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Abstract
Fixed-point fast sweeping methods are a class of explicit iterative methods developed in the 
literature to efficiently solve steady-state solutions of hyperbolic partial differential equa-
tions (PDEs). As other types of fast sweeping schemes, fixed-point fast sweeping methods 
use the Gauss-Seidel iterations and alternating sweeping strategy to cover characteristics of 
hyperbolic PDEs in a certain direction simultaneously in each sweeping order. The result-
ing iterative schemes have a fast convergence rate to steady-state solutions. Moreover, an 
advantage of fixed-point fast sweeping methods over other types of fast sweeping methods 
is that they are explicit and do not involve the inverse operation of any nonlinear local sys-
tem. Hence, they are robust and flexible, and have been combined with high-order accurate 
weighted essentially non-oscillatory (WENO) schemes to solve various hyperbolic PDEs 
in the literature. For multidimensional nonlinear problems, high-order fixed-point fast 
sweeping WENO methods still require quite a large amount of computational costs. In this 
technical note, we apply sparse-grid techniques, an effective approximation tool for mul-
tidimensional problems, to fixed-point fast sweeping WENO methods for reducing their 
computational costs. Here, we focus on fixed-point fast sweeping WENO schemes with 
third-order accuracy (Zhang et al. 2006 [41]), for solving Eikonal equations, an important 
class of static Hamilton-Jacobi (H-J) equations. Numerical experiments on solving multidi-
mensional Eikonal equations and a more general static H-J equation are performed to show 
that the sparse-grid computations of the fixed-point fast sweeping WENO schemes achieve 
large savings of CPU times on refined meshes, and at the same time maintain comparable 
accuracy and resolution with those on corresponding regular single grids.
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1 Introduction

In this technical note, we study an efficient approach to reduce the computational costs for 
solving the multidimensional Eikonal equations

where � is a d-dimension computational domain in ℝd , and �  is a subset of � . The given 
functions f (�) and g(�) are Lipschitz continuous, and f (�) is positive. The Eikonal equa-
tions are a very important class of static Hamilton-Jacobi (H-J) equations [7]

where H is the Hamiltonian. The numerical computations of Eikonal equations appear in 
many applications, such as the optimal control, image processing and computer vision, 
geometric optics, seismic waves, level set methods, etc.

Due to the nonlinearity of the equations and possible singularities in their solutions, it 
is challenging to design efficient and high-order accurate numerical methods for solving 
static H-J equations such as the Eikonal equations (1). In the literature, a popular approach 
is to discretize (1) into a nonlinear system and then design a fast numerical method to solve 
the nonlinear system. Among such methods are the fast marching method and the fast 
sweeping method. The fast marching method uses the Dijkstra’s algorithm [8] and updates 
the solution by following the Eikonal equations’ causality sequentially, e.g., see [32–34]. In 
the fast sweeping method [9, 16, 29, 30, 43, 44], Gauss-Seidel iterations with alternating 
orderings are combined with upwind schemes. Different from the fast marching method, 
the fast sweeping method is an iterative method and follows the Eikonal equations’ causal-
ity along characteristics in a parallel way, i.e., each Gauss-Seidel iteration with a specific 
sweeping ordering covers a family of characteristics in a certain direction simultaneously.

The iterative framework of the fast sweeping method provides certain flexibility to 
incorporate high-order accuracy schemes for hyperbolic PDEs, such as weighted essen-
tially non-oscillatory (WENO) methods [38, 42] or discontinuous Galerkin (DG) [19, 36, 
40] methods, into it for developing high-order fast sweeping methods. In [41], fixed-point 
fast sweeping WENO methods were designed to solve static H-J equations. Different from 
other fast sweeping methods, fixed-point fast sweeping methods adopt the Gauss-Seidel 
idea and alternate sweeping strategy to the time-marching type of fixed-point iterations. 
They are explicit schemes and do not involve the inverse operation of nonlinear local sys-
tems which have to be done in other types of fast sweeping methods, and hence are much 
easier to be applied in solving various hyperbolic equations using any monotone numerical 
fluxes and high-order nonlinear WENO approximations. For example, how efficiently solv-
ing steady-state problems of hyperbolic conservation laws is important and challenging [4, 
6]. In [20, 37], fixed-point fast sweeping WENO methods were applied in solving nonlin-
ear hyperbolic conservation laws. Numerical experiments performed in [20, 37, 41] show 
that more than 50% of computational costs are saved by using fixed-point fast sweeping 

(1)
{ |∇𝜙(�)| = f (�), � ∈ 𝛺�𝛤 ⊂ ℝd,

𝜙(�) = g(�), � ∈ 𝛤 ⊂ 𝛺,

(2)
{

H(�,∇𝜙(�)) = f (�), � ∈ 𝛺�𝛤 ⊂ ℝd,

𝜙(�) = g(�), � ∈ 𝛤 ⊂ 𝛺,
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methods rather than direct time-marching methods to converge to steady states of high-
order WENO schemes.

Since high-order WENO methods require more operations than many other schemes due 
to their sophisticated nonlinearity and high-order accuracy, the associated computational 
costs increase significantly when the number of grid points is large for multidimensional 
problems. Sparse-grid techniques, an efficient approach for solving high-dimensional prob-
lems, have been developed in the literature to reduce the number of grid points needed 
in the simulations. See [3, 10] for a review. In 1991, sparse-grid techniques were intro-
duced in [39] to reduce the number of degrees of freedom in the finite-element method. 
As an approach for the practical implementation of sparse-grid techniques, the sparse-grid 
combination technique was developed in [13]. The main idea of the sparse-grid combi-
nation technique is to compute the final solution as a linear combination of solutions on 
semi-coarsened grids, and the coefficients of the linear combination are taken, such that 
there is a canceling in leading-order error terms and the resulting accuracy order is kept 
to be the same as that on a single full grid. The sparse-grid combination technique was 
applied to linear schemes in [17, 18] in early time. Recently, it has been applied to nonlin-
ear WENO schemes in [21, 22, 45] for solving hyperbolic conservation laws or convection-
diffusion equations, where numerical results show that significant computational times are 
saved, while both accuracy and stability of the nonlinear WENO schemes are maintained 
for simulations on sparse grids. In this technical note, we follow the way in our previous 
work and apply the sparse-grid combination technique to fixed-point fast sweeping WENO 
methods for solving multidimensional Eikonal equations. Both a forward Euler (FE) fixed-
point fast sweeping WENO scheme and a Runge-Kutta (RK) type fixed-point fast sweeping 
WENO scheme with third-order accuracy developed in [41] are used in this paper. The rest 
of the paper is organized as follows. In Sect. 2, we describe the algorithm how to apply 
the sparse-grid combination technique to the fixed-point fast sweeping WENO schemes. In 
Sect. 3, various numerical experiments including solving multidimensional Eikonal equa-
tions and a more general static H-J equation with smooth or non-smooth solutions are car-
ried out to show that the sparse-grid computations of the fixed-point fast sweeping WENO 
schemes save a large amount of CPU time, especially on refined meshes, and at the same 
time maintain comparable simulation results with those on corresponding regular single 
grids. Conclusions are given in Sect. 4.

2  Description of the Numerical Algorithm

In this section, we first review the fixed-point fast sweeping WENO schemes in [41], and 
then describe the algorithm to implement them on sparse grids.

2.1  The Fixed‑Point Fast Sweeping WENO Schemes

The fixed-point fast sweeping WENO schemes in [41] were developed by applying the Gauss-
Seidel idea and alternating sweeping strategy to the time-marching schemes to solve the static 
H-J equations (2). In this paper, we use both the forward Euler fixed-point fast sweeping 
WENO scheme (FE FPFS-WENO) based on the forward Euler time-marching scheme and 
third-order WENO approximations to spatial derivatives, and the RK fixed-point fast sweep-
ing WENO scheme (RK FPFS-WENO) based on the second-order total variation diminish-
ing (TVD) RK time-marching scheme [35] and third-order WENO approximations to spatial 
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derivatives. Here, we take the two-dimensional (2D) case as an example to describe the meth-
ods, which is similar to higher dimensional cases. The computational domain � is partitioned 
by a Cartesian grid {(xi, yj), 1 ⩽ i ⩽ I, 1 ⩽ j ⩽ J} with uniform grid sizes hx and hy in the x- 
and y-directions, respectively. Denote the viscosity numerical solution of (2) at a grid point 
(xi, yj) by �i,j . The FE fixed-point fast sweeping scheme [41] has the form

and the RK fixed-point fast sweeping scheme [41] has the following form:

Here, �n
i,j

 and �n+1
i,j

 are the numerical solution values at iteration steps n and n + 1 , respec-

tively. �(1)

i,j
 is the numerical solution value at iteration step of the first RK stage. fi,j denotes 

the value of f at a grid point (xi, yj) . Ĥ is a monotone numerical Hamiltonian [28]. (�∗
x
)−
i,j

 
and (�∗∗

x
)−
i,j

 are approximations of �x at the grid point (xi, yj) when the wind “blows” from 
the left to the right, while (�∗

x
)+
i,j

 and (�∗∗
x
)+
i,j

 are approximations of �x at the grid point 
(xi, yj) when the wind “blows” from the right to the left. It is similar for y-direction approxi-
mations (�∗

y
)−
i,j

 , (�∗∗
y
)−
i,j

 , (�∗
y
)+
i,j

 , and (�∗∗
y
)+
i,j

 . The superscripts ∗ and ∗∗ indicate that unlike 
the usual FE or RK schemes, here, we always use the newest available values of � in the 
schemes’ stencils to compute these approximations of derivatives, according to the philos-
ophy of Gauss-Seidel iterations. Namely, a numerical value (e.g., �k,l ) used on the compu-
tational stencil could be the value of the previous iteration step, or the new value which has 
been updated and available in the current iteration step, depending on the current sweeping 
direction of the iteration. � is a parameter. To guarantee that the fixed-point iteration is a 
contractive mapping and converges, suitable values of � need to be taken. In the context of 
time-marching schemes, � is actually the Courant-Friedrichs-Lewy (CFL) number,

Hi(u, v) is the partial derivative of H with respect to the ith argument, or the Lipschitz con-
stant of H with respect to the ith argument. [A, B] is the value range for �±

x
 , and [C, D] is 

the value range for �±
y
 . For the Eikonal equation (1), we have �x = �y = 1.

For first-order scheme, simple first-order upwind finite difference approximations for �x 
and �y are used. To obtain a high-order scheme, in [41] (�∗

x
)−
i,j

 , (�∗∗
x
)−
i,j

 , (�∗
x
)+
i,j

 , (�∗∗
x
)+
i,j

 , (�∗
y
)−
i,j

 , 

(3)𝜙
(n+1)

i,j
= 𝜙n

i,j
+ 𝛾

⎛
⎜⎜⎝

1
𝛼x

hx
+

𝛼y

hy

⎞
⎟⎟⎠

�
fi,j − Ĥ((𝜙∗

x
)−
i,j
, (𝜙∗

x
)+
i,j
;(𝜙∗

y
)−
i,j
, (𝜙∗

y
)+
i,j
)
�
,

(4)𝜙
(1)

i,j
= 𝜙n

i,j
+ 𝛾

⎛⎜⎜⎝
1

𝛼x

hx
+

𝛼y

hy

⎞⎟⎟⎠

�
fi,j − Ĥ((𝜙∗

x
)−
i,j
, (𝜙∗

x
)+
i,j
;(𝜙∗

y
)−
i,j
, (𝜙∗

y
)+
i,j
)
�
;

(5)𝜙n+1
i,j

= 𝜙
(1)

i,j
+

1

2
𝛾

⎛⎜⎜⎝
1

𝛼x

hx
+

𝛼y

hy

⎞⎟⎟⎠

�
fi,j − Ĥ((𝜙∗∗

x
)−
i,j
, (𝜙∗∗

x
)+
i,j
;(𝜙∗∗

y
)−
i,j
, (𝜙∗∗

y
)+
i,j
)
�
.

(6)
�x = max

A ⩽ u ⩽ B

C ⩽ v ⩽ D

|H1(u, v)|, �y = max
A ⩽ u ⩽ B

C ⩽ v ⩽ D

|H2(u, v)|.

Fig. 1  Stencils of the third-order 
WENO approximations for 
derivatives

i− 2 i− 1 i i+ 1 i+ 2

φ−
x φ+

x
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(�∗∗
y
)−
i,j

 , (�∗
y
)+
i,j

 , and (�∗∗
y
)+
i,j

 are computed by a third-order WENO scheme, which is also used 
in [42]. See Fig. 1 for an illustration of the computational stencils used. To simplify the nota-
tions, in the following, we omit the superscripts ∗ and ∗∗ , with the understanding that the new-
est numerical values on the computational stencil of the WENO scheme are used whenever 
they are available. Again, in the following formulas, a numerical value (e.g., �i−2,j,⋯ ,�i+2,j ) 
used on the computational stencil could be the value of the previous iteration step, or the new 
value which has been updated and available in the current iteration step, depending on the 
current sweeping direction of the iteration. The WENO approximation of �x at the grid point 
(xi, yj) when the wind “blows” left-to-right is

where

when the wind “blows” right-to-left, the WENO approximation is

where

Here, � is a small value to avoid that the denominator becomes zero. The WENO approxi-
mations of �y are computed similarly. If we take w− = w+ = 1∕3 in (7) and (9), then third-
order linear upwind approximations are obtained. In this paper, we use the Lax-Friedrichs 
numerical Hamiltonian [28], which has the following form for a Hamiltonian H(u, v):

where �x and �y have the same definition as (6).
We summarize the fixed-point fast sweeping WENO (FPFS-WENO) algorithm as 

follows. 

 (i) Initialization: according to the boundary condition �(x, y) = g(x, y) , (x, y) ∈ �  , assign 
exact values or interpolated values at grid points whose distances to �  are less than or 
equal to (m − 1) grid sizes, where m is the number of grid points in small stencils of 
WENO approximations. For example, m = 3 for the third-order WENO approxima-
tions used here. These values are fixed during iterations. For robust simulations, the 
solution from the non-fully converged (i.e., using a much larger convergence thresh-
old value � than that of the WENO sweeping used in Step (iii) below; specific values 
given in the numerical example section) first-order sweeping computation (i.e., using 
the first-order upwind approximations for these derivatives in Ĥ of the scheme (3) 
for the FE FPFS-WENO method or the scheme (4)–(5) for the RK FPFS-WENO 

(7)(�x)
−
i,j
= (1 − w−)

(
�i+1,j − �i−1,j

2hx

)
+ w−

(
3�i,j − 4�i−1,j + �i−2,j

2hx

)
,

(8)w− =
1

1 + 2r2
−

, r− =
� + (�i,j − 2�i−1,j + �i−2,j)

2

� + (�i+1,j − 2�i,j + �i−1,j)
2
;

(9)(�x)
+
i,j
= (1 − w+)

(
�i+1,j − �i−1,j

2hx

)
+ w+

(
−�i+2,j + 4�i+1,j − 3�i,j

2hx

)
,

(10)w+ =
1

1 + 2r2+
, r+ =

� + (�i+2,j − 2�i+1,j + �i,j)
2

� + (�i+1,j − 2�i,j + �i−1,j)
2
.

(11)ĤLF(u−, u+;v−, v+) = H

(
u− + u+

2
,
v− + v+

2

)
−

1

2
𝛼x(u

+ − u−) −
1

2
𝛼y(v

+ − v−),



 Communications on Applied Mathematics and Computation

1 3

method) is used as the initial guess at all other grid points, while a big value (e.g., 
10 in this paper) is used as the initial guess for the first-order sweeping computation.

 (ii) Iterations: perform the Gauss-Seidel iterations (3) for the FE FPFS-WENO method or 
(4)–(5) for the RK FPFS-WENO method, with four alternating direction sweepings 

For the RK FPFS-WENO method, each sweeping direction is completed in full for 
the first RK stage before moving to the second RK stage, and the sweeping direc-
tion of both stages should be same during one sweeping. High-order extrapolations 
are used for the ghost points when calculating the high-order WENO approxi-
mations of the derivatives for grid points on the boundary of the computational 
domain, as in [42].

 (iii) Convergence: if 

 where � is a given convergence threshold value and ‖ ⋅ ‖L∞ denotes the L∞ norm, 
the iterations converge, and we stop the iterations.

2.2  The FPFS‑WENO Schemes on Sparse Grids

In this section, we describe how to implement the FPFS-WENO methods on sparse grids by 
using the sparse-grid combination technique, for improving the method’s efficiency in solving 
multidimensional Eikonal equations. Here, 2D cases are used to illustrate the idea. Algorithm 
procedures for higher dimensional cases are similar. We consider a square computational 
domain [a, b]2 for simplicity of the description, and construct semi-coarsened sparse grids as 
the following. Note that the procedure here can be applied to any rectangular domain straight-
forwardly. The domain is first partitioned into the coarsest grid �0,0 with Nr cells in each 
direction and mesh size H =

b−a

Nr

 . �0,0 is called a root grid. Then, a multi-level refinement on 
the root grid is done to construct a family of semi-coarsened grids {�l1,l2} with mesh sizes 
hl1 = 2−l1H in the x-direction and hl2 = 2−l2H in the y-direction, where l1 = 0, 1,⋯ ,NL and 
l2 = 0, 1,⋯ ,NL . The superscripts l1, l2 are the refinement levels relative to the root grid �0,0 
in the x- and the y-directions, respectively, and NL is the finest level. Here, the finest grid is 
�NL ,NL with the mesh size h = 2−NLH in both x- and y-directions. Actually, �NL ,NL is corre-
sponding to a single full grid in regular single-grid computations. Figure 2 is an illustration of 
2D sparse grids {�l1,l2} for one cell of a root grid, with NL = 3 . We apply the spare-grid com-
bination techniques. The Eikonal equation (1) is not directly solved by the FPFS-WENO 
methods on a single full grid �NL ,NL , but on the set {�l1,l2}I of the following (2NL + 1) sparse 
grids:

with I being the index set

(a) i = 1 ∶ I, j = 1 ∶ J;

(b) i = I ∶ 1, j = 1 ∶ J;

(c) i = I ∶ 1, j = J ∶ 1;

(d) i = 1 ∶ I, j = J ∶ 1.

‖�n+1 − �n‖L∞ ⩽ �,

{
�0,NL ,�1,NL−1,⋯ ,�NL−1,1,�NL ,0

}
and

{
�0,NL−1,�1,NL−2,⋯ ,�NL−2,1,�NL−1,0

}

I = {(l1, l2)|l1 + l2 = NL or l1 + l2 = NL − 1}.
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Then, we have (2NL + 1) sets of numerical solutions {�l1,l2}I , where each set of numeri-
cal solutions is corresponding to each sparse grid in {�l1,l2}I . The final step is to combine 
these sparse-grid solutions {�l1,l2}I to obtain the final solution on the finest grid �NL ,NL . 
This is implemented by first using a prolongation operator PNL ,NL to map each sparse-grid 
solution �̂�l1,l2 onto the finest grid �NL ,NL , and then combining these solutions to form the 
final solution �̂�N

L
,N

L on �NL ,NL . Next, we describe the prolongation technique in details and 
then summarize the whole algorithm.

2.2.1  Prolongation Operator and WENO Interpolation

Given the numerical solution �̂�l1,l2 on �l1,l2 , a prolongation operator PNL ,NL generates 
numerical values PNL ,NL�̂�l1,l2 for all grid points on �NL ,NL . Prolongation is usually imple-
mented by interpolation procedure. Studies in [13, 17, 18] for linear schemes and in [21, 
22, 45] for nonlinear schemes show that the final solution resulting from the sparse-grid 
combination techniques can achieve similar accuracy orders as the numerical schemes, 
as long as the accuracy order of interpolations in the prolongations is not less than the 
accuracy order of the numerical schemes used to solve PDEs on sparse grids. Hence, 
we use third-order interpolations here for prolongations. If solutions are smooth, sim-
ple Lagrange interpolation can be used directly. The interpolations are carried out in 
the dimension by dimension way. In a 2D domain, first (Nr2

l1−1) quadratic polynomials 
P2
i
(x) , i = 1,⋯ ,Nr2

l1−1 , are constructed along the x-direction grid lines using the third-
order Lagrange interpolation. Three adjacent grid points are used in each interpolation. 

x

y

l1 = 0

l2 = 0

l1 = 1

l2 = 1

l1 = 2

l2 = 2

l1 = 3

l2 = 3

Fig. 2  Illustration of 2D sparse grids {�l1,l2} for one cell of a root grid. Here, the cell indicated by the levels 
l1 = 0, l2 = 0 is one cell of the root grid �0,0 , and the side length of the cell is H. The finest level N

L
= 3 . 

Highlighted grids are those on which PDEs are solved
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Each polynomial P2
i
(x) is then evaluated on the grid points of �NL ,l2 (the most refined 

grid in the x-direction). Then, the same interpolation procedure is performed in every 
grid line of the y-direction with a fixed x-coordinate on the grid �NL ,l2 , and the obtained 
polynomials are evaluated on the grid points of �NL ,NL to get PNL ,NL�̂�l1,l2 .

Because solutions of H-J equations may develop discontinuous derivatives and not be 
smooth, it is more robust to use WENO interpolations in the prolongation for a general 
case. Here, a third-order WENO interpolation is used, and detailed formulas are given 
as following. We describe the interpolation for a x-direction grid line, and it is similar 
for the y-direction. Given numerical values �i−1,j , �i,j , and �i+1,j at the grid points xi−1 , xi , 
and xi+1 along the line y = yj , we compute the third-order WENO interpolation �WENO(x) 
for any point x ∈ [xi−1∕2, xi+1∕2) , where xi−1∕2 = (xi−1 + xi)∕2 and xi+1∕2 = (xi + xi+1)∕2 . 
Let h be the grid size of the uniform mesh, we write the point x as x = xi−1 + �̃�h with 
�̃� ∈ [1∕2, 3∕2) . The WENO interpolation is

where P1
(1)
(x) and P1

(2)
(x) are second-order approximations computed as

The nonlinear weights w1 and w2 are computed as

with

where 𝛾1 = 1 − �̃�∕2 , 𝛾2 = �̃�∕2 , �1 = (�i,j − �i−1,j)
2 , and �2 = (�i+1,j − �i,j)

2 . � is a small 
positive number used to avoid the denominator becoming 0, and its value is specified in the 
next numerical experiment section.

2.2.2  Algorithm Summary

We summarize the algorithm of the FPFS-WENO schemes on sparse grids as following.
Algorithm: sparse-grid FPFS-WENO schemes

 (i) Restriction step: perform the initialization step of the FPFS-WENO algorithm in 
Sect. 2.1 on the aforementioned (2NL + 1) sparse grids {�l1,l2}I.

 (ii) Sweeping step: on each sparse grid �l1,l2 in {�l1,l2}I , perform the Gauss-Seidel 
iterations (3) for the FE FPFS-WENO method or (4)–(5) for the RK FPFS-WENO 
method, with four alternating direction sweepings as in the FPFS-WENO algorithm 
of Sect. 2.1, to solve the Eikonal equation (1). Then, we produce (2NL + 1) sets of 
converged solutions {�l1,l2}

I
 for the Eikonal equation (1).

(12)�WENO(x) = w1P
1
(1)
(x) + w2P

1
(2)
(x),

(13)P1
(1)
(x) = �̃�𝜙i,j − (�̃� − 1)𝜙i−1,j, P1

(2)
(x) = (�̃� − 1)𝜙i+1,j − (�̃� − 2)𝜙i,j.

(14)w1 =
w̃1

w̃1 + w̃2

, w2 = 1 − w1

(15)w̃1 =
𝛾1

(𝜖 + 𝛽1)
2
, w̃2 =

𝛾2

(𝜖 + 𝛽2)
2
,
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 (iii) Prolongation step: on each sparse grid �l1,l2 in {�l1,l2}I , use the prolongation operator 
PNL ,NL on �l1,l2 to map it onto the most refined grid �NL ,NL , and obtain the solution 
PNL ,NL�l1,l2.

 (iv) Combination step: compute the final solution �NL ,NL by taking the combination 

In three-dimensional (3D) or higher dimensional cases, the algorithm follows similar pro-
cedure, while prolongation operations are carried out in additional spatial directions. The 
sparse-grid combination formula for higher dimensional problems is provided in the litera-
ture, e.g., [13]. In this technical notes, the following 3D formula is also used:

Remark 1 Note that the adaptivity technique is a very effective approach to further improve 
the sparse-grid methods and achieve more efficient computations for solving multidimen-
sional problems. Adaptive sparse-grid methods have been developed in the literature, e.g., 
[3, 12, 15, 39]. It will be a very interesting topic to combine the sparse-grid FPFS-WENO 
methods with the adaptivity technique. A key step here will be to develop efficient adap-
tive sparse-grid WENO methods. There are several ideas in the literature that may be used 
for this effort. For example, multiresolution analysis has been used to develop sparse-
grid discontinuous Galerkin methods in [14]. This kind of multiresolution analysis meth-
ods may be used to develop sparse-grid WENO methods directly based on a hierarchical 
basis, without using the sparse-grid combination technique. Then, this kind of hierarchical 
basis WENO methods on sparse grids will be promising to be combined with adaptive 
approaches, since the hierarchical basis or the hierarchical structure in the schemes pro-
vides a convenient way to design error indicators in adaptive methods, as in [1, 14]. There 
are also approaches to develop adaptive sparse-grid combination technique which may be 
used. For example, a dimension-adaptive method was designed in [11] to obtain a general-
ized combination technique by employing adaptive index sets and iteratively adding new 
grids to the combination scheme. Spatially adaptive sparse-grid combination techniques 
were developed in [25, 26]. Detailed application of the adaptivity technique to the sparse-
grid FPFS-WENO methods will be the next work.

3  Numerical Examples

In this section, we perform numerical experiments on solving multidimensional Eiko-
nal equations to test the sparse-grid FPFS-WENO methods and show a large amount of 
CPU time savings by comparisons with corresponding single-grid simulations. Although 
theoretical error analysis on linear schemes for linear PDEs [13, 18] has been carried 
out to show that the sparse-grid combination leads to a canceling in leading-order errors 
of numerical solutions on semi-coarsened sparse grids, hence the accuracy order of the 
final solution of a sparse-grid computation is kept to be almost the same as that on the 

(16)�̂�NL ,NL =
∑

l1+l2=NL

PNL ,NL𝛷l1,l2 −
∑

l1+l2=NL−1

PNL ,NL𝛷l1,l2 .

(17)

�̂�NL ,NL ,NL =
∑

l1+l2+l3=NL

PNL ,NL ,NL𝛷l1,l2,l3 − 2
∑

l1+l2+l3=NL−1

PNL ,NL ,NL𝛷l1,l2,l3

+
∑

l1+l2+l3=NL−2

PNL ,NL ,NL𝛷l1,l2,l3 .
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corresponding single-grid simulation, such sparse-grid error analysis is very difficult to 
carry out for the WENO methods due to their high nonlinearity. Following our previous 
studies [21, 22, 45], numerical experiments are used to verify the third-order accuracy for 
the sparse-grid FPFS-WENO schemes in this note, rather than theoretical analysis. Spe-
cifically, mesh refinement studies are carried out to compute numerical convergence rates 
on successively refined grids, for problems with smooth solutions. In [45], two differ-
ent approaches, “refine root grid” and “refine levels”, are studied for mesh refinement in 
sparse-grid computations. For example, for 3D sparse grids with a 10 × 10 × 10 root grid 
and NL = 3 , the finest grid is 80 × 80 × 80 . The “refine root grid” approach is to refine 
the root grid, while the total number of semi-coarsened sparse-grid levels NL + 1 is kept 
unchanged. Therefore, if the root grid is refined once to be 20 × 20 × 20 , we obtain the fin-
est grid 160 × 160 × 160 . The “refine levels” approach refines the sparse-grid levels, while 
keeping the root grid fixed. Therefore, if NL = 3 is refined once to be NL = 4 with the fixed 
10 × 10 × 10 root grid, the finest grid 160 × 160 × 160 is also obtained. It is discovered 
in [45] that although with more levels, the “refine levels” approach saves more CPU time 
costs than the “refine root grid” approach, it has obvious accuracy order reductions for the 
nonlinear sparse-grid WENO schemes. The “refine root grid” approach can always achieve 
the desired accuracy order of the sparse-grid WENO scheme. In this technical note, we test 
both approaches in mesh refinement studies and draw the similar conclusion as that in [45]. 
NL = 3 is used for the “refine root grid” approach in accuracy order test examples and all 
other sparse-grid computations for problems with non-smooth solutions.

We first test the sparse-grid FPFS-WENO methods on problems with smooth solu-
tions to study its numerical accuracy orders. Then, the method is applied to problems with 
non-smooth solutions to show its nonlinear stability. For all numerical examples, we take 
� = 10−6 in the WENO scheme for both the iterations and the WENO interpolation in the 
prolongation operator. The convergence threshold value is taken as � = 10−11 for the third-
order WENO sweeping, and we take � = 10−4 in the non-fully-converged first-order sweep-
ing to provide initial values for the WENO sweeping. As in [41], we select the largest � 
value for each problem that provides the iteration convergence with the fastest speed on 
all semi-coarsened sparse grids in the sparse-grid combination, for the purpose of testing 
the computational efficiency of the algorithm. To identify the largest possible � value for 
a problem, we gradually increase/decrease the value of � from an initial value. In this sec-
tion, we use Nh to denote the number of computational cells in one spatial direction of the 
most refined grid in sparse grids or the corresponding single grid.

Example 1 (A linear problem with a smooth solution) Consider the following 2D linear 
problem:

where � = [0, 2π]2 and � = {(x, y) ∈ � | x = 0 or y = 0} . The inflow boundary conditions 
are applied on � ,

This problem has the exact solution

For this linear problem with a smooth solution, we first solve it by both the sparse-
grid FE FPFS scheme and the sparse-grid RK FPFS scheme using the “refine root grid” 

(18)�x + �y = 0, (x, y) ∈ ��� ,

(19)�(x, 0) = sin(x), �(0, y) = − sin(y).

(20)�(x, y) = sin(x − y).
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approach in the mesh refinement, with � = 1 and the third-order linear upwind approxima-
tions to the derivatives, to verify the error analysis results for linear schemes applied to 
linear PDEs in the literature, e.g., [13, 17, 18]. The third-order Lagrange interpolation for 
prolongation is employed in sparse-grid computations. We perform simulations on both 
sparse grids and the corresponding single grids, and compare their results. The L1 errors, 
L∞ errors, and their numerical accuracy orders and CPU times are reported in Table 1 and 
Table  2. For both of schemes, the third-order accuracy is obtained for both sparse-grid 
computations using the “refine root grid” approach and the corresponding single-grid ones, 
along with the mesh refinement. This is consistent with the error analysis results for linear 
schemes in solving linear PDEs in [13, 17, 18]. Comparing the numerical errors of sparse-
grid computations with the “refine root grid” approach and the corresponding single-grid 
ones, we observe that their L1 errors are comparable. The L∞ errors of sparse-grid compu-
tations are larger than the corresponding single-grid computations. In terms of computa-
tional efficiency, on refined meshes, we see around 60% ∼ 70% and 50% ∼ 80% CPU time 
saved for simulations on sparse grids vs single grids, for the FE FPFS scheme and the RK 
FPFS scheme, respectively, in this example. Also from Tables 1 and  2, we see that the 
numerical errors of the FE FPFS scheme and the RK FPFS scheme are similar. This is con-
sistent with the expectation, since although the FE FPFS scheme and the RK FPFS scheme 
are different iterative schemes, here they converge to the same numerical steady-state solu-
tion (up to round-off errors) which is the solution of the algebraic system resulting from 
the spatial discretization of the equation. However, in terms of computational efficiency, 
in general, the FE FPFS scheme takes fewer CPU time costs and is more efficient than the 
RK FPFS scheme, since for most cases, the FE FPFS scheme needs fewer iteration steps to 
converge than the RK FPFS scheme.

Then, we use the “refine levels” approach to refine the meshes of the sparse-grid com-
putations and observe the reduction of numerical accuracy orders. Since the numerical 
errors of the FE FPFS scheme and the RK FPFS scheme are similar, we report the results 

Table 1  Example 1, a linear problem with a smooth solution. The FE FPFS scheme with the third-order 
linear upwind approximations, comparison of numerical errors and CPU times for computations on sin-
gle grids and sparse grids. Third-order Lagrange interpolation for prolongation is employed in sparse-grid 
computations. N

r
 : number of cells in each spatial direction of a root grid. CPU: CPU time for a complete 

simulation. CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.27 × 10−5 – 4.91 × 10−5 – 1.92
320 1.59 × 10−6 3.00 6.14 × 10−6 3.00 10.60
640 1.98 × 10−7 3.00 7.68 × 10−7 3.00 72.63
1 280 2.47 × 10−8 3.00 9.60 × 10−8 3.00 535.69

Sparse grid

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 4.56 × 10−5 – 5.21 × 10−4 – 1.47
40 320 2.11 × 10−6 4.43 1.63 × 10−4 1.67 4.60
80 640 2.73 × 10−7 2.95 1.35 × 10−5 3.60 25.18
160 1 280 3.02 × 10−8 3.18 1.56 × 10−6 3.12 158.18



 Communications on Applied Mathematics and Computation

1 3

of the sparse-grid RK FPFS scheme in Table 2 ( NL refinement case). Obvious accuracy 
order reduction is observed for the “refine levels” approach, which is consistent with our 
previous studies. Here, we see that the L1 accuracy order is reduced to the first order and 
the L∞ errors do not converge. Also, with more levels to obtain a specific finest grid, the 
“refine levels” approach saves more CPU time costs than the “refine root grid” approach. 
However, due to the accuracy order reduction, the “refine levels” approach has much larger 
numerical errors than the “refine root grid” approach when the meshes are refined. Hence, 
in general, to reach a level of small numerical error, the “refine root grid” approach has 
smaller computational costs than the “refine levels” approach.

Example 2 (A nonlinear problem with a smooth solution) We solve the 2D Eikonal equa-
tion (1) with the right-hand side function

and the source point � = (0, 0) . The computational domain � = [−1, 1]2 . The exact solu-
tion of the problem is

f (x, y) =
π

2

√
sin2

(
π +

π

2
x
)
+ sin2

(
π +

π

2
y
)
,

Table 2  Example 1, a linear problem with a smooth solution. The RK FPFS scheme with the third-order 
linear upwind approximations, comparison of numerical errors, and CPU times for computations on single 
grids and sparse grids. Third-order Lagrange interpolation for prolongation is employed in sparse-grid com-
putations. Both the “refine root grid” approach ( N

r
 refinement) and the “refine levels” approach ( N

L
 refine-

ment) are used. N
r
 : number of cells in each spatial direction of a root grid. N

L
 : the finest level in a sparse-

grid computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.27 × 10−5 – 4.91 × 10−5 – 1.83
320 1.59 × 10−6 3.00 6.14 × 10−6 3.00 11.74
640 1.98 × 10−7 3.00 7.68 × 10−7 3.00 80.38
1 280 2.47 × 10−8 3.00 9.60 × 10−8 3.00 748.34

Sparse grid — N
r
 refinement

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 4.56 × 10−5 – 5.21 × 10−4 – 1.51
40 320 2.11 × 10−6 4.43 1.63 × 10−4 1.67 6.08
80 640 2.73 × 10−7 2.95 1.35 × 10−5 3.60 22.63
160 1 280 3.02 × 10−8 3.18 1.56 × 10−6 3.12 159.19

Sparse grid — N
L
 refinement

N
L

N
h L

1 error Order L
∞ error Order CPU/s

2 160 9.30 × 10−6 – 8.56 × 10−5 – 1.53
3 320 2.11 × 10−6 2.13 1.63 × 10−4 – 6.08
4 640 7.96 × 10−7 1.41 1.03 × 10−4 – 15.41
5 1 280 3.67 × 10−7 1.12 9.64 × 10−5 – 53.50
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At first, we use this example to verify that the proposed sparse-grid FPFS-WENO 
schemes with the “refine root grid” approach can achieve the desired accuracy order for a 
nonlinear problem with a smooth solution. The sparse-grid FE FPFS-WENO scheme and 
the sparse-grid RK FPFS-WENO scheme, with � = 1 , and the third-order WENO approxi-
mations to the derivatives are applied. Both the third-order Lagrange interpolation and the 
third-order WENO interpolation are used for prolongation in sparse-grid computations. We 
perform simulations on both sparse grids and the corresponding single grids, and compare 
their results. The L1 errors, L∞ errors, and their numerical accuracy orders and CPU times 
are reported in Table 3 and Table 4. It is observed that third-order accuracy is obtained 
for all cases, including sparse-grid computations with Lagrange or WENO prolongation 
and the corresponding single-grid ones, along with the mesh refinement. Comparing the 
numerical errors of sparse-grid computations and the corresponding single-grid ones, simi-
lar to Example 1, we observe that their L1 errors are comparable, while sparse-grid compu-
tations with WENO prolongation have slightly larger errors. The L∞ errors of sparse-grid 
computations are larger than the corresponding single-grid computations. In terms of com-
putational efficiency, on refined meshes, we see around 50% ∼ 70% and 65% ∼ 70% CPU 
time saved for simulations on sparse grids vs single grids, for the FE FPFS-WENO scheme 

�(x, y) = cos

(
π +

π

2
x
)
+ cos

(
π +

π

2
y
)
.

Table 3  Example 2, a nonlinear problem with a smooth solution. The FE FPFS-WENO scheme, compari-
son of numerical errors and CPU times for computations on single grids and sparse grids. Both third-order 
Lagrange interpolation and WENO interpolation for prolongation are employed in sparse-grid computa-
tions. N

r
 : number of cells in each spatial direction of a root grid. CPU: CPU time for a complete simulation. 

CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.05 × 10−6 – 1.78 × 10−6 – 4.25
320 1.11 × 10−7 3.24 1.71 × 10−7 3.38 22.77
640 1.37 × 10−8 3.02 2.10 × 10−8 3.30 149.41
1 280 1.71 × 10−9 3.00 2.61 × 10−9 3.00 1 083.07

Sparse grid, Lagrange interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 3.28 × 10−6 – 1.74 × 10−5 – 12.80
40 320 2.70 × 10−7 3.60 2.96 × 10−6 2.55 28.30
80 640 2.34 × 10−8 3.53 4.20 × 10−7 2.82 72.88
160 1 280 2.27 × 10−9 3.36 5.55 × 10−8 2.92 343.70

Sparse grid, WENO interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 8.60 × 10−6 – 4.72 × 10−3 – 9.22
40 320 7.65 × 10−7 3.49 1.21 × 10−3 1.96 25.85
80 640 6.00 × 10−8 3.67 2.72 × 10−4 2.16 76.59
160 1 280 4.17 × 10−9 3.84 2.00 × 10−5 3.76 393.19
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and the RK FPFS-WENO scheme, respectively, in this nonlinear example. We also notice 
that on relatively coarse mesh (e.g., here, Nh = 160, 320 for the FE FPFS-WENO scheme 
and Nh = 160 for the RK FPFS-WENO scheme), it takes more CPU time for sparse-grid 
computations than the corresponding single-grid ones, due to the quite different iteration 
history on different semi-coarsened sparse grids. Also, similar to Example 1, from Table 3 
and Table 4 we see that the numerical errors of the FE FPFS-WENO scheme and the RK 
FPFS-WENO scheme are similar, which is consistent with our expectation, since the FE 
FPFS-WENO scheme and the RK FPFS-WENO scheme converge to the same numerical 
steady-state solution (up to round-off errors) if the same spatial discretization for the equa-
tion is used. Again, in terms of computational efficiency, we observe that in general, the FE 
FPFS-WENO scheme is more efficient than the RK FPFS-WENO scheme, since for most 
cases, the FE FPFS-WENO scheme needs fewer iteration steps to converge than the RK 
FPFS-WENO scheme.

Second, we use the “refine levels” approach to refine the meshes of the sparse-grid com-
putations and verify the reduction of numerical accuracy orders for this example. Also as 
in the previous example, since the numerical errors of the FE FPFS-WENO scheme and the 
RK FPFS-WENO scheme are similar, we report the results of the sparse-grid RK FPFS-
WENO scheme in Table 5. Again, very obvious accuracy order reduction is observed for 
the “refine levels” approach, where the L1 accuracy order is reduced to the first order and 

Table 4  Example 2, a nonlinear problem with a smooth solution. The RK FPFS-WENO scheme, compari-
son of numerical errors and CPU times for computations on single grids and sparse grids. Both third-order 
Lagrange interpolation and WENO interpolation for prolongation are employed in sparse-grid computa-
tions. N

r
 : number of cells in each spatial direction of a root grid. CPU: CPU time for a complete simulation. 

CPU time unit: seconds

Single grid

N
h L

1 error Order L
∞ error Order CPU/s

160 1.05 × 10−6 – 1.78 × 10−6 – 5.55
320 1.11 × 10−7 3.24 1.71 × 10−7 3.38 30.59
640 1.37 × 10−8 3.02 2.10 × 10−8 3.30 297.53
1 280 1.71 × 10−9 3.00 2.61 × 10−9 3.00 1,401.50

Sparse grid, Lagrange interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 3.28 × 10−6 – 1.74 × 10−5 – 11.50
40 320 2.70 × 10−7 3.60 2.96 × 10−6 2.55 28.28
80 640 2.34 × 10−8 3.53 4.20 × 10−7 2.82 94.45
160 1 280 2.27 × 10−9 3.36 5.55 × 10−8 2.92 485.06

Sparse grid, WENO interpolation

N
r

N
h L

1 error Order L
∞ error Order CPU/s

20 160 8.60 × 10−6 – 4.72 × 10−3 – 11.74
40 320 7.65 × 10−7 3.49 1.21 × 10−3 1.96 29.57
80 640 6.00 × 10−8 3.67 2.72 × 10−4 2.16 87.74
160 1 280 4.17 × 10−9 3.84 2.00 × 10−5 3.76 494.72
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the L∞ errors do not converge. On the computational costs, with more levels to reach a 
refined mesh (e.g., Nh = 1 280 here), the “refine levels” approach needs fewer CPU time 
costs than the “refine root grid” approach. But similar to Example 1, due to the accuracy 
order reduction, the “refine levels” approach has much larger numerical errors than the 
“refine root grid” approach when the meshes are refined. Therefore, this nonlinear example 
also shows that in general to reach a level of small numerical error, the “refine root grid” 
approach has smaller computational costs than the “refine levels” approach.

In the following, we apply the sparse-grid schemes to examples with non-smooth solu-
tions to show their nonlinear stability and computational efficiency.

Example 3 (Two-sphere problem) We solve the 3D Eikonal equation (1) with f (x, y, z) = 1 
on the computational domain � = [−3, 3]3 . �  are two spheres of equal radius 0.5 centered 
at (−1, 0, 0) and (

√
1.5, 0, 0) . The exact solution of the problem is the distance function to 

�  : �(x, y, z) = min(d1, d2) , where

The solution of the problem is non-smooth. Singularities exist in the centers of each 
sphere and the plane that is equidistant from both spheres. The sparse-grid FE FPFS-
WENO scheme and the sparse-grid RK FPFS-WENO scheme, with � = 0.8 and the third-
order WENO approximations to the derivatives are applied. The third-order WENO inter-
polation is used for prolongation in sparse-grid computations. We perform simulations on 
both sparse grids with Nr = 80,NL = 3 , and the corresponding 640 × 640 × 640 single 
grid, and compare their results. Since the numerical solutions we obtain are similar to the 

d1 =
���
√
(x + 1)2 + y2 + z2 − 0.5

���,

d2 =
�����

�
(x −

√
1.5)2 + y2 + z2 − 0.5

�����
.

Table 5  Example 2, a nonlinear problem with a smooth solution. The RK FPFS-WENO scheme. Numeri-
cal errors and CPU times for computations on sparse grids by using the “refine levels” approach to refine 
the meshes and observe the accuracy order reduction. Both third-order Lagrange interpolation and WENO 
interpolation for prolongation are employed in sparse-grid computations. N

L
 : the finest level in a sparse-

grid computation. CPU: CPU time for a complete simulation. CPU time unit: seconds

N
L
 refinement, Lagrange interpolation

N
L

N
h L

1 error Order L
∞ error Order CPU/s

2 160 1.32 × 10−6 – 2.68 × 10−6 – 8.63
3 320 2.70 × 10−7 2.29 2.96 × 10−6 – 28.28
4 640 9.72 × 10−8 1.47 2.98 × 10−6 – 111.66
5 1 280 4.42 × 10−8 1.14 2.98 × 10−6 – 370.76

N
L
 refinement, WENO interpolation

N
L

N
h L

1 error Order L
∞ error Order CPU/s

2 160 2.35 × 10−6 – 1.42 × 10−3 – 8.87
3 320 7.65 × 10−7 1.62 1.21 × 10−3 – 29.57
4 640 3.37 × 10−7 1.18 1.11 × 10−3 – 112.29
5 1 280 1.61 × 10−7 1.07 1.15 × 10−3 – 378.36
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Fig. 3  Example 3, numerical solutions of the two-sphere problem by the RK FPFS-WENO scheme on 
sparse grids ( N

r
= 80 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the correspond-

ing 640 × 640 × 640 single grid, using the third-order WENO interpolation for prolongation in the sparse-
grid combination. a, c, e single-grid results; b, d, f sparse-grid results; a, b the contour plots for � = 0.5 ; c, 
d the contour plots for � = 1 ; e, f the contour plots for the whole surface
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FE FPFS-WENO scheme and the RK FPFS-WENO scheme, only the results of the RK 
FPFS-WENO scheme are shown in Fig. 3, to save space. We observe that the numerical 
solutions by the sparse-grid FPFS-WENO schemes and their corresponding single-grid 
simulations are comparable. The nonlinear stability and high-resolution properties of the 
FPFS-WENO schemes for resolving the non-smooth solution are preserved well in the 
sparse-grid simulations. We record the simulation CPU time costs to compare the com-
putational efficiency. For the FE FPFS-WENO scheme, it takes 26 819.15 s of CPU time 
to complete the simulation in the sparse-grid computation, while 282 038.88 s of CPU 
time are needed for finishing the simulation in the corresponding single-grid computa-
tion. About 90% CPU time is saved by performing the FE FPFS-WENO simulation on the 
sparse grids here. For the RK FPFS-WENO scheme, it takes 42 674.31 s of CPU time to 
complete the simulation in the sparse-grid computation, while 458 311.48 s of CPU time 
are needed for finishing the simulation in the corresponding single-grid computation. So 
about 91% CPU time is saved by performing the RK FPFS-WENO simulation on the sparse 
grids. Also it is shown that the FE FPFS-WENO scheme is more efficient than the RK 
FPFS-WENO scheme for both sparse-grid computation and single-grid computation in this 
example.

Example 4 (Shape-from-shading) We solve the Eikonal equation (1) with the right-hand-
side function

The computational domain � = [0, 1] × [0, 1] . �(x, y) = 0 is prescribed at the boundary 
�� of the unit square. The boundary region � = {(

1

4
,
1

4
), (

3

4
,
3

4
), (

1

4
,
3

4
), (

3

4
,
1

4
), (

1

2
,
1

2
)} ∪ �� , 

consisting of five isolated points and �� . The values at these five isolated points are speci-
fied as

The exact solution of the problem is

which is not smooth. Actually the solution of this problem is the shape function, which has 
the brightness I(x, y) = 1∕

√
1 + f (x, y)2 under vertical lighting. Details about this problem 

can be found in [31]. The sparse-grid FE FPFS-WENO scheme and the sparse-grid RK 
FPFS-WENO scheme, with � = 1 and the third-order WENO approximations to the deriva-
tives are applied. The third-order WENO interpolation is used for prolongation in sparse-
grid computations. Simulations are carried out on both sparse grids with Nr = 160,NL = 3 
and the corresponding 1 280 × 1 280 single grid, to compare their results. The numerical 
solutions we obtain are similar to the FE FPFS-WENO scheme and the RK FPFS-WENO 
scheme, so only the results of the RK FPFS-WENO scheme are reported in Fig.  4, to 
save space. It is observed that the numerical solutions by the sparse-grid FPFS-WENO 
schemes and their corresponding single-grid computations are comparable. As in the pre-
vious example, the nonlinear stability and high-resolution properties of the FPFS-WENO 

f (x, y) = 2π
√
[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2.

g
(
1

4
,
1

4

)
= g

(
3

4
,
3

4

)
= g

(
1

4
,
3

4

)
= g

(
3

4
,
1

4

)
= 1, g

(
1

2
,
1

2

)
= 2.

𝜙(x, y) =

⎧
⎪⎨⎪⎩

max(� sin(2πx) sin(2πy)�, 1 + cos(2πx) cos(2πy)),

if �x + y − 1� < 1

2
and �x − y� < 1

2
;

� sin(2πx) sin(2πy)�, otherwise,



 Communications on Applied Mathematics and Computation

1 3

schemes for resolving the non-smooth solution of this example are preserved well in the 
sparse-grid computations. Again, we record the simulation CPU time costs to compare 
their computational efficiency. It takes 468.13 s of CPU time to complete the simulation in 
the FE FPFS-WENO sparse-grid computation, while 1 228.65 s of CPU time are needed 
for finishing the simulation in the corresponding single-grid computation. About 62% CPU 
time is saved by carrying out the FE FPFS-WENO simulation on the sparse grids in this 
example. As well, it takes 670.86 s of CPU time to complete the simulation in the RK 
FPFS-WENO sparse-grid computation, while 1 510.27 s of CPU time are needed for fin-
ishing the simulation in the corresponding single-grid computation. About 56% CPU time 
is saved by carrying out the RK FPFS-WENO simulation on the sparse grids here. We also 
see that the FE FPFS-WENO scheme is more efficient than the RK FPFS-WENO scheme 
for both sparse-grid computation and single-grid computation in this example.

Fig. 4  Example 4, numerical solutions of the shape-from-shading problem by the RK FPFS-WENO scheme 
on sparse grids ( N

r
= 160 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the cor-

responding 1 280 × 1 280 single grid, using the third-order WENO interpolation for prolongation in the 
sparse-grid combination. a, b single-grid results; c, d sparse-grid results; a, c 3D view of the solutions; b, d 
the contour plots, 30 equally spaced contour lines from � = 0 to � = 2
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Example 5 (Voronoi diagram problem) We consider a Voronoi diagram problem as in [2, 
27]. Given a set of points (called generators) in a domain, the Voronoi diagram divides the 
domain into regions in which all points inside the region are closest to the generator of that 
region than any other generators. This kind of problem has applications in many fields, 
including engineering, natural sciences, geometry, humanities, etc., for example, dividing 
a map into response regions for local fire stations. An essential part of solving a Voronoi 
diagram problem is to compute the minimum travel time to the closest generator by solving 
the Eikonal equation (1). Here, we solve both a 2D case and a 3D case.

Case 1 (2D). We solve the Eikonal equation (1) with f (x, y) = 1 . The computational 
domain � = [0, 1]2 . �(x, y) = 0 is prescribed at the points (the generators)

The exact solution to the problem is the distance function to �  , and it is not smooth. The 
sparse-grid FE FPFS-WENO scheme and the sparse-grid RK FPFS-WENO scheme, with 
� = 1 and the third-order WENO approximations to the derivatives are applied. The third-
order WENO interpolation is used for prolongation in sparse-grid computations. Simula-
tions are performed on both sparse grids with Nr = 160,NL = 3 , and the corresponding 
1 280 × 1 280 single grid, to compare their results. The results of the RK FPFS-WENO 
scheme are reported in Fig. 5 (the numerical solution of the FE FPFS-WENO scheme is 
similar, so we omit showing its pictures which are basically the same as Fig. 5). Again, 
we observe that the numerical solutions by the sparse-grid FPFS-WENO schemes and 
their corresponding single-grid computations are comparable, and the nonlinear stability 
and high-resolution properties of the FPFS-WENO schemes for resolving the non-smooth 
solution in this example are preserved well in the sparse-grid simulations. About the com-
putational efficiency, by applying the FE FPFS-WENO scheme, it takes 680.57 s of CPU 
time to complete the simulation in the sparse-grid computation, while 1 364.39 s of CPU 
time are needed for finishing the simulation in the corresponding single-grid computation. 
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Fig. 5  Example 5, Case 1, numerical solutions of the 2D Voronoi diagram problem by the RK FPFS-
WENO scheme on sparse grids ( N

r
= 160 for root grid, finest level N

L
= 3 in the sparse-grid computa-

tion) and the corresponding 1 280 × 1 280 single grid, using the third-order WENO interpolation for pro-
longation in the sparse-grid combination. The contour plots, 30 equally spaced contour lines from � = 0 to 
� = 0.558 9 . Red points are the generators. a single-grid result; b sparse-grid result
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About 50% CPU time is saved by performing the FE FPFS-WENO simulation on the sparse 
grids in this problem. For the RK FPFS-WENO scheme, it takes 634.42 s of CPU time to 
complete the simulation in the sparse-grid computation, while 1 591.41 s of CPU time are 
needed for finishing the simulation in the corresponding single-grid computation. About 
60% CPU time is saved by performing the RK FPFS-WENO simulation on the sparse grids 
here. In this example, it is observed that the FE FPFS-WENO scheme is more efficient than 
the RK FPFS-WENO scheme for single-grid computation, but for sparse-grid computation, 
the RK FPFS-WENO scheme requires slightly less CPU time than the FE FPFS-WENO 
scheme, because the FE FPFS-WENO scheme needs more iterations than the RK FPFS-
WENO scheme to converge on some semi-coarsened sparse grids.

Case 2 (3D). Now, we solve the 3D case, the Eikonal equation (1) with f (x, y, z) = 1 . The 
computational domain � = [0, 1]3 . �(x, y, z) = 0 is specified at the following generators:

The exact solution of the problem is the distance function to �  in this 3D domain, and it 
is not a smooth function. The sparse-grid FE FPFS-WENO scheme and the sparse-grid 
RK FPFS-WENO scheme, with � = 0.8 , and the third-order WENO approximations to 
the derivatives are applied in solving this problem. The third order WENO interpolation 
is used for prolongation in sparse-grid computations. Simulations are performed on both 
sparse grids with Nr = 80,NL = 3 , and the corresponding 640 × 640 × 640 single grid, 
to compare their results. The simulation results of the RK FPFS-WENO scheme are pre-
sented in Fig. 6 (the numerical solution of the FE FPFS-WENO scheme is similar, so we 
omit to show its pictures which are basically the same as Fig. 6). These simulation results 
show that the numerical solutions by the sparse-grid FPFS-WENO schemes and their cor-
responding single-grid computations are comparable, and the nonlinear stability and high-
resolution properties of the FPFS-WENO schemes for resolving the non-smooth solution 
in this 3D example are preserved well in the sparse-grid simulations. In terms of com-
putational efficiency, by applying the FE FPFS-WENO scheme, it takes 45 090.73 s of 
CPU time to complete the simulation in the sparse-grid computation, while 417 126.96 s 
of CPU time are needed for finishing the simulation in the corresponding single-grid com-
putation. About 89% CPU time is saved by performing the FE FPFS-WENO simulation on 
the sparse grids in this 3D problem. For the RK FPFS-WENO scheme, it takes 65 425.44 s 
of CPU time to complete the simulation in the sparse-grid computation, while 672 078.25 s 
of CPU time are needed for finishing the simulation in the corresponding single-grid com-
putation. About 90% CPU time is saved by performing the RK FPFS-WENO simulation 
on the sparse grids here. For this 3D example, the FE FPFS-WENO scheme is more effi-
cient than the RK FPFS-WENO scheme for both sparse-grid computation and single-grid 
computation.

Example 6 (Boat-sail problem) In this example, we consider an extension of Voronoi dia-
gram problems as in Example 5, boat-sail problems (see, e.g., [5, 23, 24]), which applies a 
flow field to a Voronoi diagram problem. An application of this kind of problems would be 
a boat trying to reach the nearest harbor or island on a moving river.
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Fig. 6  Example 5, Case 2, numerical solutions of the 3D Voronoi diagram problem by the RK FPFS-
WENO scheme on sparse grids ( N

r
= 80 for root grid, finest level N

L
= 3 in the sparse-grid computation) 

and the corresponding 640 × 640 × 640 single grid, using the third-order WENO interpolation for prolonga-
tion in the sparse-grid combination. a, c, e single-grid results; b, d, f sparse-grid results; a, b the contour 
plots for � = 0.125 ; c, d the contour plots for � = 0.25 ; e, f the contour plots for the whole surface
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Case 1 (2D). Suppose that the river flows with some velocity � = (f1, f2)
T , and the boat 

travels at a maximum speed F, such that F > |� | . The minimum travel time �(x, y) from a 
point (x, y) to the nearest harbor or island can be found by solving the following static Hamil-
ton-Jacobi equation:

where �  is the locations of the harbors and islands. Here, we take F = 1 and � = (0.4, 0)T . 
The computational domain is � = [0, 1]2 and harbor locations are

The exact solution of the problem is also not smooth. The sparse-grid FE FPFS-WENO 
scheme and the sparse-grid RK FPFS-WENO scheme, with � = 1 and the third-order 
WENO approximations to the derivatives are applied. The third-order WENO interpolation 
is used for prolongation in sparse-grid computations. Simulations are performed on both 
sparse grids with Nr = 160,NL = 3 , and the corresponding 1 280 × 1 280 single grid, to 
compare their numerical results. The obtained results of the RK FPFS-WENO scheme are 
reported in Fig. 7 (the numerical solution of the FE FPFS-WENO scheme is similar, so we 
omit to show its pictures which are basically the same as Fig. 7). As the previous examples, 
we observe that the numerical solutions by the sparse-grid FPFS-WENO schemes and their 
corresponding single-grid computations are comparable, and the nonlinear stability and 
high resolution properties of the FPFS-WENO schemes for resolving the non-smooth solu-
tion in this example are preserved well in the sparse-grid simulations. About computational 
efficiency, by applying the FE FPFS-WENO scheme, it takes 616.26 s of CPU time to 
complete the simulation in the sparse-grid computation, while 1 594.57 s of CPU time are 
needed for finishing the simulation in the corresponding single-grid computation. About 

(21)F|∇�| + � ⋅ ∇� = 1, � ∈ ��� ,

(22)�(�) = 0, � ∈ � ,
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Fig. 7  Example 6, Case 1, numerical solutions of the 2D boat-sail problem by the RK FPFS-WENO 
scheme on sparse grids ( N

r
= 160 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the 

corresponding 1 280 × 1 280 single grid, using the third-order WENO interpolation for prolongation in the 
sparse-grid combination. The contour plots, 30 equally spaced contour lines from � = 0 to � = 0.446 1 . Red 
points are the harbor locations. a single-grid result; b sparse-grid result
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61% CPU time is saved by performing the FE FPFS-WENO simulation on the sparse grids 
in this 2D example. For the RK FPFS-WENO scheme, it takes 892.71 s of CPU time to 
complete the simulation in the sparse-grid computation, while 2 155.63 s of CPU time are 
needed for finishing the simulation in the corresponding single-grid computation. About 
59% CPU time is saved by performing the RK FPFS-WENO simulation on the sparse grids 
here. In this example, it is observed again that the FE FPFS-WENO scheme is more effi-
cient than the RK FPFS-WENO scheme for both sparse-grid computation and single-grid 
computation.

Case 2 (3D). We consider the 3D case of the problem. The river flows with velocity 
� = (f1, f2, f3)

T , and the boat travels at a maximum speed F, such that F > |� | . The mini-
mum travel time �(x, y, z) from a point (x, y, z) to the nearest harbor or island can be found 
by solving the 3D version of the static Hamilton-Jacobi equation (21)–(22). We take F = 1 
and � = (0.4, 0.4, 0)T . The computational domain is � = [0, 1]3 and harbor locations are

Again, the exact solution of the 3D problem is not smooth. The sparse-grid FE FPFS-
WENO scheme and the sparse-grid RK FPFS-WENO scheme, with � = 0.8 and the third-
order WENO approximations to the derivatives are applied in solving this 3D problem. 
The third-order WENO interpolation is used for prolongation in sparse-grid computations. 
Simulations are carried out on both sparse grids with Nr = 80,NL = 3 , and the correspond-
ing 640 × 640 × 640 single grid, for comparing the numerical results. The simulation 
results of the RK FPFS-WENO scheme are presented in Fig. 8 (the numerical solution of 
the FE FPFS-WENO scheme is similar, so we omit to show its pictures which are basically 
the same as Fig. 8). As the 2D case, the simulation results show that the numerical solu-
tions by the sparse-grid FPFS-WENO schemes and their corresponding single-grid com-
putations are comparable, and the nonlinear stability and high resolution properties of the 
FPFS-WENO schemes for resolving the non-smooth solution in this 3D boat-sail problem 
are preserved well in the sparse-grid simulations. In terms of computational efficiency, by 
applying the FE FPFS-WENO scheme, it takes 101 901.28 s of CPU time to complete the 
simulation in the sparse-grid computation, while 936  884.61 s of CPU time are needed 
for finishing the simulation in the corresponding single-grid computation. About 89% CPU 
time is saved by performing the FE FPFS-WENO simulation on the sparse grids in this 
3D boat-sail problem. For the RK FPFS-WENO scheme, it takes 179  925.93 s of CPU 
time to complete the simulation in the sparse-grid computation, while 1 480 989.58 s of 
CPU time are needed for finishing the simulation in the corresponding single-grid compu-
tation. About 88% CPU time is saved by performing the RK FPFS-WENO simulation on 
the sparse grids here. In this 3D boat-sail problem, we also see that the FE FPFS-WENO 
scheme is more efficient than the RK FPFS-WENO scheme for both sparse-grid computa-
tion and single-grid computation, which is consistent with the observations for most of the 
other examples in this paper.
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Fig. 8  Example 6, Case 2, numerical solutions of the 3D boat-sail problem by the RK FPFS-WENO 
scheme on sparse grids ( N

r
= 80 for root grid, finest level N

L
= 3 in the sparse-grid computation) and the 

corresponding 640 × 640 × 640 single grid, using the third-order WENO interpolation for prolongation in 
the sparse-grid combination. a, c, e single-grid results; b, d, f: sparse-grid results; a, b the contour plots for 
� = 0.125 ; c, d the contour plots for � = 0.25 ; e, f the contour plots for the whole surface
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4  Conclusions

In this technical note, we apply the sparse-grid combination technique to the third-order 
fixed-point fast sweeping WENO schemes for efficiently computing solutions of multidi-
mensional Eikonal equations. Due to their sophisticated nonlinearity, more computational 
costs than many other schemes are needed in high-order WENO simulations, especially for 
multidimensional problems. Here, we follow our previous work and implement the FPFS-
WENO schemes on sparse grids. A third-order WENO interpolation is applied in the pro-
longation step of the sparse-grid combination technique, for robust computations of non-
smooth solutions of Eikonal equations in sparse-grid simulations. Numerical experiments 
on 2D and 3D problems are performed for the sparse-grid FPFS-WENO methods to show 
that a more efficient algorithm than the regular FPFS-WENO methods on single grids to 
solve the multidimensional Eikonal equations is achieved, with about 50% ∼ 90% CPU 
time costs being saved on refined meshes, by comparing with the corresponding single-
grid simulations in examples here.

In this technical note, we focus on the efficient implementation of the FPFS-WENO 
schemes on sparse grids and their numerical experiments. We would like to point out 
that there are still quite a few open problems to be investigated further for the sparse-grid 
methods here. For example, it is still an open problem on how to perform theoretical error 
analysis for such kind of nonlinear sparse-grid schemes, although that has been done for 
the linear schemes in solving linear time-dependent PDEs in the literature. In the numeri-
cal experiments, we find that the L∞ errors of sparse-grid computations are larger than 
the corresponding single-grid computations. How to improve the accuracy of these sparse-
grid schemes is an interesting and important problem. Furthermore, the sparse-grid FPFS-
WENO methods studied here should be able to be extended to higher order accuracy and to 
solve more complicated static H-J equations. All of these important open problems will be 
our future work.
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