removed, and the resulting limb skeleton, which attains a normal size but 

is truncated beginning at the elbow. The bottom images show a later-stage wing bud 

the AER of which has been removed. The resulting skeleton is truncated from the wrist 

onward. (Right column): Top: AER (e.g., suppressive morphogen source) left intact; 

normal development results. Middle: AER deleted early during the simulation. Bottom: 

AER deleted later during the simulation. The same parameters were used in all three 

simulations and all simulated limbs were allowed to develop for the same time. (From 

Zhu et al., 2010). 

Fig. 7. Simulation of fossil limb skeletons with the model of Zhu et al. (2010). 

Hypothetical developmental scenarios were used, as described in the text and the 

original paper. The end-stages of the simulations of the ichthyosaur Brachypterygius, 

two lobe-finned fish, Sauripterus and Eusthenopteron, and two forms that are 

transitional between those organisms and amphibians, Panderichthys and Tiktaalik, 

are shown on the right. See Zhu et al. (2010) for the sources of the fossil drawings and 

details of the simulations. 
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Fig. 8. Mechanism by which the loss of a middle finger can occur in the heuristic model 

of limb development of Glimm et al (2012). As the external morphogen gradient 

becomes less steep, the local activator concentration at the second peak falls below 

the threshold concentration. The panels on the left show schematic plots of the 

corresponding spatially dependent kinetics terms. In the center panels, the 

corresponding steady state activator concentrations are shown. The right-hand side 

shows the patterns induced in those regions where the activator concentration is 

above the threshold. Thus, the dark bars represent precartilage condensations, the 

precursors to the digits. While all 5 digits appear in the first four rows (with variations in 

thickness resulting from the effect of the orthogonal modifying gradient), in the fifth row 

there are only 4 digits; a middle digit is “lost” (i.e., fails to form). In the panels on the 

right, the horizontal direction is the anteroposterior axis, and the vertical direction 

proximodistal axis. (From Glimm et al., 2012). 
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Highlights 

 We review major mathematical and computational models of vertebrate limb 

development. 

 Models cover limb bud outgrowth and shaping, gradient formation, and 

skeletogenesis.  

 Models help explain microsurgical experiments, mutations, and evolution of the 

limb. 

 Multiscale mathematical modeling is now central to the study of limb 

morphogenesis.  

 


