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Abstract

We consider a free boundary problem for a system of partial differential equa-
tions, which arises in a model of tumor growth with a necrotic core. For any
positive numbers ρ < R, there exists a radially symmetric stationary solution
with tumor boundary r = R and necrotic core boundary r = ρ. The system
depends on a positive parameter µ, which describes the tumor aggressiveness.
There also exists a sequence of values µ2 < µ3 < · · · for which branches of
symmetry-breaking stationary solutions bifurcate from the radially symmetric
solution branch.

Keywords: Bifurcation, free boundary problem, tumor model, necrotic core

Introduction

Tumor growth models are challenging both theoretically and numerically.
They are free boundary problems where the changing shape of the tumor is of
prime importance. Spherical solutions are often straightforward to compute,
but values of the controlling parameter, called the tumor-aggressiveness fac-
tor, where bifurcations occur are nontrivial to compute. Moreover, analytically
finding nonspherical solutions on a branch far from a spherical solution is in-
tractable. Another difficult and important question is to determine the linear
stability of the solution branches.
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In this article, we analyze a highly nontrivial tumor growth model. The
paper is organized into five sections. In §1, we discuss tumor models and ex-
plicitly set up the system of differential equations controlling tumor growth for
the necrotic core model. In §2, we derive an analytical formula for the radially
symmetric stationary solutions. In §3, we establish the existence of bifurca-
tion branches from radially symmetric stationary, explicitly provide the formula
describing where the bifurcation branches occur, and study the bifurcation di-
agram. In §4, we derive the linearized system and determine linear stability in
a small neighborhood of the bifurcation at µ2.

1. The model

Mathematical models of solid tumor growth, which consider the tumor tissue
as a density of proliferating cells, have been developed and studied in many
papers; see [1; 2; 3; 4; 5; 7; 9; 10; 11; 13; 14; 16; 17; 18; 19; 20] and the
references provided therein. The case of radially symmetric tumors have been
discussed extensively.

Tumors grown in vitro have a nearly spherical shape, but tumors grown in
vivo may develop different kinds of protrusions. It is therefore interesting to
explore the existence of non-spherical solutions of tumor models.

If dead cells are not removed in an efficient manner from the tumor, they
accumulate inside to form a necrotic core [7] and [9]. A necrotic tumor growth
model consists of a core of necrotic cells and shell adjacent to this necrotic core
of proliferating cells. In particular, let Ω(t) denote the tumor domain at time t,
and D(t) ⊂ Ω(t) be the necrotic core within the tumor domain.

Let p be the pressure within the tumor resulting from proliferation of the tu-
mor cells. The density of the cells, c, depends on the concentration of nutrients,
σ, and, assuming that this dependence is linear, we simply identify c with σ.
We also assume the proliferation rate, S, depends linearly upon σ in the living
tumor region. That is,

S = µ(σ − σ̃) in Ω(t) \D(t),

where σ̃ > 0 is a threshold concentration and µ is a positive parameter measuring
the aggressiveness of the tumor. This equation represents the balance of the
growth of the tumor by cell division and the contraction of the tumor by necrosis.
The linear approximation µ(σ − σ̃) used here is the result of first order Taylor
expansion for the fully nonlinear model.

We assume that there is no proliferation in the necrotic core, i.e, S =
0 in D(t). Combining these two equations, we have

S = µ(σ − σ̃)χ{Ω(t)\D(t)}(x) in Ω(t), (1)

where χ{Ω(t)\D(t)}(x) is the indicator function of Ω(t) \D(t).
If we assume that necrotic cells do not consume nutrients and the consump-

tion rate of nutrients by the living tumor cells is proportional to the concentra-
tion of the nutrients, then after normalization, σ satisfies

σt −∆σ = −σχ{Ω(t)\D(t)}(x) in Ω(t) and σ = 1 on ∂Ω(t). (2)
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Additionally, if we assume that the density of cells in the necrotic core remains
constant, we have σ = σ in D(t).

Most tumor models assume that the tissue has the structure of a porous
medium so that Darcy’s law holds. In particular, ~v = −∇p where ~v is the
velocity of the cells and p is the pressure. By conservation of mass, div ~v = S =
µ(σ−σ̃)χ{Ω(t)\D(t)}(x) and thus ∆p = −µ(σ−σ̃)χ{Ω(t)\D(t)}(x) in Ω(t) As in
[6], the cell-to-cell adhesiveness condition at the tumor boundary is represented
by p = κ on ∂Ω(t). To simplify notation, let χ(x, t) = χ{Ω(t)\D(t)}(x). The
necrotic core system is





σt −∆σ = −σχ(x, t) and −∆p = µ(σ − σ̃)χ(x, t) in Ω(t),

σ = σ in D(t),
σ = 1; p = κ; and ∂p

∂n = −Vn on ∂Ω(t),
(3)

where n denotes the exterior normal vector. Additionally, it is reasonable to
assume σ < σ̃ < 1.

An important question is the existence and stability of steady-state solutions.
Biologically, a stable steady-state solution means that the tumor can remain
inside a patient for a long time without causing much trouble. An unstable
tumor is a tumor that is very likely to spread beyond the region it occupies.
The steady-state necrotic core tumor model is

∆σ = σχ(x) in Ω, (4)
−∆p = µ(σ − σ̃)χ(x) in Ω, (5)

σ = σ in D, (6)
σ = 1 on ∂Ω, (7)
p = κ on ∂Ω, (8)

∂p

∂n
= 0 on ∂Ω. (9)

2. Radially symmetric stationary solutions

We recall some basic formulas for the modified bessel functions Kn(x) and
In(x). These functions form a fundamental solution set of x2y′′ + xy′ − (x2 +
n2)y = 0. In particular,

In+1(x) = In−1(x)− 2n

x
In(x), Kn+1 = Kn−1(x) +

2n

x
Kn(x), n ≥ 1, (1)

I ′n(x) =
1

2
[In−1(x) + In+1(x)], K′

n(x) = −1

2
[Kn−1(x) + Kn+1(x)], n ≥ 1, (2)

I ′n(x) = In−1(x)− n

x
In(x), K′

n(x) = −Kn−1(x)− n

x
Kn(x), n ≥ 1, (3)

I ′n(x) =
n

x
In(x) + In+1(x), K′

n(x) =
n

x
Kn(x)−Kn+1(x), n ≥ 0. (4)

Additionally,
I ′n(x) > 0 and K ′

n(x) < 0. (5)

3



In this paper, we will only consider the case of two space dimensions. The 3-
dimensional case can be considered in a similar manner, except that the formula
are more complicated.

Solving (4) with the boundary conditions (6) and (7), we obtain

σs(r) =
(−σK0(R) + K0(ρ))I0(r)− (I0(ρ)− σI0(R))K0(r)

−I0(ρ)K0(R) + I0(R)K0(ρ)
ρ < r < R;

(6)
Solving (5), we obtain

ps(r) =
1
4
µσ̃r2 + c1(R, ρ) ln r + c2(R, ρ)− µσs(r) ρ < r < R; (7)

where c1(R, ρ) and c2(R, ρ) are constants to be determined. The boundary
conditions (8) and (9) imply that

ps(R) =
1
R

,
∂ps

∂r
(R) = 0, (8)

and (5) implies that ps is a constant with the necrotic core. Since the first order
derivative of ps and σs are continuous across the boundary of necrotic core,

∂ps

∂r
(ρ) = 0 and

∂σs

∂r
(ρ) = 0. (9)

Substituting (7) into (8) and (9), we have

1
4
µσ̃R2 + c1(R, ρ) ln R + c2(R, ρ)− µ =

1
R

, (10)

1
2
µσ̃R + c1(R, ρ)

1
R
− µ

∂σs

∂r
(R) = 0, (11)

1
2
µσ̃ρ + c1(R, ρ)

1
ρ
− µ

∂σs

∂r
(ρ) = 0. (12)

From (12) and (9), c1(R, ρ) = − 1
2µσ̃ρ2.

Substituting c1 into (10), we obtain c2(R, ρ) = 1
R +µ− 1

4µσ̃R2 + 1
2µσ̃ρ2 lnR.

Thus

ps(r) =
1
4
µσ̃(r2 −R2) +

1
R

+
1
2
µσ̃ρ2 ln

R

r
− µ

(
σs(r)− 1

)
, ρ < r < R; (13)

It remains to verify that (9) and (11) hold. We shall use (9) and (11) to de-
termine ρ,R, σ̃. By (4), I ′0(r) = I1(r) and K ′

0(r) = −K1(r). Using (6), the
equation (9) is equivalent to

(−σK0(R) + K0(ρ))I1(ρ) + (I0(ρ)− σI0(R))K1(ρ) = 0, (14)

and (11) can be rewritten as

1
2
σ̃R− 1

2
σ̃

ρ2

R
− ∂σs

∂r
(R) = 0, (15)
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where, by (6),

∂σs

∂r
(R) =

(−σK0(R) + K0(ρ))I1(R) + (I0(ρ)− σI0(R))K1(R)
−I0(ρ)K0(R) + I0(R)K0(ρ)

. (16)

For this system, we need to compute ρ and R for given µ, σ and σ̃. For
technical reasons, we will instead solve for σ̃ for a given ρ. It will produce
radially symmetric solution for any given ρ.

Lemma 2.1. For any given µ > 0 and ρ > 0, there exists a unique σ̃ such that
a stationary solution (σs(r), ps(r), ρ, R) is given by (6) and (13) where

(a) R is uniquely determined by (14), R > ρ, and
(b) σ̃ is uniquely determined over the interval (σ, 1) by (15).

Proof. To establish (a), we denote

f(s) = (−σK0(s) + K0(ρ))I1(ρ) + (I0(ρ)− σI0(s))K1(ρ),

then, recalling that σ < 1,

f(ρ) = (1− σ)(K0(ρ)I1(ρ) + I0(ρ)K1(ρ)) > 0

and f(s) → −∞ as s → ∞. Therefore, f(s) must have at least one root, say
s = R, in the interval (ρ,∞).

To show that f(s) is monotone, consider g(s) = K1(s)
I1(s)

. We know

dg

ds
(s) = −I1(s)K0(s) + K1(s)I0(s)

I1(s)2
< 0.

Therefore, g is decreasing function. In particular, if s > ρ, then g(s) < g(ρ).
This implies K1(s)I1(ρ) < K1(ρ)I1(s) yielding

df

ds
(s) = −σ(K1(s)I1(ρ)− I1(s)K1(ρ)) > 0.

This implies that R is the unique solution to (14) on (ρ,∞).
To establish (b), we note that it is easy to solve for σ̃ using (15). Thus, we

only need to establish that σ < σ̃ < 1.
In fact, from equations (14) and (15), we can compute σ and σ̃:

σ =
K0(ρ)I1(ρ) + I0(ρ)K1(ρ)
K0(R)I1(ρ) + I0(R)K1(ρ)

, (17)

σ̃ =
2R∂σs

∂r (R)
R2 − ρ2

. (18)

We next establish that σ̃ > σ. After simplification using (16), recalling also
that the denominator in (16) satisfies (by (5))

−I0(ρ)K0(R) + I0(R)K0(ρ) > K0(R)
(− I0(ρ) + I0(R)

)
> 0,
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we find that this inequality is equivalent to

2R(K0(ρ)I1(R) + I0(ρ)K1(R))(K0(R)I1(ρ) + I0(R)K1(ρ))
> {(R2 − ρ2)[I0(R)K0(ρ)− I0(ρ)K0(R)] + 2R[K0(R)I1(R) + I0(R)K1(R)]} ·

(K0(ρ)I1(ρ) + I0(ρ)K1(ρ)).

We let f1(s) be the function consisting of the difference of the left-hand side
and the right-hand side of the above inequality after replacing ρ by s, i.e., after
simplification,

f1(s) = I0(R)I0(s)I1(s)
(

K0(s)
I0(s)

− K0(R)
I0(R)

)
·

{
2RI1(R)

(
K1(s)
I1(s)

− K1(R)
I1(R)

)
− (R2 − s2)I0(s)

(
K0(s)
I0(s)

+
K1(s)
I1(s)

)}
. (19)

We want to establish f1(s) > 0 for s < R. Clearly, for s < R, we know

I0(R)I0(s)I1(s)
(

K0(s)
I0(s)

− K0(R)
I0(R)

)
> 0. Thus, it suffices to verify that, for s < R,

h1(s) := 2RI1(R)
(

K1(s)
I1(s)

− K1(R)
I1(R)

)
− (R2− s2)I0(s)

(
K0(s)
I0(s)

+
K1(s)
I1(s)

)
> 0.

(20)
It is clear that h1(R) = 0 and

h′1(s) =

(
2
(
sI1(s)−RI1(R)

)
+ (R2 − s2)I0(s)

)(
I1(s)K0(s) + I0(s)K1(s)

)

I1(s)2
.

Let i1(s) = 2
(
sI1(s)−RI1(R)

)
+ (R2 − s2)I0(s), then

i′1(s) = sI0(s) + (R2 − s2)I1(s) > 0 and i1(R) = 0.

Thus, i1(s) > 0 for any s ∈ (0, R). Utilizing (20), we find h′1(s) < 0 for s < R.
Combining this with h1(R) = 0, we conclude that h1(s) > 0 for s < R.

Finally, we will prove that σ̃ < 1, which is equivalent to

2R(K0(ρ)I1(R) + I0(ρ)K1(R))(K0(R)I1(ρ) + I0(R)K1(ρ))

< (R2 − ρ2)
(
I0(R)K0(ρ)− I0(ρ)K0(R)

)(
K0(R)I1(ρ) + I0(R)K1(ρ)

)

+2R
(
K0(R)I1(R) + I0(R)K1(R)

)(
K0(ρ)I1(ρ) + I0(ρ)K1(ρ)

)
. (21)

Similarly, we let f2(s) be the function consisting of the difference of the
left-hand side and the right-hand side of (22) after replacing ρ by s. After
simplification, we find

f2(s) = I0(R)I0(s)I1(s)
(

K0(s)
I0(s)

− K0(R)
I0(R)

)

{
2RI1(R)

(
K1(s)
I1(s)

− K1(R)
I1(R)

)
− (R2 − s2)I0(R)

(
K0(R)
I0(R)

+
K1(s)
I1(s)

)}
.
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We want to show that f2(s) < 0, for s < R. It suffices to establish

h2(s) := 2RI1(R)
(

K1(s)
I1(s)

−K1(R)
I1(R)

)
−(R2−s2)I0(R)

(
K0(R)
I0(R)

+
K1(s)
I1(s)

)
< 0.

(22)
It is clear that h2(R) = 0 and

h′2(s) =

(
2
(
sI1(s)m(s)−RI1(R)

)
+ (R2 − s2)I0(R)

)(
I1(s)K0(s) + I0(s)K1(s)

)

I1(s)2
,

where m(s) =
I1(s)K0(R) + K1(s)I0(R)
I1(s)K0(s) + K1(s)I0(s)

. We will show m(s) > 1 for s < R, so

that

h′2(s) >
i2(s)

(
I1(s)K0(s) + I0(s)K1(s)

)

I1(s)2
, (23)

where i2(s) = 2
(
sI1(s)−RI1(R)

)
+ (R2 − s2)I0(R). Clearly, i′2(s) = 2sI0(s)−

2sI0(R) < 0 and i2(R) = 0. Thus, i2(s) > 0 for s < R.. Since h2(R) = 0, we
have established (22).

To finish the proof, we need to show m(s) > 1 for s < R. Clearly,

d

dR

((
I1(s)K0(R) + K1(s)I0(R)

)− (
I1(s)K0(s) + K1(s)I0(s)

))

= I1(s)I1(R)

(
− K1(R)

I1(R)
+

K1(s)
I1(s)

)
> 0,

Since
(
I1(s)K0(R)+K1(s)I0(R)

)|R=s−
(
I1(s)K0(s)+K1(s)I0(s)

)|R=s = 0, for
R > s, we know

((
I1(s)K0(R) + K1(s)I0(R)

)− (
I1(s)K0(s) + K1(s)I0(s)

))
> 0.

Hence m(s) > 1 for s < R.

3. Bifurcation from radially symmetric stationary solution

We now turn our attention to compute nonradially symmetric stationary
solutions of the form

σ = σs + εσ1 + O(ε2), (1)
p = ps + εp1 + O(ε2), (2)

∂Ωε : r = R + εS(θ) + O(ε2), (3)
∂Dε : r = ρ + ερ1S(θ) + O(ε2), (4)

where σ1, p1, and ρ1 are constants to be determined.
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3.1. Formal expansion
In order to compute the Frechét derivative in the direction S(θ), we first

formally compute σ1, ρ1, and p1.

Computation of σ1: Clearly,

εσ1|∂BR
= εσ1|∂Ωε + O(ε2) = 1− σs(R + εS) + O(ε2) = −εσ′s(R)S(θ) + O(ε2).

Similarly εσ1|∂Dρ
= −εσ′s(ρ)ρ1S(θ)+O(ε2) = O(ε2). Thus, after dropping higher

terms, 


−∆σ1 + σ1 = 0 in BR \Dρ,

σ1 = −σ′s(R)S on ∂BR,
σ1 = 0 on ∂Dρ.

It follows that, for S(θ) = cos(lθ), l = 2, 3, 4, 5, ..., by separation of variables

σ1(r) = −σ′s(R) cos(lθ)Ql(r; ρ,R), (5)

where

Ql(r; ρ,R) =
Kl(ρ)Il(r)− Il(ρ)Kl(r)
Kl(ρ)Il(R)−Kl(R)Il(ρ)

(6)

satisfies

r2Q′′l + rQ′
l − (r2 + l2)Ql = 0, Ql(ρ; ρ,R) = 0, Ql(R; ρ,R) = 1, (7)

where Q′l and Q′′l are the first and second derivatives of Ql with respect to r,
respectively.

Computation of ρ1: To compute ρ1, we note that

∂(σs + εσ1)
∂n

∣∣∣
∂Dε

= O(ε2), (8)

that is, ε
(

∂2σs(ρ)
∂r2 ρ1S+ ∂σ1

∂r (ρ)
)

= O(ε2). After dropping higher terms, we obtain

∂σ1

∂r
(ρ) = −∂2σs(ρ)

∂r2
ρ1S(θ), (9)

which implies that

ρ1 = ρ1(l; ρ,R) =
σ′s(R)
σ′′s (ρ)

·Q′l(ρ; ρ,R) =
σ′s(R)

σ0
·Q′l(ρ; ρ,R). (10)

Computation of p1: Similarly, for p1 (see [15])

κ =
1
R
− ε

R2
(S + S′′) + O(ε2). (11)

After dropping the higher order terms, we have
{ −∆p1 = µσ1 in BR \Dρ,
−∆p1 = 0 in Dρ.
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As for boundary conditions, when S(θ) = cos(lθ),

− 1
R2

(S + S′′) =
(

1
R2

+
l2

R2

)
cos(lθ), (12)

so that, after dropping the higher order terms, p1 =
(
− 1

R2 + l2

R2

)
cos(lθ) on ∂BR.

We next formally derive two boundary conditions on ∂Dρ. Clearly,

−∆ps − ε∆p1 = µ(σs − σ̃)χΩε\Dε
+ εµσ1χΩε\Dε

+ O(ε2). (13)

Since −∆ps = µ(σs − σ̃)χBR\Dρ
, the function p1 satisfies

−∆p1 = µσ1χΩε\Dε
+

µ

ε
(σs − σ̃)fε, (14)

where fε is given by fε = χΩε\Dε − χBR\Dρ
. Clearly, µσ1χΩε\Dε

→ µσ1χBR\Dρ

as ε → 0. It is also clear that
1
ε
fερ1S(θ) converges to a δ-function on ∂Dρ, thus

p1 is continuous on ∂Dρ, p1(ρ+) = p1(ρ−), where we use ρ+ to denote the limit
from the tumor side and ρ− to denote the limit from necrotic core side.

To derive a second condition across the free boundary {r = ρ}, consider
{ −∆qε

1 = µσ1χΩε\Dε
in Ωε,

qε
1 = p1 on ∂Ωε,

yielding {
−∆(p1 − qε

1) =
µ

ε
(σε − σ̃)fε in Ωε,

qε
1 − p1 = 0 on ∂Ωε.

For any test function ζ with compact support in BR, then

−
∫∫

Ωε

ζ∆(p1 − qε
1) =

∫∫

Ωε

µ

ε
(σs − σ̃)fεζ,

that is, ∫∫

Ωε

∇ζ∇(p1 − qε
1) =

∫

∂Dε

µ(σs − σ̃)ρ1S(θ)ζ + O(ε).

In the limit as ε → 0,
∫∫

BR

∇ζ∇(p1 − q1) =
∫

∂Dρ

µ(σs − σ̃)ρ1S(θ)ζ.

Note that in the limit −∆(p1−q1) ≡ 0 in Dρ∪ (BR \Dρ) so that integration
by parts yields

0 =
∫∫

BR

∇ζ∇(p1 − q1)−
∫

∂(BR\Dρ)

ζ
∂(p1 − q1)

∂n
−

∫

∂Dρ

ζ
∂(p1 − q1)

∂n
,
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where ~n on ∂Dρ points into the tumor region while ~n on ∂(BR \Dρ) points into
the necrotic core. Thus, in the limit,

∫

∂(BR\Dρ)

ζ
∂(p1 − q1)

∂n
+

∫

∂Dρ

ζ
∂(p1 − q1)

∂n
=

∫

∂Dρ

µ(σs − σ̃)ρ1S(θ)ζ. (15)

Since ∇q1 is continuous across the necrotic core,

∂p1

∂n
(ρ+) +

∂p1

∂n
(ρ−) = µ(σ − σ̃)ρ1S(θ). (16)

or, recalling the definition of ~n, −∂p1

∂r
(ρ+) +

∂p1

∂r
(ρ−) = µ(σ − σ̃)ρ1S(θ).

Solving p1 in the regions {r < ρ} and {ρ < r < R} respectively, we obtain




p1 = c4r
l cos(lθ) 0 < r < ρ,

p1 + µσ1 =
(
− 1

R2
− µσ′s(R) +

l2

R2

)
rl

Rl
cos(lθ) + c3

(
r−l − rl

R2l

)
cos(lθ)

ρ < r < R,

where the constants c3 and c4 are determined by matching all the boundary
conditions

(
− 1

R2
− µσ′s(R) +

l2

R2

)
ρl

Rl
+ c3

(
ρ−l − ρl

R2l

)
= c4ρ

l, (17)

and
(
− 1

R2
− µσ′s(R) +

l2

R2

)
lρl−1

Rl
− c3

(
lρ−l−1 +

lρl−1

R2l

)
+ µσ′′s (ρ)ρ1

= c4lρ
l−1 − ρ1µ(σ − σ̃).

(18)

The combination l × (17)− ρ× (18) gives

c32lρ−l − µσρ1ρ = −ρ1µ(σ − σ̃)ρ (19)

yielding c3 = ρ1ρl+1µeσ
2l . We can now solve for c4 using (17).

For each S(θ) and µ, define

F (S, µ) =
∂p

∂n

∣∣∣
∂Ωε

. (20)

Then, S induces an stationary solution if and only if F (S, µ) = 0. Clearly

∂p

∂n

∣∣∣
r=R+εS

= ε

(
∂2ps(R)

∂r2
S +

∂p1

∂r

)
+ O(ε2). (21)

Thus, formally, the Frechét derivative in the direction cos(lθ) is given by
[
∂F

∂S
(0, µ)

]
cos(lθ) =

∂2ps(R)
∂r2

cos(lθ) +
∂p1

∂r
. (22)
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We claim that the condition for bifurcation is
[
∂F

∂S
(0, µ)

]
cos(lθ) ≡ 0, (23)

and this will determine µ = µl. We now proceed to rigorously derive this. From
(13), we have

∂2ps(R)
∂r2

=
1
2
µσ̃ +

1
2
µσ̃

ρ2

R2
− µσ′′s (R). (24)

Using the formula for p1,

∂p1

∂r
(R) + µ

∂σ1

∂r
(R) =

(
− 1

R2
− µσ′s(R) +

l2

R2

)
l

R
cos(lθ)− c3

2l

Rl+1
cos(lθ).

(25)

Using (8), we know
∂σ1

∂r
(R) = −σ′s(R) cos(lθ)Q′l(R; ρ,R). Substituting this into

(25) and using (22) and (23), we find

1
2
µσ̃

(
1 +

ρ2

R2

)
− µσ′′s (R) +

(
− 1

R2
− µσ′s(R) +

l2

R2

)
l

R
− c3

2l

Rl+1

+µσ′s(R)Q′l(R; ρ,R) = 0.

Substituting c3 into the above equation, we have

1
2
µσ̃

(
1 +

ρ2

R2

)
− µσ′′s (R) +

(
− 1

R2
− µσ′s(R) +

l2

R2

)
l

R
− ρ1ρ

l+1

Rl+1
µσ̃

+µσ′s(R)Q′l(R; ρ,R) = 0.

Thus, Al · µl + Bl = 0 where

Al =
1

2
eσ
„

1 +
ρ2

R2

«
− σ′′s (R)− l

R
σ′s(R)− ρ1ρ

l+1

Rl+1
eσ + σ′s(R)Q′l(R; ρ, R), (26)

Bl =

„
− 1

R2
+

l2

R2

«
l

R
. (27)

Clearly, if Al 6= 0, then µl = −Bl

Al
,

3.2. Bifurcation
We shall apply the following Crandall-Rabinowitz theorem.

Theorem 3.1 (see [8, Theorem 1.7]). Let X, Y be real Banach spaces and
F (x, µ) a Cp map, p ≥ 3, of a neighborhood (0, µ0) in X × R into Y . Suppose

(i). F (0, µ) = 0 for all µ in a neighborhood of µ0,
(ii). Ker Fx(0, µ0) is one dimensional space, spanned by x0,
(iii). Im Fx(0, µ0) = Y1 has codimension 1,
(iv). Fµx(0, µ0)x0 6∈ Y1.

11



Then (0, µ0) is a bifurcation point of the equation F (x, µ) = 0 in the following
sense: In a neighborhood of (0, µ0) the set of solutions of F (x, µ) = 0 consists
of two Cp−2 smooth curves Γ1 and Γ2 which intersect only at the point (0, µ0);
Γ1 is the curve (0, µ) and Γ2 can be parameterized as follows:

Γ2 : (x(ε), µ(ε)), |ε| small, (x(0), µ(0)) = (0, µ0), x′(0) = x0.

As in [12] we introduce the Banach spaces: for k ≥ 2,

Xk+α
0 =

{
S ∈ Ck+α(−∞,∞), S is 2π-periodic

}
, (28)

Xk+α
1 = closure of the linear space spanned by

{cos(jθ), j = 0, 1, 2, 3, · · · } in Xk+α, (29)
Xk+α

2 = closure of the linear space spanned by
{cos(jθ), j = 0, 2, 4, 6, · · · } in Xk+α. (30)

We shall take X = Xk+α
2 and Y = Xk−1+α

2 and define F by (20), for any
S ∈ Xk+α

2 . Then F : Xk+α
2 → Xk−1+α

2 . It is also clear that F : Xk+α
j →

Xk−1+α
j , j = 0 and j = 1.

Lemma 3.2. If j ∈ {0, 1} and F : Xk+α
j → Xk−1+α

j , then

[FS(0, µ)] cos(lθ) ≡ 0

if and only if l = 1, or l ≥ 2 and µ = µj, j ≥ 2.

Proof. If l = 1, clearly B1 = 0 in (27). To verify A1 = 0, we evaluate
the various terms in (26). By plugging (19) into (16), and after a lengthy
simplification, we find that

σ′s(R) =
K1(ρ)I1(R)−K1(R)I1(ρ)
K0(R)I1(ρ) + I0(R)K1(ρ)

.

Since by (5), K ′
l(r) < 0 and I ′l(r) > 0, we derive σ′s(R) > 0. Moreover, using

(3), we obtain

Q′1(r; ρ,R) =
K1(ρ)I0(r) + I1(ρ)K0(r)
K1(ρ)I1(R)−K1(R)I1(ρ)

− 1
r

K1(ρ)I1(r)− I1(ρ)K1(r)
K1(ρ)I1(R)−K1(R)I1(ρ)

,

so that Q′1(R; ρ,R) = K0(R)I1(ρ)+I0(R)K1(ρ)
K1(ρ)I1(R)−K1(R)I1(ρ)− 1

R and Q′1(ρ; ρ,R) = K1(ρ)I0(ρ)+I1(ρ)K0(ρ)
K1(ρ)I1(R)−K1(R)I1(ρ) .

Then, substituting σs(R),σ into (10) , we derive ρ1(1; ρ,R) = 1. Moreover, by
the equation for σs and the boundary condition, σ′′s (R) + 1

Rσ′s(R) = ∆σs(R) =

σs(R) = 1. It follows that A1 = σ′s(R)
(

1
R

+ Q′1(R; ρ,R)
)
− 1 = 0.

The case for l ≥ 2 is a corollary of Theorem 3.3 and Al 6= 0 for l ≥ 2.
We remark that l = 1 corresponds to the translation of the original radially

symmetric solution.
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From this lemma it is clear that cos θ ∈ ker[FS(0, µ)] for all µ if we choose our
space to be Xk+α

0 or Xk+α
1 and Crandall-Rabinowitz theorem cannot be used.

For this reason we choose our space to be Xk+α
2 (so that cos(θ) is excluded).

The above lemma then implies that, in Xk+α
2 ,

ker[FS(0, µ)] = {0} if µ 6= µ2, µ4, µ6, · · · . (31)

It is also clear that, for each fixed µl,

ker[FS(0, µl)] = closure of the linear space spanned by {cos(mθ);µm = µl}.
Thus, for each fixed l ≥ 2, the dimension of Ker FS(0, µl) is 1 if and only if
µl 6= µm for all m 6= l.

Theorem 3.3. The points (0, µn) (n ≥ 2 and even) are bifurcation points for
the problem (6)-(9), and the corresponding free boundaries are of the form

∂Ωε : r = R + εS(θ) + O(ε2), ∂Dε : r = ρ + ερ1S(θ) + O(ε2),

where ρ1 is a constant given by (10).

We note that theorem establishes the bifurcations only for even n ≥ 2. For
odd n ≥ 3 we may apply the Crandall-Rabinowitz theorem in a more delicate
manner.

To use the theorem, we need to show that all µl are distinct. Now we consider
the property of Q′l(r; ρ,R).

Lemma 3.4. (i). {Q′l(ρ; ρ,R)} is a positive decreasing sequence in l;
(ii). {Q′l(R; ρ,R)} is a positive increasing sequence in l.

Proof. We rewrite (7) as



−∆Ql + ( l2

r2 + 1)Ql = 0 in BR \ D̄ρ,
Ql = 1 on ∂BR,
Ql = 0 on ∂Dρ.

By the maximum principle, 0 < Ql < (r/R)l for ρ < r < R, so that by the
strong maximum principle

Q′l(ρ; ρ,R) > 0 and Q′l(R; ρ,R) >
l

R
. (32)

Let F = ∂Ql

∂l , then



−∆F + ( l2

r2 + 1)F = − 2l
r2 Ql in BR \ D̄ρ,

F = 0 on ∂BR,
F = 0 on ∂Dρ.

Since Ql > 0 in BR \ D̄ρ, we know F < 0 in BR \ D̄ρ. Thus, ∂F
∂r |r=ρ < 0 and

∂F
∂r |r=R > 0, i.e., Q′l(ρ; ρ,R) > 0 is a decreasing sequence in l, and Q′l(R; ρ,R)
is an increasing sequence in l.
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Lemma 3.5. (i). For any ρ < r ≤ R,
{Q′l(r; ρ,R)

Ql(r; ρ,R)
− l

r

}
is a positive decreas-

ing sequence in l;
(ii). for l ≥ 2, − l

R + Q′l(R; ρ,R) < − l+1
R + Q′l+1(R; ρ,R) + dl

l+1 , where dl =

maxρ≤r≤R
2r2

R

{
Q′l(r; ρ,R)− l

r Ql(r; ρ,R)
}

.

Proof. For any ρ < s ≤ R, it is clear that

ψ1(r) =
r

s
Ql(r; ρ,R)− Ql(s; ρ,R)

Ql+1(s; ρ,R)
Ql+1(r; ρ,R)

satisfies




−∆ψ1 +
(

(l+1)2

r2 + 1
)
ψ1 = 2

s

{
l
r Ql −Q′l

}
for ρ < r < s,

ψ1 = 0 for r = ρ,
ψ1 = 0 for r = s.

Using (6) and (4), we find that

{ l

r
Ql −Q′l

}
=
−

(
Kl(ρ)Il+1(r) + Il(ρ)Kl+1(r)

)

Kl(ρ)Il(R)−Kl(R)Il(ρ)
< 0. (33)

Thus we can use the maximum principle to derive ψ1 < 0 for ρ < r < s. In
particular, dψ1

dr

∣∣∣
r=s

> 0, and this implies that

− l

s
+

Q′l(s; ρ,R)
Ql(s; ρ,R)

> − l + 1
s

+
Q′l+1(s; ρ,R)
Ql+1(s; ρ,R)

. (34)

Replacing s by r in the above inequality, we obtain (i).
To establish (ii), we let

ψ2(r) =
r

R
Ql(r; ρ,R)−Ql+1(r; ρ,R) +

dl

(l + 1)2
(
1− rl+1

Rl+1

)
,

A direct computation shows




−∆ψ2 +
(

(l+1)2

r2 + 1
)
ψ2 = G for ρ < r < R,

ψ2 = dl

(l+1)2

(
1− ρl+1

Rl+1

)
> 0 for r = ρ,

ψ2 = 0 for r = R,

where G = 2
R

{
l
r Ql −Q′l

}
+ dl

(l+1)2

(
1− rl+1

Rl+1

)
+ dl

r2 . By the definition of dl it is
clear that G > 0. In this case, we can apply the maximum principle to conclude
ψ2 > 0 for ρ < r < R and hence dψ2

dr

∣∣∣
r=s

< 0. This implies that, for l ≥ 2,

− l

R
+ Q′l(R; ρ,R) < − l + 1

R
+ Q′l+1(R; ρ,R) +

dl

R(l + 1)
. (35)
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This establishes the lemma.
The following lemma will be established using computations performed in a

reasonable range of R and ρ, namely, 0 < R ≤ 10 and 0 < ρ ≤ 10.

Lemma 3.6. µ2 < µ3 < µ4 < · · · .

Proof. We can rewrite (26) as Al , −α−βl− γl, where α = − 1
2 σ̃(1 + ρ2

R2 ) +
σ′′s (R) is independent of l, and using (10),

βl =
ρ1ρ

l+1

Rl+1
σ̃ = σ′s(R)

σ̃

σ

(
ρ

R

)l+1

Q′l(ρ; ρ,R) and γl = −σ′s(R)
(

Q′l(R; ρ,R)− l

R

)
.

Since σ′s(R) > 0, the preceding lemma implies that

γl − γl+1 ≥ −σ′s(R)
dl

R(l + 1)
for l ≥ 2. (36)

From Lemmas 3.3 and 3.4, and the fact that σ′s(R) > 0, it is clear that βl

is a decreasing sequence and that γl is an increasing sequence. The inequality
µl < µl+1 is equivalent to:

l3 − l

α + βl + γl
<

(l + 1)3 − (l + 1)
α + βl+1 + γl+1

. (37)

We next show that α + βl + γl > 0. Clearly,

α = −1
2
σ̃(1 +

ρ2

R2
) + σ′′s (R) = 1− σ′s(R)

(
2R

R2 − ρ2

)
.

By (22), we know α > 0. On the other hand, α + βl + γl ≥ α + γl, the right-
hand side of the above inequality is an increasing sequence in l. We will show
α + γ2 > 0, which will then imply α + βl + γl > 0 for all l ≥ 2.

Clearly, (37) is equivalent to

3α + (l + 2)βl − (l − 1)βl+1 + (l + 2)γl − (l − 1)γl+1 > 0. (38)

We now proceed to estimate the left-hand side of the above inequality.

j(l, ρ, R) := 3α + (l + 2)βl − (l − 1)βl+1 + (l + 2)γl − (l − 1)γl+1

= 3(α + βl + γl) + (l − 1)(βl − βl+1) + (l − 1)(γl − γl+1)

> 3(α + γl)− (l − 1)σ′s(R)
dl

R(l + 1)
. (39)

By Lemma 3.4 (i), dl > dl+1 for all l ≥ 1. Thus

j(l, ρ, R) > 3(α + γ4)− σ′s(R)
d4

R
for l ≥ 4, (40)

j(3, ρ, R) > 3(α + γ3)− 1
2
σ′s(R)

d3

R
, (41)

j(2, ρ, R) > 3(α + γ2)− 1
3
σ′s(R)

d2

R
. (42)
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The right-hand sides of the above inequalities are functions of ρ and R. We
explicitly computed these three functions as functions of ρ and R and found
that they are all positive (see Figures 1, 2, and 3). This also implies that
α + γ2 > 0, which was used in the proof.

Figure 1: 3(α + γ4)− σ′s(R) d4
R
≥ 0

Figure 2: 3(α + γ3)− 1
2
σ′s(R) d3

R
≥ 0

Consider

Y1 = closure of the liner space spanned by {cos(mθ);m 6= l}.
We know

Ker [FS(0, µl)] = span {cos(lθ)}, (43)
Im [FS(0, µl)] = Y1, (44)

[FSµ(0, µl)] cos(lθ) 6∈ Y1. (45)
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Figure 3: 3(α + γ2)− 1
3
σ′s(R) ≥ 0

It is clear that Y1 has codimension 1 since its direct sum with {cos(lθ)} gives
the whole space. Thus we can apply Theorem 3.1 to get bifurcation branches
for all µ = µl (l ≥ 2 even).

4. Linear stability

Assume
∂Ω0 : r = R0(θ). (1)

Then the linearization of the two boundaries ∂Ω(t) and ∂D(t) are given by

∂Ωε : r = R0(θ) + εR1(θ, t) + O(ε2), (2)
∂Dε : r = ρ0(θ) + ερ1(θ, t) + O(ε2), (3)

σ = σ0(r, θ) + εσ1(r, θ, t) + O(ε2), (4)
p = p0(r, θ) + εp1(r, θ, t) + O(ε2). (5)

The mean curvature is given by

κ =
r2 + 2r2

θ − rrθθ

(r2 + r2
θ)

3
2

. (6)

So that the linearization of κ is given by

κ |∂Ωε =
r2 + 2r2

θ − rrθθ

(r2 + r2
θ)

3
2

=
(R0 + εR1)2 + 2(R0θ + εR1θ)2 − (R0 + εR1)(R0θθ + εR1θθ)

[(R0 + εR1)2 + (R0θ + εR1θ)2]
3
2

+ O(ε2)

.= κ0 + εκ1 + O(ε2),
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where

κ0 =
R2

0 + 2R2
0θ −R0R0θθ

(R2
0 + R2

0θ)
3
2

, (7)

and

κ1 =
2R0R1 + 4R0θR1θ −R1R0θθ −R0R1θθ

(R2
0 + R2

0θ)
3
2

−3
2

(R2
0 + 2R2

0θ −R0R0θθ)(2R0R1 + 2R0θR1θ)
(R2

0 + R2
0θ)

5
2

. (8)

Clearly, the linearized equations for σ and p are:
{

σ1t −∆σ1 + σ1 = 0 in Ω0

−∆p1 = µσ1 in Ω0.
(9)

The boundary conditions are

1 = σ |r=R0+εR1+O(ε2)

= σ0 |r=R0 +εR1σ0r |r=R0 +εσ1 |r=R0 +O(ε2)
= 1 + εR1σ0r |r=R0 +εσ1 |r=R0 +O(ε2).

It follows that the boundary condition for σ1 is

σ1 |r=R0= −R1 · σ0r |r=R0 . (10)

Similarly,

(κ0 + εκ1) |∂Ωε
= κ |r=R0+εR1+O(ε2)

= (p0 + εp1) |r=R0+εR1 +O(ε2)
= p0 |r=R0 +p0r |r=R0 ·εR1 + εp1 |r=R0 +O(ε2)
= κ0 + p0r |r=R0 ·εR1 + εp1 |r=R0 +O(ε2)

that is,
p1 |r=R0= κ1 −R1 · p0r |r=R0 . (11)

To derive the equation for R1, we note that in the polar coordinate system
{

~er = cos θ ~e1 + sin θ ~e2;

~eθ = − sin θ ~e1 + cos θ ~e2.
(12)

If we write in vector form

~er = (cos θ, sin θ)T , ~eθ = (− sin θ, cos θ)T (13)

we then have
∇(x,y) = ~er∂r + ~eθ · 1

r
∂θ, (14)
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that is „
∂x

∂y

«
=

„
cos θ
sin θ

«
∂r +

1

r

„ − sin θ
cos θ

«
∂θ.

For the surface F (x, y) = 0, the normal is given by ~n =
±∇F

|∇F | , thus, we have

~n |r=R0+εR1 =
~er − 1

r (R0θ + εR1θ)~eθ√
1 + 1

r2 (R0θ + εR1θ)2
. (15)

In particular,

~n |r=R0+εR1 =
r ~er − (R0θ + εR1θ)~eθ√

r2 + (R0θ + εR1θ)2

=
(R0 + εR1)~er − (R0θ + εR1θ)~eθ
(
(R0 + εR1)2 + (R0θ + εR1θ)2

) 1
2

.= ~n0 + ε~n1 + O(ε2),

where

~n0 =
R0 ~er −R0θ ~eθ

(R2
0 + R2

0θ)
1
2

,

~n1 =
R1 ~er −R1θ ~eθ

(R2
0 + R2

0θ)
1
2
− (R0R1 + R0θR1θ)(R0 ~er −R0θ ~eθ)

(R2
0 + R2

0θ)
3
2

=
R1R

2
0θ −R0R0θR1θ

(R2
0 + R2

0θ)
3
2

~er +
R0R1R0θ −R2

0R1θ

(R2
0 + R2

0θ)
3
2

~eθ.

Since
{

p0r |r=R0+εR1 = p0r |r=R0 +p0rr |r=R0 ·εR1 + O(ε2);

p0θ |r=R0+εR1 = p0θ |r=R0 +p0θr |r=R0 ·εR1 + O(ε2),
(16)

we have

∂p

∂n

∣∣∣
r=R0+εR1

=
{

~er(p0r + εp1r) +
~eθ

r
(p0θ + εp1θ)

}∣∣∣
r=R0+εR1

· (~n0 + ε~n1)

=
{

~er(p0r + εR1p0rr + εp1r) +
~eθ(p0θ + εR1p0θr + εp1θ)

R0 + εR1

}
· (~n0 + ε~n1)

=
{

(~erp0r + ~eθ

p0θ

R0
) + ε

[
(R1p0rr + p1r)~er +

R0R1p0θr + R0p1θ −R1p0θ

R2
0

~eθ

]}

·(~n0 + ε~n1).

Notice that p0 is a stationary solution with

0 =
∂p0

∂n0
|r=R0 =

p0r

(1 + 1
r2 R2

0θ)
1
2
−

1
r2 p0θR0θ

(1 + 1
r2 R2

0θ)
1
2
. (17)
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The O(ε) term is

(~erp0r + ~eθ

p0θ

R0
) · ~n1 +

[
(R1p0rr + p1r)~er +

R0R1p0θr + R0p1θ −R1p0θ

R2
0

~eθ

] · ~n0

=
p0r(R1R

2
0θ −R0R0θR1θ)

(R2
0 + R2

0θ)
3
2

+
p0θ(R0R1R0θ −R2

0R1θ)

R0(R2
0 + R2

0θ)
3
2

+
R0(R1p0rr + p1r)

(R2
0 + R2

0θ)
1
2

−R0θ(R0R1p0θr + R0p1θ −R1p0θ)

R2
0(R

2
0 + R2

0θ)
1
2

.

On the other hand, the velocity of the free boundary ∂Ωε in the direction ~n
would be

vn =
(R0 + εR1)t√

1 + 1
(R0+εR1)2

(R0θ + εR1θ)2

=
εR1t√

1 + 1
(R0+εR1)2

(R2
0θ + 2εR0θR1θ + ε2R2

1θ)

= ε
R1t√

1 + 1
R2

0
R2

0θ

+ O(ε2)

that is, −vn = −ε
R1tR0

(R2
0 + R2

0θ)
1
2

+ O(ε2).

Since
∂p

∂n
= −vn on ∂Ωt,

−R1tR0 =
p0r(R1R

2
0θ −R0R0θR1θ)

R2
0 + R2

0θ

+
p0θ(R0R1R0θ −R2

0R1θ)
R0(R2

0 + R2
0θ)

+R0(R1p0rr + p1r)−
R0θ(R0R1p0θr + R0p1θ −R1p0θ)

R2
0

.

We derive

−R1t =
p0rR1ρ

2
0θ − p0rρ0ρ0θρ1θ + p0θρ1ρ0θ − p0θρ1θρ0

ρ0(ρ2
0 + ρ2

0θ)
+ ρ1p0rr + p1r

−ρ0θ

ρ1p0θr + p1θ

ρ2
0

+
ρ0θρ1p0θ

ρ3
0

=

[
p0rρ

2
0θ

ρ0(ρ2
0 + ρ2

0θ)
+

p0θρ0θ

ρ0(ρ2
0 + ρ2

0θ)
+ p0rr −

ρ0θp0θr

ρ2
0

+
ρ0θp0θ

ρ3
0

]
ρ1

−
[

p0rρ0θ

ρ2
0 + ρ2

0θ

+
p0θ

ρ2
0 + ρ2

0θ

]
ρ1θ +

[
p1r −

ρ0θp1θ

ρ2
0

]
.
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Thus

R1t =

[
− p0rρ

2
0θ

ρ0(ρ2
0 + ρ2

0θ)
− p0θρ0θ

ρ0(ρ2
0 + ρ2

0θ)
− p0rr +

ρ0θp0θr

ρ2
0

− ρ0θp0θ

ρ3
0

]
ρ1

+

[
p0rρ0θ

ρ2
0 + ρ2

0θ

+
p0θ

ρ2
0 + ρ2

0θ

]
ρ1θ +

[
ρ0θp1θ

ρ2
0

− p1r

]
.

From (13) and (20), we can get the linear equations on the boundary ∂D0:

σ1r|r=ρ0 = −ρ1
∂2σ0

∂n2
|r=ρ0

∂p1

∂n
|+ − ∂p1

∂n
|− = µ(σ − σ̃)ρ1,

where

∂

∂n
|r=ρ =

ρ2∂r − ρθ∂θ

ρ
√

ρ2 + ρ2
θ

,

∂2

∂n2
|r=ρ =

ρ2
θ(ρ + ρθθ)∂r + ρ2(ρ2 + ρ2

θ)∂rr − 2ρθ(ρ2 + ρ2
θ)∂θr

(ρ2 + ρ2
θ)2

+
ρρθ(2ρ2 + ρ2

θ + ρρθθ)∂θ + ρ2
θ(ρ

2 + ρ2
θ)∂θθ

ρ2(ρ2 + ρ2
θ)2

.

Combing all the above computation, the linearized system is

σ1t = ∆σ1 − σ1 in Ω0,

∆p1 = −µσ1 in Ω0,

σ1r = −ρ1
∂2σ0

∂n2
on ∂D0

µ(σ − σ̃)ρ1 =
∂p1

∂n
|+ − ∂p1

∂n
|− on ∂D0,

σ1 = −R1σ0r on ∂Ω0,

∂p

∂n
= 0 on ∂Ω0, (18)

p1 =
2R0R1 + 4R0θR1θ −R1R0θθ −R0R1θθ

(R2
0 + R2

0θ)
3
2

−R1p0r

−3
2

(R2
0 + 2R2

0θ −R0R0θθ)(2R0R1 + 2R0θR1θ)
(R2

0 + R2
0θ)

5
2

on ∂Ω0,

R1t =
(
− p0rR

2
0θ

R0(R2
0 + R2

0θ)
− p0rr +

p0θrR0θ

R2
0

− p0θR0θ

R3
0

− p0θR0θ

R0(R2
0 + R2

0θ)

)
R1 +

(
p0rR0θ

R2
0 + R2

0θ

+
p0θ

R2
0 + R2

0θ

)
R1θ

+
(

p1θR0θ

R2
0

− p1r

)
on ∂Ω0.
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We tested numerically for linear stability. For radial symmetric solutions,
we use (6) and (7) to obtain the solutions. For non-radial symmetric solutions,
we use (1)-(4) and drop the higher term to get approximations of solutions in a
small neighborhood of µ2: we take ε to be a small value such as 10−2, 10−3. Once
the solution is computed, we can recover the parameter µ from the linearized
equation (18) and test linear stability by checking the spectrum of the linearized
system. Doing this, the linear stability in a small neighborhood of µ2 has been
numerically verified and is shown in Figure 4.

Figure 4: Linear stability of the solution branches

5. Conclusion

Although the tumor model with a necrotic core analyzed in this paper is
quite simple, we may nevertheless draw some interesting biological conclusions
from the mathematical results. Tumors grown in culture are typically sphere.
However, tumor grown in vivo may have a variety of shapes. In particular, a
tumor with a necrotic core is associated with the growth of protrusions. In our
model, these protrusions are expressed by the shape

r = R + ε cos(nθ) + O(ε2), r = ρ + ερ1 cos(nθ) + O(ε2)
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of the free boundaries; the number of protrusions depend on n. The aggres-
siveness of a tumor is measured by the parameter µ. the larger the µ is the
more aggressive the tumor is. As this parameter increases, the tumor will lose
its spherical shape, develop fingers, and become invasive. The linear stability
asserts that radial instability occurs when µ reaches the first bifurcation point
µ2. Moreover, there is non-radial stability for part of a neighborhood of µ2

on a non-radial branch. The numerical algorithms we use to carry out these
computations will be presented in another paper, which in particular show that
the non-radial solutions have non-spherical shapes.
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