
Vol.:(0123456789)

Communications on Applied Mathematics and Computation
https://doi.org/10.1007/s42967-022-00209-x

1 3

TECHNICAL NOTE

Sparse‑Grid Implementation of Fixed‑Point Fast Sweeping
WENO Schemes for Eikonal Equations

Zachary M. Miksis1 · Yong‑Tao Zhang1

Received: 20 January 2022 / Revised: 29 June 2022 / Accepted: 10 August 2022
© Shanghai University 2022

Abstract
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the
literature to efficiently solve steady-state solutions of hyperbolic partial differential equa-
tions (PDEs). As other types of fast sweeping schemes, fixed-point fast sweeping methods
use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of
hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The result-
ing iterative schemes have a fast convergence rate to steady-state solutions. Moreover, an
advantage of fixed-point fast sweeping methods over other types of fast sweeping methods
is that they are explicit and do not involve the inverse operation of any nonlinear local sys-
tem. Hence, they are robust and flexible, and have been combined with high-order accurate
weighted essentially non-oscillatory (WENO) schemes to solve various hyperbolic PDEs
in the literature. For multidimensional nonlinear problems, high-order fixed-point fast
sweeping WENO methods still require quite a large amount of computational costs. In this
technical note, we apply sparse-grid techniques, an effective approximation tool for mul-
tidimensional problems, to fixed-point fast sweeping WENO methods for reducing their
computational costs. Here, we focus on fixed-point fast sweeping WENO schemes with
third-order accuracy (Zhang et al. 2006 [41]), for solving Eikonal equations, an important
class of static Hamilton-Jacobi (H-J) equations. Numerical experiments on solving multidi-
mensional Eikonal equations and a more general static H-J equation are performed to show
that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve
large savings of CPU times on refined meshes, and at the same time maintain comparable
accuracy and resolution with those on corresponding regular single grids.

Keywords Fixed-point fast sweeping methods · Weighted essentially non-oscillatory
(WENO) schemes · Sparse grids · Static Hamilton-Jacobi (H - J) equations · Eikonal
equations

Research was partially supported by the NSF Grant DMS-1620108.

 * Yong-Tao Zhang
 yzhang10@nd.edu

 Zachary M. Miksis
 zmiksis@nd.edu

1 Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,
Notre Dame, IN 46556, USA

http://orcid.org/0000-0002-0831-6590
http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-022-00209-x&domain=pdf

 Communications on Applied Mathematics and Computation

1 3

Mathematics Subject Classification 65N06 · 65N22 · 35L99

1 Introduction

In this technical note, we study an efficient approach to reduce the computational costs for
solving the multidimensional Eikonal equations

where � is a d-dimension computational domain in ℝd , and � is a subset of � . The given
functions f (�) and g(�) are Lipschitz continuous, and f (�) is positive. The Eikonal equa-
tions are a very important class of static Hamilton-Jacobi (H-J) equations [7]

where H is the Hamiltonian. The numerical computations of Eikonal equations appear in
many applications, such as the optimal control, image processing and computer vision,
geometric optics, seismic waves, level set methods, etc.

Due to the nonlinearity of the equations and possible singularities in their solutions, it
is challenging to design efficient and high-order accurate numerical methods for solving
static H-J equations such as the Eikonal equations (1). In the literature, a popular approach
is to discretize (1) into a nonlinear system and then design a fast numerical method to solve
the nonlinear system. Among such methods are the fast marching method and the fast
sweeping method. The fast marching method uses the Dijkstra’s algorithm [8] and updates
the solution by following the Eikonal equations’ causality sequentially, e.g., see [32–34]. In
the fast sweeping method [9, 16, 29, 30, 43, 44], Gauss-Seidel iterations with alternating
orderings are combined with upwind schemes. Different from the fast marching method,
the fast sweeping method is an iterative method and follows the Eikonal equations’ causal-
ity along characteristics in a parallel way, i.e., each Gauss-Seidel iteration with a specific
sweeping ordering covers a family of characteristics in a certain direction simultaneously.

The iterative framework of the fast sweeping method provides certain flexibility to
incorporate high-order accuracy schemes for hyperbolic PDEs, such as weighted essen-
tially non-oscillatory (WENO) methods [38, 42] or discontinuous Galerkin (DG) [19, 36,
40] methods, into it for developing high-order fast sweeping methods. In [41], fixed-point
fast sweeping WENO methods were designed to solve static H-J equations. Different from
other fast sweeping methods, fixed-point fast sweeping methods adopt the Gauss-Seidel
idea and alternate sweeping strategy to the time-marching type of fixed-point iterations.
They are explicit schemes and do not involve the inverse operation of nonlinear local sys-
tems which have to be done in other types of fast sweeping methods, and hence are much
easier to be applied in solving various hyperbolic equations using any monotone numerical
fluxes and high-order nonlinear WENO approximations. For example, how efficiently solv-
ing steady-state problems of hyperbolic conservation laws is important and challenging [4,
6]. In [20, 37], fixed-point fast sweeping WENO methods were applied in solving nonlin-
ear hyperbolic conservation laws. Numerical experiments performed in [20, 37, 41] show
that more than 50% of computational costs are saved by using fixed-point fast sweeping

(1)
{ |∇𝜙(�)| = f (�), � ∈ 𝛺�𝛤 ⊂ ℝd,

𝜙(�) = g(�), � ∈ 𝛤 ⊂ 𝛺,

(2)
{

H(�,∇𝜙(�)) = f (�), � ∈ 𝛺�𝛤 ⊂ ℝd,

𝜙(�) = g(�), � ∈ 𝛤 ⊂ 𝛺,

Communications on Applied Mathematics and Computation

1 3

methods rather than direct time-marching methods to converge to steady states of high-
order WENO schemes.

Since high-order WENO methods require more operations than many other schemes due
to their sophisticated nonlinearity and high-order accuracy, the associated computational
costs increase significantly when the number of grid points is large for multidimensional
problems. Sparse-grid techniques, an efficient approach for solving high-dimensional prob-
lems, have been developed in the literature to reduce the number of grid points needed
in the simulations. See [3, 10] for a review. In 1991, sparse-grid techniques were intro-
duced in [39] to reduce the number of degrees of freedom in the finite-element method.
As an approach for the practical implementation of sparse-grid techniques, the sparse-grid
combination technique was developed in [13]. The main idea of the sparse-grid combi-
nation technique is to compute the final solution as a linear combination of solutions on
semi-coarsened grids, and the coefficients of the linear combination are taken, such that
there is a canceling in leading-order error terms and the resulting accuracy order is kept
to be the same as that on a single full grid. The sparse-grid combination technique was
applied to linear schemes in [17, 18] in early time. Recently, it has been applied to nonlin-
ear WENO schemes in [21, 22, 45] for solving hyperbolic conservation laws or convection-
diffusion equations, where numerical results show that significant computational times are
saved, while both accuracy and stability of the nonlinear WENO schemes are maintained
for simulations on sparse grids. In this technical note, we follow the way in our previous
work and apply the sparse-grid combination technique to fixed-point fast sweeping WENO
methods for solving multidimensional Eikonal equations. Both a forward Euler (FE) fixed-
point fast sweeping WENO scheme and a Runge-Kutta (RK) type fixed-point fast sweeping
WENO scheme with third-order accuracy developed in [41] are used in this paper. The rest
of the paper is organized as follows. In Sect. 2, we describe the algorithm how to apply
the sparse-grid combination technique to the fixed-point fast sweeping WENO schemes. In
Sect. 3, various numerical experiments including solving multidimensional Eikonal equa-
tions and a more general static H-J equation with smooth or non-smooth solutions are car-
ried out to show that the sparse-grid computations of the fixed-point fast sweeping WENO
schemes save a large amount of CPU time, especially on refined meshes, and at the same
time maintain comparable simulation results with those on corresponding regular single
grids. Conclusions are given in Sect. 4.

2 Description of the Numerical Algorithm

In this section, we first review the fixed-point fast sweeping WENO schemes in [41], and
then describe the algorithm to implement them on sparse grids.

2.1 The Fixed‑Point Fast Sweeping WENO Schemes

The fixed-point fast sweeping WENO schemes in [41] were developed by applying the Gauss-
Seidel idea and alternating sweeping strategy to the time-marching schemes to solve the static
H-J equations (2). In this paper, we use both the forward Euler fixed-point fast sweeping
WENO scheme (FE FPFS-WENO) based on the forward Euler time-marching scheme and
third-order WENO approximations to spatial derivatives, and the RK fixed-point fast sweep-
ing WENO scheme (RK FPFS-WENO) based on the second-order total variation diminish-
ing (TVD) RK time-marching scheme [35] and third-order WENO approximations to spatial

 Communications on Applied Mathematics and Computation

1 3

derivatives. Here, we take the two-dimensional (2D) case as an example to describe the meth-
ods, which is similar to higher dimensional cases. The computational domain � is partitioned
by a Cartesian grid {(xi, yj), 1 ⩽ i ⩽ I, 1 ⩽ j ⩽ J} with uniform grid sizes hx and hy in the x-
and y-directions, respectively. Denote the viscosity numerical solution of (2) at a grid point
(xi, yj) by �i,j . The FE fixed-point fast sweeping scheme [41] has the form

and the RK fixed-point fast sweeping scheme [41] has the following form:

Here, �n
i,j

 and �n+1
i,j

 are the numerical solution values at iteration steps n and n + 1 , respec-

tively. �(1)

i,j
 is the numerical solution value at iteration step of the first RK stage. fi,j denotes

the value of f at a grid point (xi, yj) . Ĥ is a monotone numerical Hamiltonian [28]. (�∗
x
)−
i,j

and (�∗∗

x
)−
i,j

 are approximations of �x at the grid point (xi, yj) when the wind “blows” from
the left to the right, while (�∗

x
)+
i,j

 and (�∗∗
x
)+
i,j

 are approximations of �x at the grid point
(xi, yj) when the wind “blows” from the right to the left. It is similar for y-direction approxi-
mations (�∗

y
)−
i,j

 , (�∗∗
y
)−
i,j

 , (�∗
y
)+
i,j

 , and (�∗∗
y
)+
i,j

 . The superscripts ∗ and ∗∗ indicate that unlike
the usual FE or RK schemes, here, we always use the newest available values of � in the
schemes’ stencils to compute these approximations of derivatives, according to the philos-
ophy of Gauss-Seidel iterations. Namely, a numerical value (e.g., �k,l) used on the compu-
tational stencil could be the value of the previous iteration step, or the new value which has
been updated and available in the current iteration step, depending on the current sweeping
direction of the iteration. � is a parameter. To guarantee that the fixed-point iteration is a
contractive mapping and converges, suitable values of � need to be taken. In the context of
time-marching schemes, � is actually the Courant-Friedrichs-Lewy (CFL) number,

Hi(u, v) is the partial derivative of H with respect to the ith argument, or the Lipschitz con-
stant of H with respect to the ith argument. [A, B] is the value range for �±

x
 , and [C, D] is

the value range for �±
y
 . For the Eikonal equation (1), we have �x = �y = 1.

For first-order scheme, simple first-order upwind finite difference approximations for �x
and �y are used. To obtain a high-order scheme, in [41] (�∗

x
)−
i,j

 , (�∗∗
x
)−
i,j

 , (�∗
x
)+
i,j

 , (�∗∗
x
)+
i,j

 , (�∗
y
)−
i,j

 ,

(3)𝜙
(n+1)

i,j
= 𝜙n

i,j
+ 𝛾

⎛
⎜⎜⎝

1
𝛼x

hx
+

𝛼y

hy

⎞
⎟⎟⎠

�
fi,j − Ĥ((𝜙∗

x
)−
i,j
, (𝜙∗

x
)+
i,j
;(𝜙∗

y
)−
i,j
, (𝜙∗

y
)+
i,j
)
�
,

(4)𝜙
(1)

i,j
= 𝜙n

i,j
+ 𝛾

⎛⎜⎜⎝
1

𝛼x

hx
+

𝛼y

hy

⎞⎟⎟⎠

�
fi,j − Ĥ((𝜙∗

x
)−
i,j
, (𝜙∗

x
)+
i,j
;(𝜙∗

y
)−
i,j
, (𝜙∗

y
)+
i,j
)
�
;

(5)𝜙n+1
i,j

= 𝜙
(1)

i,j
+

1

2
𝛾

⎛⎜⎜⎝
1

𝛼x

hx
+

𝛼y

hy

⎞⎟⎟⎠

�
fi,j − Ĥ((𝜙∗∗

x
)−
i,j
, (𝜙∗∗

x
)+
i,j
;(𝜙∗∗

y
)−
i,j
, (𝜙∗∗

y
)+
i,j
)
�
.

(6)
�x = max

A ⩽ u ⩽ B

C ⩽ v ⩽ D

|H1(u, v)|, �y = max
A ⩽ u ⩽ B

C ⩽ v ⩽ D

|H2(u, v)|.

Fig. 1 Stencils of the third-order
WENO approximations for
derivatives

i− 2 i− 1 i i+ 1 i+ 2

φ−
x φ+

x

Communications on Applied Mathematics and Computation

1 3

(�∗∗
y
)−
i,j

 , (�∗
y
)+
i,j

 , and (�∗∗
y
)+
i,j

 are computed by a third-order WENO scheme, which is also used
in [42]. See Fig. 1 for an illustration of the computational stencils used. To simplify the nota-
tions, in the following, we omit the superscripts ∗ and ∗∗ , with the understanding that the new-
est numerical values on the computational stencil of the WENO scheme are used whenever
they are available. Again, in the following formulas, a numerical value (e.g., �i−2,j,⋯ ,�i+2,j)
used on the computational stencil could be the value of the previous iteration step, or the new
value which has been updated and available in the current iteration step, depending on the
current sweeping direction of the iteration. The WENO approximation of �x at the grid point
(xi, yj) when the wind “blows” left-to-right is

where

when the wind “blows” right-to-left, the WENO approximation is

where

Here, � is a small value to avoid that the denominator becomes zero. The WENO approxi-
mations of �y are computed similarly. If we take w− = w+ = 1∕3 in (7) and (9), then third-
order linear upwind approximations are obtained. In this paper, we use the Lax-Friedrichs
numerical Hamiltonian [28], which has the following form for a Hamiltonian H(u, v):

where �x and �y have the same definition as (6).
We summarize the fixed-point fast sweeping WENO (FPFS-WENO) algorithm as

follows.

 (i) Initialization: according to the boundary condition �(x, y) = g(x, y) , (x, y) ∈ � , assign
exact values or interpolated values at grid points whose distances to � are less than or
equal to (m − 1) grid sizes, where m is the number of grid points in small stencils of
WENO approximations. For example, m = 3 for the third-order WENO approxima-
tions used here. These values are fixed during iterations. For robust simulations, the
solution from the non-fully converged (i.e., using a much larger convergence thresh-
old value � than that of the WENO sweeping used in Step (iii) below; specific values
given in the numerical example section) first-order sweeping computation (i.e., using
the first-order upwind approximations for these derivatives in Ĥ of the scheme (3)
for the FE FPFS-WENO method or the scheme (4)–(5) for the RK FPFS-WENO

(7)(�x)
−
i,j
= (1 − w−)

(
�i+1,j − �i−1,j

2hx

)
+ w−

(
3�i,j − 4�i−1,j + �i−2,j

2hx

)
,

(8)w− =
1

1 + 2r2
−

, r− =
� + (�i,j − 2�i−1,j + �i−2,j)

2

� + (�i+1,j − 2�i,j + �i−1,j)
2
;

(9)(�x)
+
i,j
= (1 − w+)

(
�i+1,j − �i−1,j

2hx

)
+ w+

(
−�i+2,j + 4�i+1,j − 3�i,j

2hx

)
,

(10)w+ =
1

1 + 2r2+
, r+ =

� + (�i+2,j − 2�i+1,j + �i,j)
2

� + (�i+1,j − 2�i,j + �i−1,j)
2
.

(11)ĤLF(u−, u+;v−, v+) = H

(
u− + u+

2
,
v− + v+

2

)
−

1

2
𝛼x(u

+ − u−) −
1

2
𝛼y(v

+ − v−),

 Communications on Applied Mathematics and Computation

1 3

method) is used as the initial guess at all other grid points, while a big value (e.g.,
10 in this paper) is used as the initial guess for the first-order sweeping computation.

 (ii) Iterations: perform the Gauss-Seidel iterations (3) for the FE FPFS-WENO method or
(4)–(5) for the RK FPFS-WENO method, with four alternating direction sweepings

For the RK FPFS-WENO method, each sweeping direction is completed in full for
the first RK stage before moving to the second RK stage, and the sweeping direc-
tion of both stages should be same during one sweeping. High-order extrapolations
are used for the ghost points when calculating the high-order WENO approxi-
mations of the derivatives for grid points on the boundary of the computational
domain, as in [42].

 (iii) Convergence: if

 where � is a given convergence threshold value and ‖ ⋅ ‖L∞ denotes the L∞ norm,
the iterations converge, and we stop the iterations.

2.2 The FPFS‑WENO Schemes on Sparse Grids

In this section, we describe how to implement the FPFS-WENO methods on sparse grids by
using the sparse-grid combination technique, for improving the method’s efficiency in solving
multidimensional Eikonal equations. Here, 2D cases are used to illustrate the idea. Algorithm
procedures for higher dimensional cases are similar. We consider a square computational
domain [a, b]2 for simplicity of the description, and construct semi-coarsened sparse grids as
the following. Note that the procedure here can be applied to any rectangular domain straight-
forwardly. The domain is first partitioned into the coarsest grid �0,0 with Nr cells in each
direction and mesh size H =

b−a

Nr

 . �0,0 is called a root grid. Then, a multi-level refinement on
the root grid is done to construct a family of semi-coarsened grids {�l1,l2} with mesh sizes
hl1 = 2−l1H in the x-direction and hl2 = 2−l2H in the y-direction, where l1 = 0, 1,⋯ ,NL and
l2 = 0, 1,⋯ ,NL . The superscripts l1, l2 are the refinement levels relative to the root grid �0,0
in the x- and the y-directions, respectively, and NL is the finest level. Here, the finest grid is
�NL ,NL with the mesh size h = 2−NLH in both x- and y-directions. Actually, �NL ,NL is corre-
sponding to a single full grid in regular single-grid computations. Figure 2 is an illustration of
2D sparse grids {�l1,l2} for one cell of a root grid, with NL = 3 . We apply the spare-grid com-
bination techniques. The Eikonal equation (1) is not directly solved by the FPFS-WENO
methods on a single full grid �NL ,NL , but on the set {�l1,l2}I of the following (2NL + 1) sparse
grids:

with I being the index set

(a) i = 1 ∶ I, j = 1 ∶ J;

(b) i = I ∶ 1, j = 1 ∶ J;

(c) i = I ∶ 1, j = J ∶ 1;

(d) i = 1 ∶ I, j = J ∶ 1.

‖�n+1 − �n‖L∞ ⩽ �,

{
�0,NL ,�1,NL−1,⋯ ,�NL−1,1,�NL ,0

}
and

{
�0,NL−1,�1,NL−2,⋯ ,�NL−2,1,�NL−1,0

}

I = {(l1, l2)|l1 + l2 = NL or l1 + l2 = NL − 1}.

Communications on Applied Mathematics and Computation

1 3

Then, we have (2NL + 1) sets of numerical solutions {�l1,l2}I , where each set of numeri-
cal solutions is corresponding to each sparse grid in {�l1,l2}I . The final step is to combine
these sparse-grid solutions {�l1,l2}I to obtain the final solution on the finest grid �NL ,NL .
This is implemented by first using a prolongation operator PNL ,NL to map each sparse-grid
solution �̂�l1,l2 onto the finest grid �NL ,NL , and then combining these solutions to form the
final solution �̂�N

L
,N

L on �NL ,NL . Next, we describe the prolongation technique in details and
then summarize the whole algorithm.

2.2.1 Prolongation Operator and WENO Interpolation

Given the numerical solution �̂�l1,l2 on �l1,l2 , a prolongation operator PNL ,NL generates
numerical values PNL ,NL�̂�l1,l2 for all grid points on �NL ,NL . Prolongation is usually imple-
mented by interpolation procedure. Studies in [13, 17, 18] for linear schemes and in [21,
22, 45] for nonlinear schemes show that the final solution resulting from the sparse-grid
combination techniques can achieve similar accuracy orders as the numerical schemes,
as long as the accuracy order of interpolations in the prolongations is not less than the
accuracy order of the numerical schemes used to solve PDEs on sparse grids. Hence,
we use third-order interpolations here for prolongations. If solutions are smooth, sim-
ple Lagrange interpolation can be used directly. The interpolations are carried out in
the dimension by dimension way. In a 2D domain, first (Nr2

l1−1) quadratic polynomials
P2
i
(x) , i = 1,⋯ ,Nr2

l1−1 , are constructed along the x-direction grid lines using the third-
order Lagrange interpolation. Three adjacent grid points are used in each interpolation.

x

y

l1 = 0

l2 = 0

l1 = 1

l2 = 1

l1 = 2

l2 = 2

l1 = 3

l2 = 3

Fig. 2 Illustration of 2D sparse grids {�l1,l2} for one cell of a root grid. Here, the cell indicated by the levels
l1 = 0, l2 = 0 is one cell of the root grid �0,0 , and the side length of the cell is H. The finest level N

L
= 3 .

Highlighted grids are those on which PDEs are solved

 Communications on Applied Mathematics and Computation

1 3

Each polynomial P2
i
(x) is then evaluated on the grid points of �NL ,l2 (the most refined

grid in the x-direction). Then, the same interpolation procedure is performed in every
grid line of the y-direction with a fixed x-coordinate on the grid �NL ,l2 , and the obtained
polynomials are evaluated on the grid points of �NL ,NL to get PNL ,NL�̂�l1,l2 .

Because solutions of H-J equations may develop discontinuous derivatives and not be
smooth, it is more robust to use WENO interpolations in the prolongation for a general
case. Here, a third-order WENO interpolation is used, and detailed formulas are given
as following. We describe the interpolation for a x-direction grid line, and it is similar
for the y-direction. Given numerical values �i−1,j , �i,j , and �i+1,j at the grid points xi−1 , xi ,
and xi+1 along the line y = yj , we compute the third-order WENO interpolation �WENO(x)
for any point x ∈ [xi−1∕2, xi+1∕2) , where xi−1∕2 = (xi−1 + xi)∕2 and xi+1∕2 = (xi + xi+1)∕2 .
Let h be the grid size of the uniform mesh, we write the point x as x = xi−1 + �̃�h with
�̃� ∈ [1∕2, 3∕2) . The WENO interpolation is

where P1
(1)
(x) and P1

(2)
(x) are second-order approximations computed as

The nonlinear weights w1 and w2 are computed as

with

where 𝛾1 = 1 − �̃�∕2 , 𝛾2 = �̃�∕2 , �1 = (�i,j − �i−1,j)
2 , and �2 = (�i+1,j − �i,j)

2 . � is a small
positive number used to avoid the denominator becoming 0, and its value is specified in the
next numerical experiment section.

2.2.2 Algorithm Summary

We summarize the algorithm of the FPFS-WENO schemes on sparse grids as following.
Algorithm: sparse-grid FPFS-WENO schemes

 (i) Restriction step: perform the initialization step of the FPFS-WENO algorithm in
Sect. 2.1 on the aforementioned (2NL + 1) sparse grids {�l1,l2}I.

 (ii) Sweeping step: on each sparse grid �l1,l2 in {�l1,l2}I , perform the Gauss-Seidel
iterations (3) for the FE FPFS-WENO method or (4)–(5) for the RK FPFS-WENO
method, with four alternating direction sweepings as in the FPFS-WENO algorithm
of Sect. 2.1, to solve the Eikonal equation (1). Then, we produce (2NL + 1) sets of
converged solutions {�l1,l2}

I
 for the Eikonal equation (1).

(12)�WENO(x) = w1P
1
(1)
(x) + w2P

1
(2)
(x),

(13)P1
(1)
(x) = �̃�𝜙i,j − (�̃� − 1)𝜙i−1,j, P1

(2)
(x) = (�̃� − 1)𝜙i+1,j − (�̃� − 2)𝜙i,j.

(14)w1 =
w̃1

w̃1 + w̃2

, w2 = 1 − w1

(15)w̃1 =
𝛾1

(𝜖 + 𝛽1)
2
, w̃2 =

𝛾2

(𝜖 + 𝛽2)
2
,

Communications on Applied Mathematics and Computation

1 3

 (iii) Prolongation step: on each sparse grid �l1,l2 in {�l1,l2}I , use the prolongation operator
PNL ,NL on �l1,l2 to map it onto the most refined grid �NL ,NL , and obtain the solution
PNL ,NL�l1,l2.

 (iv) Combination step: compute the final solution �NL ,NL by taking the combination

In three-dimensional (3D) or higher dimensional cases, the algorithm follows similar pro-
cedure, while prolongation operations are carried out in additional spatial directions. The
sparse-grid combination formula for higher dimensional problems is provided in the litera-
ture, e.g., [13]. In this technical notes, the following 3D formula is also used:

Remark 1 Note that the adaptivity technique is a very effective approach to further improve
the sparse-grid methods and achieve more efficient computations for solving multidimen-
sional problems. Adaptive sparse-grid methods have been developed in the literature, e.g.,
[3, 12, 15, 39]. It will be a very interesting topic to combine the sparse-grid FPFS-WENO
methods with the adaptivity technique. A key step here will be to develop efficient adap-
tive sparse-grid WENO methods. There are several ideas in the literature that may be used
for this effort. For example, multiresolution analysis has been used to develop sparse-
grid discontinuous Galerkin methods in [14]. This kind of multiresolution analysis meth-
ods may be used to develop sparse-grid WENO methods directly based on a hierarchical
basis, without using the sparse-grid combination technique. Then, this kind of hierarchical
basis WENO methods on sparse grids will be promising to be combined with adaptive
approaches, since the hierarchical basis or the hierarchical structure in the schemes pro-
vides a convenient way to design error indicators in adaptive methods, as in [1, 14]. There
are also approaches to develop adaptive sparse-grid combination technique which may be
used. For example, a dimension-adaptive method was designed in [11] to obtain a general-
ized combination technique by employing adaptive index sets and iteratively adding new
grids to the combination scheme. Spatially adaptive sparse-grid combination techniques
were developed in [25, 26]. Detailed application of the adaptivity technique to the sparse-
grid FPFS-WENO methods will be the next work.

3 Numerical Examples

In this section, we perform numerical experiments on solving multidimensional Eiko-
nal equations to test the sparse-grid FPFS-WENO methods and show a large amount of
CPU time savings by comparisons with corresponding single-grid simulations. Although
theoretical error analysis on linear schemes for linear PDEs [13, 18] has been carried
out to show that the sparse-grid combination leads to a canceling in leading-order errors
of numerical solutions on semi-coarsened sparse grids, hence the accuracy order of the
final solution of a sparse-grid computation is kept to be almost the same as that on the

(16)�̂�NL ,NL =
∑

l1+l2=NL

PNL ,NL𝛷l1,l2 −
∑

l1+l2=NL−1

PNL ,NL𝛷l1,l2 .

(17)

�̂�NL ,NL ,NL =
∑

l1+l2+l3=NL

PNL ,NL ,NL𝛷l1,l2,l3 − 2
∑

l1+l2+l3=NL−1

PNL ,NL ,NL𝛷l1,l2,l3

+
∑

l1+l2+l3=NL−2

PNL ,NL ,NL𝛷l1,l2,l3 .

 Communications on Applied Mathematics and Computation

1 3

corresponding single-grid simulation, such sparse-grid error analysis is very difficult to
carry out for the WENO methods due to their high nonlinearity. Following our previous
studies [21, 22, 45], numerical experiments are used to verify the third-order accuracy for
the sparse-grid FPFS-WENO schemes in this note, rather than theoretical analysis. Spe-
cifically, mesh refinement studies are carried out to compute numerical convergence rates
on successively refined grids, for problems with smooth solutions. In [45], two differ-
ent approaches, “refine root grid” and “refine levels”, are studied for mesh refinement in
sparse-grid computations. For example, for 3D sparse grids with a 10 × 10 × 10 root grid
and NL = 3 , the finest grid is 80 × 80 × 80 . The “refine root grid” approach is to refine
the root grid, while the total number of semi-coarsened sparse-grid levels NL + 1 is kept
unchanged. Therefore, if the root grid is refined once to be 20 × 20 × 20 , we obtain the fin-
est grid 160 × 160 × 160 . The “refine levels” approach refines the sparse-grid levels, while
keeping the root grid fixed. Therefore, if NL = 3 is refined once to be NL = 4 with the fixed
10 × 10 × 10 root grid, the finest grid 160 × 160 × 160 is also obtained. It is discovered
in [45] that although with more levels, the “refine levels” approach saves more CPU time
costs than the “refine root grid” approach, it has obvious accuracy order reductions for the
nonlinear sparse-grid WENO schemes. The “refine root grid” approach can always achieve
the desired accuracy order of the sparse-grid WENO scheme. In this technical note, we test
both approaches in mesh refinement studies and draw the similar conclusion as that in [45].
NL = 3 is used for the “refine root grid” approach in accuracy order test examples and all
other sparse-grid computations for problems with non-smooth solutions.

We first test the sparse-grid FPFS-WENO methods on problems with smooth solu-
tions to study its numerical accuracy orders. Then, the method is applied to problems with
non-smooth solutions to show its nonlinear stability. For all numerical examples, we take
� = 10−6 in the WENO scheme for both the iterations and the WENO interpolation in the
prolongation operator. The convergence threshold value is taken as � = 10−11 for the third-
order WENO sweeping, and we take � = 10−4 in the non-fully-converged first-order sweep-
ing to provide initial values for the WENO sweeping. As in [41], we select the largest �
value for each problem that provides the iteration convergence with the fastest speed on
all semi-coarsened sparse grids in the sparse-grid combination, for the purpose of testing
the computational efficiency of the algorithm. To identify the largest possible � value for
a problem, we gradually increase/decrease the value of � from an initial value. In this sec-
tion, we use Nh to denote the number of computational cells in one spatial direction of the
most refined grid in sparse grids or the corresponding single grid.

Example 1 (A linear problem with a smooth solution) Consider the following 2D linear
problem:

where � = [0, 2π]2 and � = {(x, y) ∈ � | x = 0 or y = 0} . The inflow boundary conditions
are applied on � ,

This problem has the exact solution

For this linear problem with a smooth solution, we first solve it by both the sparse-
grid FE FPFS scheme and the sparse-grid RK FPFS scheme using the “refine root grid”

(18)�x + �y = 0, (x, y) ∈ ��� ,

(19)�(x, 0) = sin(x), �(0, y) = − sin(y).

(20)�(x, y) = sin(x − y).

Communications on Applied Mathematics and Computation

1 3

approach in the mesh refinement, with � = 1 and the third-order linear upwind approxima-
tions to the derivatives, to verify the error analysis results for linear schemes applied to
linear PDEs in the literature, e.g., [13, 17, 18]. The third-order Lagrange interpolation for
prolongation is employed in sparse-grid computations. We perform simulations on both
sparse grids and the corresponding single grids, and compare their results. The L1 errors,
L∞ errors, and their numerical accuracy orders and CPU times are reported in Table 1 and
Table 2. For both of schemes, the third-order accuracy is obtained for both sparse-grid
computations using the “refine root grid” approach and the corresponding single-grid ones,
along with the mesh refinement. This is consistent with the error analysis results for linear
schemes in solving linear PDEs in [13, 17, 18]. Comparing the numerical errors of sparse-
grid computations with the “refine root grid” approach and the corresponding single-grid
ones, we observe that their L1 errors are comparable. The L∞ errors of sparse-grid compu-
tations are larger than the corresponding single-grid computations. In terms of computa-
tional efficiency, on refined meshes, we see around 60% ∼ 70% and 50% ∼ 80% CPU time
saved for simulations on sparse grids vs single grids, for the FE FPFS scheme and the RK
FPFS scheme, respectively, in this example. Also from Tables 1 and 2, we see that the
numerical errors of the FE FPFS scheme and the RK FPFS scheme are similar. This is con-
sistent with the expectation, since although the FE FPFS scheme and the RK FPFS scheme
are different iterative schemes, here they converge to the same numerical steady-state solu-
tion (up to round-off errors) which is the solution of the algebraic system resulting from
the spatial discretization of the equation. However, in terms of computational efficiency,
in general, the FE FPFS scheme takes fewer CPU time costs and is more efficient than the
RK FPFS scheme, since for most cases, the FE FPFS scheme needs fewer iteration steps to
converge than the RK FPFS scheme.

Then, we use the “refine levels” approach to refine the meshes of the sparse-grid com-
putations and observe the reduction of numerical accuracy orders. Since the numerical
errors of the FE FPFS scheme and the RK FPFS scheme are similar, we report the results

Table 1 Example 1, a linear problem with a smooth solution. The FE FPFS scheme with the third-order
linear upwind approximations, comparison of numerical errors and CPU times for computations on sin-
gle grids and sparse grids. Third-order Lagrange interpolation for prolongation is employed in sparse-grid
computations. N

r
 : number of cells in each spatial direction of a root grid. CPU: CPU time for a complete

simulation. CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.27 × 10−5 – 4.91 × 10−5 – 1.92
320 1.59 × 10−6 3.00 6.14 × 10−6 3.00 10.60
640 1.98 × 10−7 3.00 7.68 × 10−7 3.00 72.63
1 280 2.47 × 10−8 3.00 9.60 × 10−8 3.00 535.69

Sparse grid

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 4.56 × 10−5 – 5.21 × 10−4 – 1.47
40 320 2.11 × 10−6 4.43 1.63 × 10−4 1.67 4.60
80 640 2.73 × 10−7 2.95 1.35 × 10−5 3.60 25.18
160 1 280 3.02 × 10−8 3.18 1.56 × 10−6 3.12 158.18

 Communications on Applied Mathematics and Computation

1 3

of the sparse-grid RK FPFS scheme in Table 2 (NL refinement case). Obvious accuracy
order reduction is observed for the “refine levels” approach, which is consistent with our
previous studies. Here, we see that the L1 accuracy order is reduced to the first order and
the L∞ errors do not converge. Also, with more levels to obtain a specific finest grid, the
“refine levels” approach saves more CPU time costs than the “refine root grid” approach.
However, due to the accuracy order reduction, the “refine levels” approach has much larger
numerical errors than the “refine root grid” approach when the meshes are refined. Hence,
in general, to reach a level of small numerical error, the “refine root grid” approach has
smaller computational costs than the “refine levels” approach.

Example 2 (A nonlinear problem with a smooth solution) We solve the 2D Eikonal equa-
tion (1) with the right-hand side function

and the source point � = (0, 0) . The computational domain � = [−1, 1]2 . The exact solu-
tion of the problem is

f (x, y) =
π

2

√
sin2

(
π +

π

2
x
)
+ sin2

(
π +

π

2
y
)
,

Table 2 Example 1, a linear problem with a smooth solution. The RK FPFS scheme with the third-order
linear upwind approximations, comparison of numerical errors, and CPU times for computations on single
grids and sparse grids. Third-order Lagrange interpolation for prolongation is employed in sparse-grid com-
putations. Both the “refine root grid” approach (N

r
 refinement) and the “refine levels” approach (N

L
 refine-

ment) are used. N
r
 : number of cells in each spatial direction of a root grid. N

L
 : the finest level in a sparse-

grid computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.27 × 10−5 – 4.91 × 10−5 – 1.83
320 1.59 × 10−6 3.00 6.14 × 10−6 3.00 11.74
640 1.98 × 10−7 3.00 7.68 × 10−7 3.00 80.38
1 280 2.47 × 10−8 3.00 9.60 × 10−8 3.00 748.34

Sparse grid — N
r
 refinement

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 4.56 × 10−5 – 5.21 × 10−4 – 1.51
40 320 2.11 × 10−6 4.43 1.63 × 10−4 1.67 6.08
80 640 2.73 × 10−7 2.95 1.35 × 10−5 3.60 22.63
160 1 280 3.02 × 10−8 3.18 1.56 × 10−6 3.12 159.19

Sparse grid — N
L
 refinement

N
L

N
h L

1 error Order L
∞ error Order CPU/s

2 160 9.30 × 10−6 – 8.56 × 10−5 – 1.53
3 320 2.11 × 10−6 2.13 1.63 × 10−4 – 6.08
4 640 7.96 × 10−7 1.41 1.03 × 10−4 – 15.41
5 1 280 3.67 × 10−7 1.12 9.64 × 10−5 – 53.50

Communications on Applied Mathematics and Computation

1 3

At first, we use this example to verify that the proposed sparse-grid FPFS-WENO
schemes with the “refine root grid” approach can achieve the desired accuracy order for a
nonlinear problem with a smooth solution. The sparse-grid FE FPFS-WENO scheme and
the sparse-grid RK FPFS-WENO scheme, with � = 1 , and the third-order WENO approxi-
mations to the derivatives are applied. Both the third-order Lagrange interpolation and the
third-order WENO interpolation are used for prolongation in sparse-grid computations. We
perform simulations on both sparse grids and the corresponding single grids, and compare
their results. The L1 errors, L∞ errors, and their numerical accuracy orders and CPU times
are reported in Table 3 and Table 4. It is observed that third-order accuracy is obtained
for all cases, including sparse-grid computations with Lagrange or WENO prolongation
and the corresponding single-grid ones, along with the mesh refinement. Comparing the
numerical errors of sparse-grid computations and the corresponding single-grid ones, simi-
lar to Example 1, we observe that their L1 errors are comparable, while sparse-grid compu-
tations with WENO prolongation have slightly larger errors. The L∞ errors of sparse-grid
computations are larger than the corresponding single-grid computations. In terms of com-
putational efficiency, on refined meshes, we see around 50% ∼ 70% and 65% ∼ 70% CPU
time saved for simulations on sparse grids vs single grids, for the FE FPFS-WENO scheme

�(x, y) = cos

(
π +

π

2
x
)
+ cos

(
π +

π

2
y
)
.

Table 3 Example 2, a nonlinear problem with a smooth solution. The FE FPFS-WENO scheme, compari-
son of numerical errors and CPU times for computations on single grids and sparse grids. Both third-order
Lagrange interpolation and WENO interpolation for prolongation are employed in sparse-grid computa-
tions. N

r
 : number of cells in each spatial direction of a root grid. CPU: CPU time for a complete simulation.

CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.05 × 10−6 – 1.78 × 10−6 – 4.25
320 1.11 × 10−7 3.24 1.71 × 10−7 3.38 22.77
640 1.37 × 10−8 3.02 2.10 × 10−8 3.30 149.41
1 280 1.71 × 10−9 3.00 2.61 × 10−9 3.00 1 083.07

Sparse grid, Lagrange interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 3.28 × 10−6 – 1.74 × 10−5 – 12.80
40 320 2.70 × 10−7 3.60 2.96 × 10−6 2.55 28.30
80 640 2.34 × 10−8 3.53 4.20 × 10−7 2.82 72.88
160 1 280 2.27 × 10−9 3.36 5.55 × 10−8 2.92 343.70

Sparse grid, WENO interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 8.60 × 10−6 – 4.72 × 10−3 – 9.22
40 320 7.65 × 10−7 3.49 1.21 × 10−3 1.96 25.85
80 640 6.00 × 10−8 3.67 2.72 × 10−4 2.16 76.59
160 1 280 4.17 × 10−9 3.84 2.00 × 10−5 3.76 393.19

 Communications on Applied Mathematics and Computation

1 3

and the RK FPFS-WENO scheme, respectively, in this nonlinear example. We also notice
that on relatively coarse mesh (e.g., here, Nh = 160, 320 for the FE FPFS-WENO scheme
and Nh = 160 for the RK FPFS-WENO scheme), it takes more CPU time for sparse-grid
computations than the corresponding single-grid ones, due to the quite different iteration
history on different semi-coarsened sparse grids. Also, similar to Example 1, from Table 3
and Table 4 we see that the numerical errors of the FE FPFS-WENO scheme and the RK
FPFS-WENO scheme are similar, which is consistent with our expectation, since the FE
FPFS-WENO scheme and the RK FPFS-WENO scheme converge to the same numerical
steady-state solution (up to round-off errors) if the same spatial discretization for the equa-
tion is used. Again, in terms of computational efficiency, we observe that in general, the FE
FPFS-WENO scheme is more efficient than the RK FPFS-WENO scheme, since for most
cases, the FE FPFS-WENO scheme needs fewer iteration steps to converge than the RK
FPFS-WENO scheme.

Second, we use the “refine levels” approach to refine the meshes of the sparse-grid com-
putations and verify the reduction of numerical accuracy orders for this example. Also as
in the previous example, since the numerical errors of the FE FPFS-WENO scheme and the
RK FPFS-WENO scheme are similar, we report the results of the sparse-grid RK FPFS-
WENO scheme in Table 5. Again, very obvious accuracy order reduction is observed for
the “refine levels” approach, where the L1 accuracy order is reduced to the first order and

Table 4 Example 2, a nonlinear problem with a smooth solution. The RK FPFS-WENO scheme, compari-
son of numerical errors and CPU times for computations on single grids and sparse grids. Both third-order
Lagrange interpolation and WENO interpolation for prolongation are employed in sparse-grid computa-
tions. N

r
 : number of cells in each spatial direction of a root grid. CPU: CPU time for a complete simulation.

CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.05 × 10−6 – 1.78 × 10−6 – 5.55
320 1.11 × 10−7 3.24 1.71 × 10−7 3.38 30.59
640 1.37 × 10−8 3.02 2.10 × 10−8 3.30 297.53
1 280 1.71 × 10−9 3.00 2.61 × 10−9 3.00 1,401.50

Sparse grid, Lagrange interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 3.28 × 10−6 – 1.74 × 10−5 – 11.50
40 320 2.70 × 10−7 3.60 2.96 × 10−6 2.55 28.28
80 640 2.34 × 10−8 3.53 4.20 × 10−7 2.82 94.45
160 1 280 2.27 × 10−9 3.36 5.55 × 10−8 2.92 485.06

Sparse grid, WENO interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 8.60 × 10−6 – 4.72 × 10−3 – 11.74
40 320 7.65 × 10−7 3.49 1.21 × 10−3 1.96 29.57
80 640 6.00 × 10−8 3.67 2.72 × 10−4 2.16 87.74
160 1 280 4.17 × 10−9 3.84 2.00 × 10−5 3.76 494.72

Communications on Applied Mathematics and Computation

1 3

the L∞ errors do not converge. On the computational costs, with more levels to reach a
refined mesh (e.g., Nh = 1 280 here), the “refine levels” approach needs fewer CPU time
costs than the “refine root grid” approach. But similar to Example 1, due to the accuracy
order reduction, the “refine levels” approach has much larger numerical errors than the
“refine root grid” approach when the meshes are refined. Therefore, this nonlinear example
also shows that in general to reach a level of small numerical error, the “refine root grid”
approach has smaller computational costs than the “refine levels” approach.

In the following, we apply the sparse-grid schemes to examples with non-smooth solu-
tions to show their nonlinear stability and computational efficiency.

Example 3 (Two-sphere problem) We solve the 3D Eikonal equation (1) with f (x, y, z) = 1
on the computational domain � = [−3, 3]3 . � are two spheres of equal radius 0.5 centered
at (−1, 0, 0) and (

√
1.5, 0, 0) . The exact solution of the problem is the distance function to

� : �(x, y, z) = min(d1, d2) , where

The solution of the problem is non-smooth. Singularities exist in the centers of each
sphere and the plane that is equidistant from both spheres. The sparse-grid FE FPFS-
WENO scheme and the sparse-grid RK FPFS-WENO scheme, with � = 0.8 and the third-
order WENO approximations to the derivatives are applied. The third-order WENO inter-
polation is used for prolongation in sparse-grid computations. We perform simulations on
both sparse grids with Nr = 80,NL = 3 , and the corresponding 640 × 640 × 640 single
grid, and compare their results. Since the numerical solutions we obtain are similar to the

d1 =
���
√
(x + 1)2 + y2 + z2 − 0.5

���,

d2 =
�����

�
(x −

√
1.5)2 + y2 + z2 − 0.5

�����
.

Table 5 Example 2, a nonlinear problem with a smooth solution. The RK FPFS-WENO scheme. Numeri-
cal errors and CPU times for computations on sparse grids by using the “refine levels” approach to refine
the meshes and observe the accuracy order reduction. Both third-order Lagrange interpolation and WENO
interpolation for prolongation are employed in sparse-grid computations. N

L
 : the finest level in a sparse-

grid computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

N
L
 refinement, Lagrange interpolation

N
L

N
h L

1 error Order L
∞ error Order CPU/s

2 160 1.32 × 10−6 – 2.68 × 10−6 – 8.63
3 320 2.70 × 10−7 2.29 2.96 × 10−6 – 28.28
4 640 9.72 × 10−8 1.47 2.98 × 10−6 – 111.66
5 1 280 4.42 × 10−8 1.14 2.98 × 10−6 – 370.76

N
L
 refinement, WENO interpolation

N
L

N
h L

1 error Order L
∞ error Order CPU/s

2 160 2.35 × 10−6 – 1.42 × 10−3 – 8.87
3 320 7.65 × 10−7 1.62 1.21 × 10−3 – 29.57
4 640 3.37 × 10−7 1.18 1.11 × 10−3 – 112.29
5 1 280 1.61 × 10−7 1.07 1.15 × 10−3 – 378.36

 Communications on Applied Mathematics and Computation

1 3

Fig. 3 Example 3, numerical solutions of the two-sphere problem by the RK FPFS-WENO scheme on
sparse grids (N

r
= 80 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the correspond-

ing 640 × 640 × 640 single grid, using the third-order WENO interpolation for prolongation in the sparse-
grid combination. a, c, e single-grid results; b, d, f sparse-grid results; a, b the contour plots for � = 0.5 ; c,
d the contour plots for � = 1 ; e, f the contour plots for the whole surface

Communications on Applied Mathematics and Computation

1 3

FE FPFS-WENO scheme and the RK FPFS-WENO scheme, only the results of the RK
FPFS-WENO scheme are shown in Fig. 3, to save space. We observe that the numerical
solutions by the sparse-grid FPFS-WENO schemes and their corresponding single-grid
simulations are comparable. The nonlinear stability and high-resolution properties of the
FPFS-WENO schemes for resolving the non-smooth solution are preserved well in the
sparse-grid simulations. We record the simulation CPU time costs to compare the com-
putational efficiency. For the FE FPFS-WENO scheme, it takes 26 819.15 s of CPU time
to complete the simulation in the sparse-grid computation, while 282 038.88 s of CPU
time are needed for finishing the simulation in the corresponding single-grid computa-
tion. About 90% CPU time is saved by performing the FE FPFS-WENO simulation on the
sparse grids here. For the RK FPFS-WENO scheme, it takes 42 674.31 s of CPU time to
complete the simulation in the sparse-grid computation, while 458 311.48 s of CPU time
are needed for finishing the simulation in the corresponding single-grid computation. So
about 91% CPU time is saved by performing the RK FPFS-WENO simulation on the sparse
grids. Also it is shown that the FE FPFS-WENO scheme is more efficient than the RK
FPFS-WENO scheme for both sparse-grid computation and single-grid computation in this
example.

Example 4 (Shape-from-shading) We solve the Eikonal equation (1) with the right-hand-
side function

The computational domain � = [0, 1] × [0, 1] . �(x, y) = 0 is prescribed at the boundary
�� of the unit square. The boundary region � = {(

1

4
,
1

4
), (

3

4
,
3

4
), (

1

4
,
3

4
), (

3

4
,
1

4
), (

1

2
,
1

2
)} ∪ �� ,

consisting of five isolated points and �� . The values at these five isolated points are speci-
fied as

The exact solution of the problem is

which is not smooth. Actually the solution of this problem is the shape function, which has
the brightness I(x, y) = 1∕

√
1 + f (x, y)2 under vertical lighting. Details about this problem

can be found in [31]. The sparse-grid FE FPFS-WENO scheme and the sparse-grid RK
FPFS-WENO scheme, with � = 1 and the third-order WENO approximations to the deriva-
tives are applied. The third-order WENO interpolation is used for prolongation in sparse-
grid computations. Simulations are carried out on both sparse grids with Nr = 160,NL = 3
and the corresponding 1 280 × 1 280 single grid, to compare their results. The numerical
solutions we obtain are similar to the FE FPFS-WENO scheme and the RK FPFS-WENO
scheme, so only the results of the RK FPFS-WENO scheme are reported in Fig. 4, to
save space. It is observed that the numerical solutions by the sparse-grid FPFS-WENO
schemes and their corresponding single-grid computations are comparable. As in the pre-
vious example, the nonlinear stability and high-resolution properties of the FPFS-WENO

f (x, y) = 2π
√
[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2.

g
(
1

4
,
1

4

)
= g

(
3

4
,
3

4

)
= g

(
1

4
,
3

4

)
= g

(
3

4
,
1

4

)
= 1, g

(
1

2
,
1

2

)
= 2.

𝜙(x, y) =

⎧
⎪⎨⎪⎩

max(� sin(2πx) sin(2πy)�, 1 + cos(2πx) cos(2πy)),

if �x + y − 1� < 1

2
and �x − y� < 1

2
;

� sin(2πx) sin(2πy)�, otherwise,

 Communications on Applied Mathematics and Computation

1 3

schemes for resolving the non-smooth solution of this example are preserved well in the
sparse-grid computations. Again, we record the simulation CPU time costs to compare
their computational efficiency. It takes 468.13 s of CPU time to complete the simulation in
the FE FPFS-WENO sparse-grid computation, while 1 228.65 s of CPU time are needed
for finishing the simulation in the corresponding single-grid computation. About 62% CPU
time is saved by carrying out the FE FPFS-WENO simulation on the sparse grids in this
example. As well, it takes 670.86 s of CPU time to complete the simulation in the RK
FPFS-WENO sparse-grid computation, while 1 510.27 s of CPU time are needed for fin-
ishing the simulation in the corresponding single-grid computation. About 56% CPU time
is saved by carrying out the RK FPFS-WENO simulation on the sparse grids here. We also
see that the FE FPFS-WENO scheme is more efficient than the RK FPFS-WENO scheme
for both sparse-grid computation and single-grid computation in this example.

Fig. 4 Example 4, numerical solutions of the shape-from-shading problem by the RK FPFS-WENO scheme
on sparse grids (N

r
= 160 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the cor-

responding 1 280 × 1 280 single grid, using the third-order WENO interpolation for prolongation in the
sparse-grid combination. a, b single-grid results; c, d sparse-grid results; a, c 3D view of the solutions; b, d
the contour plots, 30 equally spaced contour lines from � = 0 to � = 2

Communications on Applied Mathematics and Computation

1 3

Example 5 (Voronoi diagram problem) We consider a Voronoi diagram problem as in [2,
27]. Given a set of points (called generators) in a domain, the Voronoi diagram divides the
domain into regions in which all points inside the region are closest to the generator of that
region than any other generators. This kind of problem has applications in many fields,
including engineering, natural sciences, geometry, humanities, etc., for example, dividing
a map into response regions for local fire stations. An essential part of solving a Voronoi
diagram problem is to compute the minimum travel time to the closest generator by solving
the Eikonal equation (1). Here, we solve both a 2D case and a 3D case.

Case 1 (2D). We solve the Eikonal equation (1) with f (x, y) = 1 . The computational
domain � = [0, 1]2 . �(x, y) = 0 is prescribed at the points (the generators)

The exact solution to the problem is the distance function to � , and it is not smooth. The
sparse-grid FE FPFS-WENO scheme and the sparse-grid RK FPFS-WENO scheme, with
� = 1 and the third-order WENO approximations to the derivatives are applied. The third-
order WENO interpolation is used for prolongation in sparse-grid computations. Simula-
tions are performed on both sparse grids with Nr = 160,NL = 3 , and the corresponding
1 280 × 1 280 single grid, to compare their results. The results of the RK FPFS-WENO
scheme are reported in Fig. 5 (the numerical solution of the FE FPFS-WENO scheme is
similar, so we omit showing its pictures which are basically the same as Fig. 5). Again,
we observe that the numerical solutions by the sparse-grid FPFS-WENO schemes and
their corresponding single-grid computations are comparable, and the nonlinear stability
and high-resolution properties of the FPFS-WENO schemes for resolving the non-smooth
solution in this example are preserved well in the sparse-grid simulations. About the com-
putational efficiency, by applying the FE FPFS-WENO scheme, it takes 680.57 s of CPU
time to complete the simulation in the sparse-grid computation, while 1 364.39 s of CPU
time are needed for finishing the simulation in the corresponding single-grid computation.

� =
{(

1

4
,
1

5

)
,

(
1

3
,
1

7

)
,

(
3

5
,
1

5

)
,

(
3

4
,
1

2

)
,

(
1

2
,
3

4

)
,

(
1

4
,
1

2

)
,

(
1

7
,
4

5

)
,

(
1

2
,
1

2

)}
.

Fig. 5 Example 5, Case 1, numerical solutions of the 2D Voronoi diagram problem by the RK FPFS-
WENO scheme on sparse grids (N

r
= 160 for root grid, finest level N

L
= 3 in the sparse-grid computa-

tion) and the corresponding 1 280 × 1 280 single grid, using the third-order WENO interpolation for pro-
longation in the sparse-grid combination. The contour plots, 30 equally spaced contour lines from � = 0 to
� = 0.558 9 . Red points are the generators. a single-grid result; b sparse-grid result

 Communications on Applied Mathematics and Computation

1 3

About 50% CPU time is saved by performing the FE FPFS-WENO simulation on the sparse
grids in this problem. For the RK FPFS-WENO scheme, it takes 634.42 s of CPU time to
complete the simulation in the sparse-grid computation, while 1 591.41 s of CPU time are
needed for finishing the simulation in the corresponding single-grid computation. About
60% CPU time is saved by performing the RK FPFS-WENO simulation on the sparse grids
here. In this example, it is observed that the FE FPFS-WENO scheme is more efficient than
the RK FPFS-WENO scheme for single-grid computation, but for sparse-grid computation,
the RK FPFS-WENO scheme requires slightly less CPU time than the FE FPFS-WENO
scheme, because the FE FPFS-WENO scheme needs more iterations than the RK FPFS-
WENO scheme to converge on some semi-coarsened sparse grids.

Case 2 (3D). Now, we solve the 3D case, the Eikonal equation (1) with f (x, y, z) = 1 . The
computational domain � = [0, 1]3 . �(x, y, z) = 0 is specified at the following generators:

The exact solution of the problem is the distance function to � in this 3D domain, and it
is not a smooth function. The sparse-grid FE FPFS-WENO scheme and the sparse-grid
RK FPFS-WENO scheme, with � = 0.8 , and the third-order WENO approximations to
the derivatives are applied in solving this problem. The third order WENO interpolation
is used for prolongation in sparse-grid computations. Simulations are performed on both
sparse grids with Nr = 80,NL = 3 , and the corresponding 640 × 640 × 640 single grid,
to compare their results. The simulation results of the RK FPFS-WENO scheme are pre-
sented in Fig. 6 (the numerical solution of the FE FPFS-WENO scheme is similar, so we
omit to show its pictures which are basically the same as Fig. 6). These simulation results
show that the numerical solutions by the sparse-grid FPFS-WENO schemes and their cor-
responding single-grid computations are comparable, and the nonlinear stability and high-
resolution properties of the FPFS-WENO schemes for resolving the non-smooth solution
in this 3D example are preserved well in the sparse-grid simulations. In terms of com-
putational efficiency, by applying the FE FPFS-WENO scheme, it takes 45 090.73 s of
CPU time to complete the simulation in the sparse-grid computation, while 417 126.96 s
of CPU time are needed for finishing the simulation in the corresponding single-grid com-
putation. About 89% CPU time is saved by performing the FE FPFS-WENO simulation on
the sparse grids in this 3D problem. For the RK FPFS-WENO scheme, it takes 65 425.44 s
of CPU time to complete the simulation in the sparse-grid computation, while 672 078.25 s
of CPU time are needed for finishing the simulation in the corresponding single-grid com-
putation. About 90% CPU time is saved by performing the RK FPFS-WENO simulation
on the sparse grids here. For this 3D example, the FE FPFS-WENO scheme is more effi-
cient than the RK FPFS-WENO scheme for both sparse-grid computation and single-grid
computation.

Example 6 (Boat-sail problem) In this example, we consider an extension of Voronoi dia-
gram problems as in Example 5, boat-sail problems (see, e.g., [5, 23, 24]), which applies a
flow field to a Voronoi diagram problem. An application of this kind of problems would be
a boat trying to reach the nearest harbor or island on a moving river.

� =
{(

1

4
,
1

5
,
1

8

)
,

(
1

3
,
1

7
,
7

9

)
,

(
3

5
,
1

5
,
4

5

)
,

(
3

4
,
1

2
,
1

4

)
,

(
1

2
,
3

4
,
4

5

)
,

(
1

4
,
1

2
,
1

2

)
,

(
1

7
,
4

5
,
3

5

)
,

(
1

2
,
1

2
,
1

4

)}
.

Communications on Applied Mathematics and Computation

1 3

Fig. 6 Example 5, Case 2, numerical solutions of the 3D Voronoi diagram problem by the RK FPFS-
WENO scheme on sparse grids (N

r
= 80 for root grid, finest level N

L
= 3 in the sparse-grid computation)

and the corresponding 640 × 640 × 640 single grid, using the third-order WENO interpolation for prolonga-
tion in the sparse-grid combination. a, c, e single-grid results; b, d, f sparse-grid results; a, b the contour
plots for � = 0.125 ; c, d the contour plots for � = 0.25 ; e, f the contour plots for the whole surface

 Communications on Applied Mathematics and Computation

1 3

Case 1 (2D). Suppose that the river flows with some velocity � = (f1, f2)
T , and the boat

travels at a maximum speed F, such that F > |� | . The minimum travel time �(x, y) from a
point (x, y) to the nearest harbor or island can be found by solving the following static Hamil-
ton-Jacobi equation:

where � is the locations of the harbors and islands. Here, we take F = 1 and � = (0.4, 0)T .
The computational domain is � = [0, 1]2 and harbor locations are

The exact solution of the problem is also not smooth. The sparse-grid FE FPFS-WENO
scheme and the sparse-grid RK FPFS-WENO scheme, with � = 1 and the third-order
WENO approximations to the derivatives are applied. The third-order WENO interpolation
is used for prolongation in sparse-grid computations. Simulations are performed on both
sparse grids with Nr = 160,NL = 3 , and the corresponding 1 280 × 1 280 single grid, to
compare their numerical results. The obtained results of the RK FPFS-WENO scheme are
reported in Fig. 7 (the numerical solution of the FE FPFS-WENO scheme is similar, so we
omit to show its pictures which are basically the same as Fig. 7). As the previous examples,
we observe that the numerical solutions by the sparse-grid FPFS-WENO schemes and their
corresponding single-grid computations are comparable, and the nonlinear stability and
high resolution properties of the FPFS-WENO schemes for resolving the non-smooth solu-
tion in this example are preserved well in the sparse-grid simulations. About computational
efficiency, by applying the FE FPFS-WENO scheme, it takes 616.26 s of CPU time to
complete the simulation in the sparse-grid computation, while 1 594.57 s of CPU time are
needed for finishing the simulation in the corresponding single-grid computation. About

(21)F|∇�| + � ⋅ ∇� = 1, � ∈ ��� ,

(22)�(�) = 0, � ∈ � ,

� =
{(

1

4
,
1

5

)
,

(
5

16
,
1

8

)
,

(
3

5
,
1

5

)
,

(
3

4
,
3

5

)
,

(
1

2
,
3

4

)
,

(
1

4
,
1

2

)
,

(
1

8
,
4

5

)
,

(
1

2
,
1

2

)}
.

Fig. 7 Example 6, Case 1, numerical solutions of the 2D boat-sail problem by the RK FPFS-WENO
scheme on sparse grids (N

r
= 160 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the

corresponding 1 280 × 1 280 single grid, using the third-order WENO interpolation for prolongation in the
sparse-grid combination. The contour plots, 30 equally spaced contour lines from � = 0 to � = 0.446 1 . Red
points are the harbor locations. a single-grid result; b sparse-grid result

Communications on Applied Mathematics and Computation

1 3

61% CPU time is saved by performing the FE FPFS-WENO simulation on the sparse grids
in this 2D example. For the RK FPFS-WENO scheme, it takes 892.71 s of CPU time to
complete the simulation in the sparse-grid computation, while 2 155.63 s of CPU time are
needed for finishing the simulation in the corresponding single-grid computation. About
59% CPU time is saved by performing the RK FPFS-WENO simulation on the sparse grids
here. In this example, it is observed again that the FE FPFS-WENO scheme is more effi-
cient than the RK FPFS-WENO scheme for both sparse-grid computation and single-grid
computation.

Case 2 (3D). We consider the 3D case of the problem. The river flows with velocity
� = (f1, f2, f3)

T , and the boat travels at a maximum speed F, such that F > |� | . The mini-
mum travel time �(x, y, z) from a point (x, y, z) to the nearest harbor or island can be found
by solving the 3D version of the static Hamilton-Jacobi equation (21)–(22). We take F = 1
and � = (0.4, 0.4, 0)T . The computational domain is � = [0, 1]3 and harbor locations are

Again, the exact solution of the 3D problem is not smooth. The sparse-grid FE FPFS-
WENO scheme and the sparse-grid RK FPFS-WENO scheme, with � = 0.8 and the third-
order WENO approximations to the derivatives are applied in solving this 3D problem.
The third-order WENO interpolation is used for prolongation in sparse-grid computations.
Simulations are carried out on both sparse grids with Nr = 80,NL = 3 , and the correspond-
ing 640 × 640 × 640 single grid, for comparing the numerical results. The simulation
results of the RK FPFS-WENO scheme are presented in Fig. 8 (the numerical solution of
the FE FPFS-WENO scheme is similar, so we omit to show its pictures which are basically
the same as Fig. 8). As the 2D case, the simulation results show that the numerical solu-
tions by the sparse-grid FPFS-WENO schemes and their corresponding single-grid com-
putations are comparable, and the nonlinear stability and high resolution properties of the
FPFS-WENO schemes for resolving the non-smooth solution in this 3D boat-sail problem
are preserved well in the sparse-grid simulations. In terms of computational efficiency, by
applying the FE FPFS-WENO scheme, it takes 101 901.28 s of CPU time to complete the
simulation in the sparse-grid computation, while 936 884.61 s of CPU time are needed
for finishing the simulation in the corresponding single-grid computation. About 89% CPU
time is saved by performing the FE FPFS-WENO simulation on the sparse grids in this
3D boat-sail problem. For the RK FPFS-WENO scheme, it takes 179 925.93 s of CPU
time to complete the simulation in the sparse-grid computation, while 1 480 989.58 s of
CPU time are needed for finishing the simulation in the corresponding single-grid compu-
tation. About 88% CPU time is saved by performing the RK FPFS-WENO simulation on
the sparse grids here. In this 3D boat-sail problem, we also see that the FE FPFS-WENO
scheme is more efficient than the RK FPFS-WENO scheme for both sparse-grid computa-
tion and single-grid computation, which is consistent with the observations for most of the
other examples in this paper.

� =
{(

1

4
,
1

5
,
1

8

)
,

(
1

3
,
1

7
,
7

9

)
,

(
3

5
,
1

5
,
4

5

)
,

(
3

4
,
1

2
,
1

4

)
,

(
1

2
,
3

4
,
4

5

)
,

(
1

4
,
1

2
,
1

2

)
,

(
1

7
,
4

5
,
3

5

)
,

(
1

2
,
1

2
,
1

4

)}
.

 Communications on Applied Mathematics and Computation

1 3

Fig. 8 Example 6, Case 2, numerical solutions of the 3D boat-sail problem by the RK FPFS-WENO
scheme on sparse grids (N

r
= 80 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the

corresponding 640 × 640 × 640 single grid, using the third-order WENO interpolation for prolongation in
the sparse-grid combination. a, c, e single-grid results; b, d, f: sparse-grid results; a, b the contour plots for
� = 0.125 ; c, d the contour plots for � = 0.25 ; e, f the contour plots for the whole surface

Communications on Applied Mathematics and Computation

1 3

4 Conclusions

In this technical note, we apply the sparse-grid combination technique to the third-order
fixed-point fast sweeping WENO schemes for efficiently computing solutions of multidi-
mensional Eikonal equations. Due to their sophisticated nonlinearity, more computational
costs than many other schemes are needed in high-order WENO simulations, especially for
multidimensional problems. Here, we follow our previous work and implement the FPFS-
WENO schemes on sparse grids. A third-order WENO interpolation is applied in the pro-
longation step of the sparse-grid combination technique, for robust computations of non-
smooth solutions of Eikonal equations in sparse-grid simulations. Numerical experiments
on 2D and 3D problems are performed for the sparse-grid FPFS-WENO methods to show
that a more efficient algorithm than the regular FPFS-WENO methods on single grids to
solve the multidimensional Eikonal equations is achieved, with about 50% ∼ 90% CPU
time costs being saved on refined meshes, by comparing with the corresponding single-
grid simulations in examples here.

In this technical note, we focus on the efficient implementation of the FPFS-WENO
schemes on sparse grids and their numerical experiments. We would like to point out
that there are still quite a few open problems to be investigated further for the sparse-grid
methods here. For example, it is still an open problem on how to perform theoretical error
analysis for such kind of nonlinear sparse-grid schemes, although that has been done for
the linear schemes in solving linear time-dependent PDEs in the literature. In the numeri-
cal experiments, we find that the L∞ errors of sparse-grid computations are larger than
the corresponding single-grid computations. How to improve the accuracy of these sparse-
grid schemes is an interesting and important problem. Furthermore, the sparse-grid FPFS-
WENO methods studied here should be able to be extended to higher order accuracy and to
solve more complicated static H-J equations. All of these important open problems will be
our future work.

Compliance with Ethical Standards

 Conflict of Interest The authors declare that there is no conflict of interest.

References

 1. Alves, M.A., Cruz, P., Mendes, A., Magalhães, F.D., Pinho, F.T., Oliveira, P.J.: Adaptive multiresolu-
tion approach for solution of hyperbolic PDEs. Comput. Methods Appl. Mech. Eng. 191, 3909–3928
(2002)

 2. Aurenhammer, F.: Voronoi diagrams — a survey of a fundamental geometric data structure. ACM
Comput. Surv. 23, 345–405 (1991)

 3. Bungartz, H.-J., Griebel, M.: Sparse grids. Acta Numer. 13, 147–269 (2004)
 4. Chen, W., Chou, C.-S., Kao, C.-Y.: Lax-Friedrichs fast sweeping methods for steady state problems for

hyperbolic conservation laws. J. Comput. Phys. 234, 452–471 (2012)
 5. Chew, L.P., Drysdale, R.L.: Voronoi diagrams based on convex distance functions. In: SCG ’85: Pro-

ceedings of the First Annual Symposium and Computational Geometry, New York, NY, Association
for Computing Machinery, pp. 235–244 (1985)

 6. Chou, C.-S., Shu, C.-W.: High order residual distribution conservative finite difference WENO
schemes for steady state problems on non-smooth meshes. J. Comput. Phys. 214, 698–724 (2006)

 7. Crandall, M.G., Lions, P.L.: Viscosity solutions of Hamilton-Jacobi equations. Trans. Am. Math. Soc.
277, 1–42 (1983)

 8. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

 Communications on Applied Mathematics and Computation

1 3

 9. Fomel, S., Luo, S., Zhao, H.: Fast sweeping method for the factored Eikonal equation. J. Comput.
Phys. 228, 6440–6455 (2009)

 10. Garcke, J.: Sparse grids in a nutshell. In: Garcke, J., Griebel, M. (eds) Sparse Grids and Applications,
Lecture Notes in Computational Science and Engineering, vol. 88, pp. 57–80. Springer, New York
(2013)

 11. Gerstner, T., Griebel, M.: Dimension-adaptive tensor-product quadrature. Computing 71, 65–87 (2003)
 12. Griebel, M.: Adaptive sparse grid multilevel methods for elliptic PDEs based on finite differences.

Computing 61, 151–179 (1998)
 13. Griebel, M., Schneider, M., Zenger, C.: A combination technique for the solution of sparse grid prob-

lems. In: Beauwens, R., de Groen, P. (eds) Iterative methods in linear algebra, pp. 263–281. North-
Holland, Amsterdam (1992)

 14. Guo, W., Cheng, Y.: An adaptive multiresolution discontinuous Galerkin method for time-dependent
transport equations in multidimensions. SIAM J. Sci. Comput. 39, A2962–A2992 (2017)

 15. Hegland, M.: Adaptive sparse grids. ANZIAM J. 44, C335–C353 (2002)
 16. Kao, C.Y., Osher, S., Qian, J.: Lax-Friedrichs sweeping schemes for static Hamilton-Jacobi equa-

tions. J. Comput. Phys. 196, 367–391 (2004)
 17. Lastdrager, B., Koren, B., Verwer, J.: Solution of time-dependent advection-diffusion problems

with the sparse-grid combination technique and a Rosenbrock solver. Comput. Methods Appl.
Math. 1, 86–99 (2001)

 18. Lastdrager, B., Koren, B., Verwer, J.: The sparse-grid combination technique applied to time-
dependent advection problems. Appl. Numer. Math. 38, 377–401 (2001)

 19. Li, F., Shu, C.-W., Zhang, Y.-T., Zhao, H.-K.: A second order discontinuous Galerkin fast sweeping
method for Eikonal equations. J. Comput. Phys. 227, 8191–8208 (2008)

 20. Li, L., Zhu, J., Zhang, Y.-T.: Absolutely convergent fixed-point fast sweeping WENO methods for
steady state of hyperbolic conservation laws. J. Comput. Phys. 443, 1–24 (2021)

 21. Lu, D., Chen, S., Zhang, Y.-T.: Third order WENO scheme on sparse grids for hyperbolic equa-
tions. Pure Appl. Math. Q. 14, 57–86 (2018)

 22. Lu, D., Zhang, Y.-T.: Krylov integration factor method on sparse grids for high spatial dimension
convection-diffusion equations. J. Sci. Comput. 69, 736–763 (2016)

 23. Nishida, T., Sugihara, K.: Voronoi diagram in a flow field. In: Ibaraki, T., Katoh, N., Ono, H. (eds)
Algorithms and Computation, ISAAC 2003 Lecture Notes in Computer Science, vol. 2906, pp.
26–35. Berlin, Springer (2003)

 24. Nishida, T., Sugihara, K.: Boat-sail Voronoi diagram on a curved surface. Jpn. J. Ind. Appl. Math.
22, 267–278 (2005)

 25. Noordmans, J., Hemker, P.W.: Application of an adaptive sparse-grid technique to a model singular
perturbation problem. Computing 65, 357–378 (2000)

 26. Obersteiner, M., Bungartz, H.-J.: A generalized spatially adaptive sparse grid combination tech-
nique with dimension-wise refinement. SIAM J. Sci. Comput. 43, A2381–A2403 (2021)

 27. Okabe, A., Boots, B., Sugihara, K., Chu, S.N.: Spatial Tessellations: Concepts and Applications of
Voronoi Diagrams, 2nd edn. Wiley Series in Probability and Statistics, Wiley, Hoboken, NJ (2000)

 28. Osher, S., Shu, C.-W.: High-order essentially nonoscillatory schemes for Hamilton-Jacobi equa-
tions. SIAM J. Numer. Anal. 28, 907–922 (1991)

 29. Qian, J., Zhang, Y.-T., Zhao, H.-K.: Fast sweeping methods for Eikonal equations on triangular
meshes. SIAM J. Numer. Anal. 45, 83–107 (2007)

 30. Qian, J., Zhang, Y.-T., Zhao, H.-K.: A fast sweeping method for static convex Hamilton-Jacobi
equations. J. Sci. Comput. 31, 237–271 (2007)

 31. Rouy, E., Tourin, A.: A viscosity solutions approach to shape-from-shading. SIAM J. Numer. Anal.
29, 867–884 (1992)

 32. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl.
Acad. Sci. U.S.A 93, 1591–1595 (1996)

 33. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations.
Proc. Natl. Acad. Sci. U.S.A. 98, 11069–11074 (2001)

 34. Sethian, J.A., Vladimirsky, A.: Ordered upwind methods for static Hamilton-Jacobi equations: the-
ory and algorithms. SIAM J. Numer. Anal. 41, 325–363 (2003)

 35. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyper-
bolic conservation laws. In: Quarteroni, A. (ed) Advanced Numerical Approximation of Nonlin-
ear Hyperbolic Equations, Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer-Verlag,
New York (1998)

 36. Wu, L., Zhang, Y.-T.: A third order fast sweeping method with linear computational complexity for
Eikonal equations. J. Sci. Comput. 62, 198–229 (2015)

Communications on Applied Mathematics and Computation

1 3

 37. Wu, L., Zhang, Y.-T., Zhang, S., Shu, C.-W.: High order fixed-point sweeping WENO methods for
steady state of hyperbolic conservation laws and its convergence study. Commun. Comput. Phys.
20, 835–869 (2016)

 38. Xiong, T., Zhang, M., Zhang, Y.-T., Shu, C.-W.: Fifth order fast sweeping WENO scheme for static
Hamilton-Jacobi equations with accurate boundary treatment. J. Sci. Comput. 45, 514–536 (2010)

 39. Zenger, C.: Sparse grids. In: Hackbusch, W. (ed) Notes on Numerical Fluid Mechanics, vol. 31, pp.
241–251. Vieweg, Braunschweig (1991)

 40. Zhang, Y.-T., Chen, S., Li, F., Zhao, H., Shu, C.-W.: Uniformly accurate discontinuous Galerkin
fast sweeping methods for Eikonal equations. SIAM J. Sci. Comput. 33, 1873–1896 (2011)

 41. Zhang, Y.-T., Zhao, H.-K., Chen, S.: Fixed-point iterative sweeping methods for static Hamilton-
Jacobi equations. Methods Appl. Anal. 13, 299–320 (2006)

 42. Zhang, Y.-T., Zhao, H.-K., Qian, J.: High order fast sweeping methods for static Hamilton-Jacobi
equations. J. Sci. Comput. 29, 25–56 (2006)

 43. Zhao, H.-K.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)
 44. Zhao, H., Osher, S., Merriman, B., Kang, M.: Implicit and non-parametric shape reconstruction from

unorganized points using variational level set method. Comput. Vis. Image Underst. 80, 295–319
(2000)

 45. Zhu, X., Zhang, Y.-T.: Fast sparse grid simulations of fifth order WENO scheme for high dimensional
hyperbolic PDEs. J. Sci. Comput. 87, Article number 44, 1–38 (2021)

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is
solely governed by the terms of such publishing agreement and applicable law.

	Sparse-Grid Implementation of Fixed-Point Fast Sweeping WENO Schemes for Eikonal Equations
	Abstract
	1 Introduction
	2 Description of the Numerical Algorithm
	2.1 The Fixed-Point Fast Sweeping WENO Schemes
	2.2 The FPFS-WENO Schemes on Sparse Grids
	2.2.1 Prolongation Operator and WENO Interpolation
	2.2.2 Algorithm Summary

	3 Numerical Examples
	4 Conclusions
	References

