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a b s t r a c t

For reaction–diffusion–advection equations, the stiffness from the reaction and diffusion
terms often requires very restricted time step size, while the nonlinear advection term
may lead to a sharp gradient in localized spatial regions. It is challenging to design numer-
ical methods that can efficiently handle both difficulties. For reaction–diffusion systems
with both stiff reaction and diffusion terms, implicit integration factor (IIF) method and
its higher dimensional analog compact IIF (cIIF) serve as an efficient class of time-stepping
methods, and their second order version is linearly unconditionally stable. For nonlinear
hyperbolic equations, weighted essentially non-oscillatory (WENO) methods are a class
of schemes with a uniformly high order of accuracy in smooth regions of the solution,
which can also resolve the sharp gradient in an accurate and essentially non-oscillatory
fashion. In this paper, we couple IIF/cIIF with WENO methods using the operator splitting
approach to solve reaction–diffusion–advection equations. In particular, we apply the
IIF/cIIF method to the stiff reaction and diffusion terms and the WENO method to the
advection term in two different splitting sequences. Calculation of local truncation error
and direct numerical simulations for both splitting approaches show the second order
accuracy of the splitting method, and linear stability analysis and direct comparison with
other approaches reveals excellent efficiency and stability properties. Applications of the
splitting approach to two biological systems demonstrate that the overall method is accu-
rate and efficient, and the splitting sequence consisting of two reaction–diffusion steps is
more desirable than the one consisting of two advection steps, because CWC exhibits
better accuracy and stability.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Consider a system of reaction–diffusion–advection (RDA) equations,
@u
@t
¼ r � fðuÞ þ DDuþ FRðuÞ; ð1Þ
where u 2 Rm represents a group of physical or biological species, f(u) is the flux function and r�f(u) represents the advec-
tion, D 2 Rm�m is the diffusion constant matrix, Du is the Laplacian associated with the diffusion of the species u, and FR(u)
represents reactions. Many physical and biological systems may be described by reaction–diffusion–advection equations
. All rights reserved.
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[1,2]. One example is that early shaping of the vertebrate limb bud is due to a diffusion–reaction–advection process between
a growth factor and the morphogen Sonic Hedgehog produced in the zone of polarizing activity at the posterior margin of the
bud [3].

Each of the three parts of Eq. (1), diffusion, reaction, and advection, exhibits different temporal and spatial characteristics.
For example, the reactions may consist of many rate constants varying greatly in magnitude that impose strong stability con-
straints on the size of the time step. To overcome this, one may use implicit temporal schemes for the entire system that
require solving nonlinear algebraic systems at each time step. Due to spatial discretization, the reaction species and the spa-
tial variables are usually coupled, leading to a large nonlinear system which is difficult to solve, especially in two and three
spatial dimensions. In addition, implicit temporal schemes are usually not suitable for treating the advection term. Naturally,
it is more desirable to treat the distinct parts of the reaction–diffusion–advection system with different methods.

Operator splitting methods, which were originally developed as a technique for separating multi-dimensional spatial
operators into a sum of one-dimensional operators, have been used to treat distinct terms of nonlinear partial differential
equations in terms of different discretization techniques [4,5]. By applying operator splitting techniques to reaction–diffu-
sion–advection equations, the temporal discretization can be divided into several substeps at each time step. Then at each
substep, only part of the reaction–diffusion–advection equation is updated in time. This property of operator splitting tech-
niques enables the flexible usage of different temporal discretizations on distinct parts of the partial differential equations.

In this paper, we present a family of operator splitting methods for reaction–diffusion–advection equations with stiff
reactions by splitting the temporal discretization into two major steps: the reaction–diffusion step and the advection step.
Using this splitting arrangement, we apply existing temporal and spatial discretizations designed for diffusion–reaction
equations to the reaction–diffusion step and existing hyperbolic solvers to the advection term. In particular, for the reac-
tion–diffusion step, we utilize a class of semi-implicit integration factor (IIF) methods [6,7] recently developed for solving
stiff reaction–diffusion equations, and for the advection step, we apply the WENO schemes [8].

In integration factor (IF) or exponential time differencing (ETD) methods [9–14], the diffusion term (or the linear differ-
ential operator with the highest order derivatives) is evaluated exactly (see [15] for review). To deal with stiff reactions in
reaction–diffusion equations, one may discretize the reaction terms implicitly while maintaining the exact treatment of the
diffusion term, leading to a class of semi-impicit integration factor (IIF) methods [6]. For a system in high (two or three) spa-
tial dimensions, a compact implicit integration factor method (cIIF) can be implemented to save the storage cost and to im-
prove efficiency [7]. Both IIF and cIIF schemes have excellent stability properties that allow large time steps without
sacrificing computational cost significantly at each time step. This result is partly due to the decoupling of the implicit treat-
ment of the nonlinear reaction terms and the exact evaluations of the linear diffusion term. In this paper, we use the second
order IIF scheme [6], which is linearly unconditionally stable, for the reaction–diffusion part of the splitting method in a one-
dimensional system and its counterpart in high dimensions, cIIF method [7], for any two- or three-dimensional systems.

To treat the advection term at each substep of the splitting method, we use weighted essentially non-oscillatory (WENO)
schemes [16,17] with a third order TVD Runge–Kutta time discretization [18]. WENO, a class of high order numerical meth-
ods designed for solving hyperbolic PDEs whose solutions may contain discontinuities and sharp gradients, is one of the most
used high resolution schemes [19–21] due to its high accuracy and efficiency (see [8] for review).

The rest of this paper is organized as follows: in Section 2, we present two different splitting approaches and analyze their
truncation errors and stability regions; in Section 3, we compare these two splitting approaches as well as different temporal
schemes for the reaction–diffusion part in the splitting sequences using a system of linear reaction–diffusion–advection
equations with known solutions; in Section 4, we apply the two operator splitting approaches to two biological systems;
and in Section 5, we conclude the paper.
2. Operator-splitting method combined with WENO and cIIF methods

2.1. Two splitting schemes

2.1.1. Diffusion–advection–diffusion (DAD) splitting
We first apply the Strang operator splitting [22] method to our reaction–diffusion–advection system in Eq. (1). With this

approach, the advection term is computed once and the rest of terms consisting of both diffusion and reaction are computed
twice at each time step:
@u�
@t ¼ DDu� þ FRðu�Þ; on ðtn; tnþ1=2Þ; u�ðtnÞ ¼ uðtnÞ;
@u��
@t ¼ r � fðu��Þ; on ðtn; tnþ1Þ; u��ðtnÞ ¼ u�ðtnþ1=2Þ;
@u���
@t ¼ DDu��� þ FRðu���Þ; on ðtnþ1=2; tnþ1Þ; u���ðtnþ1=2Þ ¼ u��ðtnþ1Þ;

8><
>: ð2Þ
with u(tn+1) = u⁄⁄⁄(tn+1).
In this scheme, referred to as DAD (diffusion–advection–diffusion) splitting, updating the reaction–diffusion–advection

system at one time step is reduced to updating two reaction–diffusion systems, the first and third equations of Eq. (2),
and one hyperbolic equation, the second equation. With such a simple structure, one may use different temporal schemes
that are suitable for each corresponding equation. To handle the stiffness arising from the reaction and diffusion terms, we
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use semi-implicit integration factor (IIF) or compact semi-implicit integration factor (cIIF) method [6,7] that has excellent
stability properties. To handle the hyperbolic system, we use the third order finite difference WENO scheme [16,17] with
a third order TVD Runge–Kutta time discretization [18,23]. These particular choices of temporal schemes for splitting are
termed in this paper as CWC, representing the cIIF-WENO-cIIF sequence of computation.

In the CWC scheme, we first choose Dt = tn+1 � tn based on the stability of the reaction–diffusion parts in Eq. (2). When the
second order IIF [6] is applied to the reaction–diffusion equations of the system of Eq. (2), we obtain
u�nþ1=2 ¼ eDDt=2 u�n þ
Dt
4

FRðu�nÞ
� �

þ Dt
4

FRðu�nþ1=2Þ; ð3Þ
where D is the matrix due to the second order discretization of the diffusion term in space.
When the third order finite difference WENO scheme [16–18] with a third order TVD Runge–Kutta time discretization is

applied to the advection equation from tn to tn+1, the variable time step of the WENO/TVD solver, denoted by Dta, is deter-
mined by the stability condition. Assume that the WENO/TVD method requires Dtw for the advection equation of Eq. (2) at
u⁄⁄(tn). We choose Dta = Dt/2 if Dt/2 < Dtw or Dta = Dt/(2m) if Dtw < Dt/2, where m is the smallest integer such that Dt/
(2m) < Dtw. This choice of time steps keeps the stability and accuracy of WENO/TVD unchanged in addition to allowing
an equal time step for IIF (or cIIF). This lack of constraint on the time step of the reaction–diffusion part of the system allows
the exponential matrices in Eq. (3) to be computed only once, leading to an efficient implementation and computation of IIF
and cIIF, similar to [6,7].
2.1.2. Advection–diffusion–advection (ADA) splitting
In a splitting approach, one can also treat the advection equation twice at half time steps while treating the reaction–dif-

fusion equation only once during each time step. This advection–diffusion–advection (ADA) arrangement may be written in
the following form:
@u�
@t ¼ r � f ðu�Þ; on ðtn; tnþ1=2Þ; u�ðtnÞ ¼ uðtnÞ;
@u��
@t ¼ DDu�� þ FRðu��Þ; on ðtn; tnþ1Þ;u��ðtnÞ ¼ u�ðtnþ1=2Þ;
@u���
@t ¼ r � f ðu���Þ; on ðtnþ1=2; tnþ1Þ;u���ðtnþ1=2Þ ¼ u��ðtnþ1Þ;

8><
>: ð4Þ
with u(tn+1) = u⁄⁄⁄(tn+1).
Similar to the DAD approach, we update the reaction–diffusion equation using the second order IIF (or cIIF) [7,6] and com-

pute the hyperbolic step using the third order TVD Runge–Kutta method in combination with the third order WENO method
for the spatial discretization [16,17]. This method is referred as WENO-cIIF-WENO (WCW) method.
2.2. Truncation error

We now analyze the overall local temporal truncation error for the CWC and WCW schemes. It is clear that the overall
spatial discretization is of order two because a third order WENO method is applied to the advection term and a second order
central difference approximation is applied to the diffusion term in IIF (or cIIF). Similar to the previous approaches [4–7], we
analyze the following semi-discretization form for the temporal error:
@u
@t
¼ Auþ Duþ Ru A;D; R 2 Rm�m: ð5Þ
2.2.1. CWC scheme
First, we apply DAD splitting to Eq. (5) to obtain:
@u�
@t ¼ Du� þ Ru� on ðtn; tnþ1=2Þ; u�ðtnÞ ¼ uðtnÞ;
@u��
@t ¼ Au�� on ðtn; tnþ1Þ; u��ðtnÞ ¼ u�ðtnþ1=2Þ;
@u���
@t ¼ Du��� þ Ru��� on ðtnþ1=2; tnþ1Þ; u���ðtnþ1=2Þ ¼ u��ðtnþ1Þ;

8><
>: ð6Þ
with u(tn+1) = u⁄⁄⁄(tn+1). The direct usage of the second order scheme of IIF [6] and the third order Runge–Kutta method [23]
results in
u�nþ1=2 ¼ I � RDt=2
2

� ��1
eDDt=2 I þ RDt=2

2

� �
u�n;

u��nþ1 ¼ I þ ADt þ A2

2 Dt2 þ A3

6 Dt3
� �

u��n ;

u���nþ1 ¼ I � RDt=2
2

� ��1
eDDt=2 I þ RDt=2

2

� �
u���nþ1=2:

8>>>>><
>>>>>:

ð7Þ
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Simplification of the Eq. (7) gives an explicit relation between the solutions at the old time step and the new time step:
unþ1 ¼ I � RDt=2
2

� ��1

eDDt=2 I þ RDt=2
2

� �
I þ ADt þ A2

2
Dt2 þ A3

6
Dt3

 !
I � RDt=2

2

� ��1

eDDt=2 I þ RDt=2
2

� �
un: ð8Þ
By Taylor expansion, Eq. (8) becomes
unþ1 ¼ I þ ðDþ RÞDt
2
þ ðDþ RÞ2

2
Dt
2

� �2

þ � � �
 !

I þ ADt þ A2

2
Dt2 þ � � �

 !
I þ ðDþ RÞDt

2
þ ðDþ RÞ2

2
Dt
2

� �2

þ � � �
 !

un

¼ I þ ðAþ Dþ RÞDt þ ðAþ Dþ RÞ2

2
Dt2 þ � � �

 !
un:

ð9Þ

Recall the exact solution of Eq. (5),
uðtnþ1Þ ¼ eðAþDþRÞDtuðtnÞ:
From here, the local truncation error of the CWC splitting method may be expressed as,
I þ ðAþ Dþ RÞDt þ ðAþ Dþ RÞ2

2
Dt2 þ � � �

 !
un � eðAþDþRÞDtun ¼ OðDt3Þun: ð10Þ
Consequently, the CWC splitting method using second order IIF (or cIIF) is of second order in temporal discretization.

2.2.2. WCW scheme
Similarly, we apply the ADA splitting scheme to Eq. (5) to obtain:
@u�
@t ¼ Au� on ðtn; tnþ1=2Þ; u�ðtnÞ ¼ uðtnÞ;
@u��
@t ¼ Du�� þ Ru�� on ðtn; tnþ1Þ; u��ðtnÞ ¼ u�ðtnþ1=2Þ;
@u���
@t ¼ Au��� on ðtnþ1=2; tnþ1Þ; u���ðtnþ1=2Þ ¼ u��ðtnþ1Þ;

8><
>: ð11Þ
with u(tn+1) = u⁄⁄⁄(tn+1). Following a derivation similar to that of Eq. (7), we reach solutions at each step in the form:
u�nþ1=2 ¼ I þ A Dt
2 þ A2

2
Dt
2

� �2 þ A3

6
Dt
2

� �3
� �

u�n;

u��nþ1 ¼ I � RDt
2

� ��1eDDt I þ RDt
2

� �
u��n ;

u���nþ1 ¼ I þ A Dt
2 þ A2

2
Dt
2

� �2 þ A3

6
Dt
2

� �3
� �

u���nþ1=2:

8>>>><
>>>>:

ð12Þ
Then, the solution becomes
unþ1 ¼ I þ A
Dt
2
þ A2

2
Dt
2

� �2

þ A3

6
Dt
2

� �3
 !

I � RDt
2

� ��1

eDDt I þ RDt
2

� �
I þ A

Dt
2
þ A2

2
Dt
2

� �2

þ A3

6
Dt
2

� �3
 !

un: ð13Þ
By Taylor expansion, the solution in Eq. (13) becomes
unþ1 ¼ I þ A
Dt
2
þ A2

2
Dt
2

� �2

þ � � �
 !

I þ ðDþ RÞDt þ ðDþ RÞ2

2
Dt2 þ � � �

 !
I þ A

Dt
2
þ A2

2
Dt
2

� �2

þ � � �
 !

un

¼ I þ ðAþ Dþ RÞDt þ ðAþ Dþ RÞ2

2
Dt2 þ � � �

 !
un: ð14Þ
Recall the exact solution of Eq. (5),
uðtnþ1Þ ¼ eðAþDþRÞDtuðtnÞ:
Then, the local truncation error of the WCW splitting method is
I þ ðAþ Dþ RÞDt þ ðAþ Dþ RÞ2

2
Dt2 þ � � �

 !
un � eðAþDþRÞDtuðtnÞ ¼ OðDt3Þun: ð15Þ
Thus, the WCW splitting method is of second order in the time discretization.

2.3. Linear stability analysis

To analyze the linear stability of the splitting method, we consider a scalar linear equation,
ut ¼ au� duþ ru with a; r 2 R; d > 0; ð16Þ
similar to the approaches in [4–6].
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2.3.1. CWC scheme
After applying DAD splitting to Eq. (16), we obtain:
u�t ¼ �du� þ ru�; on ðtn; tnþ1=2Þ; u�ðtnÞ ¼ uðtnÞ;
u��t ¼ au��; on ðtn; tnþ1Þ; u��ðtnÞ ¼ u�ðtnþ1=2Þ;
u���t ¼ �du��� þ ru���; on ðtnþ1=2; tnþ1Þ; u���ðtnþ1=2Þ ¼ u��ðtnþ1Þ:

8><
>: ð17Þ
Similar to the derivation of Eq. (8), we obtain
unþ1 ¼ I � rDt=2
2

� ��1

e�dDt=2 I þ rDt=2
2

� �
I þ aDt þ a2

2
Dt2 þ a3

6
Dt3

� �
I � rDt=2

2

� ��1

e�dDt=2 I þ rDt=2
2

� �
un: ð18Þ
Substituting un = einh into Eq. (18) yields,
eih ¼ e�dDt 1þ aDt þ 1
2
ðaDtÞ2 þ 1

6
ðaDtÞ3

� 	
4þ k
4� k

� �2

; ð19Þ
where k = rDt. Denote kr as the real part of kand ki as its imaginary part of k. Similar to the stability analysis for IIF (or cIIF)
methods [6,7], we present boundaries of the stability region: a family of curves for different values of aDt at different values
of dDt.

Based on the amplification factor derived in Eq. (19), the stability regions always include the point (�4,0) in the complex
plane for any values of aDt and dDt. We plot the boundaries of stability regions on the complex plane of the reaction term
rDt, for different values of aDt and dDt. As seen in Fig. 1, the closed curves formed by the boundary of the stability region of
the DAD splitting method do not stay in the same half plane when the value of aDt increases from �1 to +1. For a fixed dDt
value, the stability regions shrink and converge to the point (�4,0) as jaDtj?1. Hence, stronger advections induce more
severe stability constraints. On the other hand, for the same aDt value, larger dDt values allow larger stability regions
due to the broad stability of integration factor methods. Since the integration factor methods treat the diffusion exactly,
the overall method becomes more advantageous for larger diffusions.

2.3.2. WCW scheme
For the stability of the WCW scheme, applying ADA splitting to Eq. (16) yields
u�t ¼ au�; on ðtn; tnþ1=2Þ; u�ðtnÞ ¼ uðtnÞ;
u��t ¼ �du�� þ ru��; on ðtn; tnþ1Þ; u��ðtnÞ ¼ u�ðtnþ1=2Þ;
u���t ¼ au���; on ðtnþ1=2; tnþ1Þ; u���ðtnþ1=2Þ ¼ u��ðtnþ1Þ:

8><
>: ð20Þ
   aΔt = 10.0

   aΔt = 7.0    aΔt = -2.0

  aΔt = 0.5

   aΔt = -6.0
   aΔt = -6.5    aΔt = -3.0

Stable Unstable

   aΔt = 0.0

   aΔt = 10.0
aΔt = 7.0    aΔt = -2.0

  aΔt = 0.5

aΔt = -6.0
   aΔt = -6.5    aΔt = -3.0

Stable Unstable

   aΔt = 0.0

   aΔt = 10.0
   aΔt = 7.0

   aΔt = -2.0
  aΔt = 0.5

   aΔt = -6.0
   aΔt = -6.5    aΔt = -3.0
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Unstable

   aΔt = 0.0

aΔt = 10.0
   aΔt = 7.0

   aΔt = -2.0
  aΔt = 0.5

   aΔt = -6.0
   aΔt = -6.5

   aΔt = -3.0

Stable Unstable

   aΔt = 0.0

Fig. 1. Stability regions for the second order CWC scheme with different aDt. (a) dDt = 1.0; (b) dDt = 2.0; (c) dDt = 3.0; (d) dDt = 4.0.
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Using Eq. (13), the second order WCW scheme assumes the following form:
unþ1 ¼ I þ a
Dt
2
þ a2

2
Dt
2

� �2

þ a3

6
Dt
2

� �3
 !

I � rDt
2

� ��1

e�dDt I þ rDt
2

� �
I þ a

Dt
2
þ a2

2
Dt
2

� �2

þ a3

6
Dt
2

� �3
 !

un: ð21Þ
Substituting un = einh to Eq. (21) leads to
eih ¼ e�dDt 1þ a
Dt
2
þ 1

2
a

Dt
2

� �2

þ 1
6

a
Dt
2

� �3
" #2

2þ k
2� k

� �
; ð22Þ
where k = rDt has a real part kr and an imaginary part ki.
For the WCW scheme, the stability regions always include the point (�2,0) in the complex plane, for any values of aDt

and dDt as shown by Eq. (22).
Also, as noted in Fig. 2, the stability regions of the WCW scheme have similar patterns as the CWC scheme. For the case

aDt = 0, both CWC and WCW schemes reduce to the second order IIF scheme and the stability curves coincide with the ones
in [6].

2.3.3. A comparison between CWC and WCW schemes
Previously, it was observed that placing stiff operators at the end of the splitting sequence leads to smaller solution errors

[5]. It is found below that the CWC scheme, which treats the stiff reaction–diffusion terms twice, has better stability
properties.

From Eq. (19), the real part, denoted by kCWC
r , and the imaginary part, denoted by kCWC

i , of k for CWC scheme take the form
kCWC
r ¼

4ð1�f ðDt;d;aÞÞ
1þ2 cos h

2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðDt;d;aÞ
p

þf ðDt;d;aÞ
; f ðDt; d; aÞP 0;

4ð1�jf ðDt;d;aÞjÞ
1þ2 sin h

2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðDt;d;aÞj
p

þjf ðDt;d;aÞj
; f ðDt; d; aÞ 6 0;

8><
>: ð23Þ

kCWC
i ¼

8 sin h
2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðDt;d;aÞ
p

1þ2 cos h
2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
f ðDt;d;aÞ
p

þf ðDt;d;aÞ
; f ðDt; d; aÞP 0;

�8 cos h
2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðDt;d;aÞj
p

1þ2 sin h
2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðDt;d;aÞj
p

þjf ðDt;d;aÞj
; f ðDt; d; aÞ 6 0;

8>><
>>: ð24Þ
where
 aΔt = 5.0
aΔt = 4.0

   aΔt = -1.0

  aΔt = -5.5

 aΔt = -7.4
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 aΔt = -7.6  aΔt = 1.0

Stable Unstable

  aΔt = 0

 aΔt = 5.0
aΔt = 4.0

   aΔt = -1.0
  aΔt = -5.5

 aΔt = -7.4
 aΔt = -7.6

 aΔt = 1.0

Stable Unstable

  aΔt = 0

 aΔt = 5.0

aΔt = 4.0
aΔt = -5.5

 aΔt = -7.4
 aΔt = -7.6

 aΔt = 1.0

Stable Unstable

  aΔt = 0

Fig. 2. Stability regions for the second order WCW scheme with different aDt. (a) dDt = 1.0; (b) dDt = 2.0; (c) dDt = 3.0; (d) dDt = 4.0.
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f ðDt;d; aÞ ¼ e�dDt 1þ aDt þ 1
2
ðaDtÞ2 þ 1

6
ðaDtÞ3

� 	
: ð25Þ
Similarly, for the boundary of stability region of WCW scheme from Eq. (22), the real part, denoted by kWCW
r , and the imag-

inary part, denoted by kWCW
i , of k are
kWCW
r ¼ 2ð1� g2ðDt;d; aÞÞ

1þ 2 cosðhÞgðDt; d; aÞ þ g2ðDt; d; aÞ ; ð26Þ

kWCW
i ¼ 2 sinðhÞgðDt;d; aÞ

1þ 2 cosðhÞgðDt; d; aÞ þ g2ðDt; d; aÞ ; ð27Þ
where
gðDt;d; aÞ ¼ e�dDt 1þ aDt
2
þ 1

2
aDt

2

� �2

þ 1
6

aDt
2

� �3
" #2

: ð28Þ
As evident in the Figs. 1 and 2, the boundaries of the stability region are always circles with centers on the real axis, implying
that the y-coordinate of the center is always zero. From Eq. (23), the x-coordinate of the center for the stability region’s
boundary of CWC, denoted by xCWC, is
xCWC ¼ 4
1þ jf ðDt;d; aÞj
1� jf ðDt;d; aÞj : ð29Þ
And the radius, denoted by rCWC, is
rCWCðDt; d; aÞ ¼ 8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jf ðDt; d; aÞj

p
1� jf ðDt; d; aÞj

�����
�����: ð30Þ
Similarly, from Eq. (26), the x-coordinate of the center of stability region’s boundary of WCW, denoted by xWCW, is
xWCW ¼ 2
1þ g2ðDt;d; aÞ
1� g2ðDt;d; aÞ : ð31Þ
And the radius rWCW is the following:
rWCWðDt;d; aÞ ¼ 4
gðDt;d; aÞ

1� g2ðDt;d; aÞ

����
����: ð32Þ
It is obvious that rCWC 6 jxCWCj and rWCW 6 jxWCWj, which implies the stability regions’ boundaries stay within either of half
planes. As shown in Fig. 3, the centers of stability regions’ boundaries of both CWC and WCW schemes follow the same pat-
terns: as aDt increases from �1 to1, the center moves from the left half complex plane to the right half through jumping
over a singularity, and moves back then to the left half plane, centering around a point.
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Fig. 4 demonstrates that the radius of each stability region’s boundary diverges for two values of aDt, which are where the
region’s boundary shifts between left and right halves of the complex plane. When the value of aDt is between these two
peaks, the stability regions’ boundaries locate on the right half complex plane (see Fig. 3), implying that the stability region
of the scheme includes the whole left half complex plane. When aDt is not between two peaks, the stability regions are
bounded within the left half of the complex plane. As a result, the center and radius curves for both schemes dictate the sta-
bility properties.

There are three main differences between the center and radius curves of the two schemes. First of all, the size of the
interval between the two divergent CWC radius curves is more sensitive to the value of dDt than that of WCW radius curves.
Specifically, when dDt increases, the range of aDt values that maintain the inclusion of the left half of the complex plane in
the stability region expands at a faster rate for the CWC scheme than for the WCW scheme. Secondly, when dDt is chosen
such that the stability region is entirely contained within the left half of the complex plane, the radii of stability region of
CWC are greater than WCW for most of values of aDt. Finally, the ‘‘width’’ and ‘‘steepness’’ of the peaks of radius curves
are different between two schemes; the peaks for CWC are broader and less steep than those of WCW for the same set of
parameters, indicating CWC stability region are less sensitive to the changes of aDt than those of WCW stability region.

In general, the WCW scheme is more sensitive to choice of the size of Dt, diffusion and advection in terms of stability
properties than the CWC scheme. As a result, for nonlinear reaction–diffusion–advection equations, the CWC scheme is nat-
urally more robust than the WCW scheme in choice of Dt. Direct simulations on two nonlinear systems in the next section
also confirm this result.

Remark 1. Although the linear stability analysis performed in this section demonstrates several important features of the
new methods, it would be interesting to study nonlinear stability of the splitting method [24–27] for additional insight and
better understanding of each method.
Remark 2. Because of the explicit treatment of the advection term, both CWC and WCW schemes still need to satisfy CFL
condition. For an advection-dominated case (a� d), the value of Dt has to be small due to the CFL condition. Both CWC
and WCW schemes are designed to deal with the stiffness in reactions and the stability constraint in diffusion for a diffu-
sion–reaction–advection system.
3. Numerical tests

In this section, we investigate how the splitting sequence and choice of schemes for the reaction–diffusion part of a stiff
reaction–diffusion–advection system may affect the accuracy and efficiency of a scheme by solving a linear system with var-
ious combinations of ADA and DAD schemes. In the comparison, we always treat the hyperbolic part of the system with the
third order WENO/TVD, and use either second order Runge–Kutta (RK2) or IIF/cIIF to treat the diffusion–reaction part with IIF
for the one dimensional system and cIIF for two- or three-dimensional systems. Specifically, we study two ADA schemes:
WCW and WENO-RK2-WENO (denoted by WRW), and two DAD schemes: CWC and RK2-WENO-RK2 (denoted by RWR).
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The four schemes are tested using the following two-variable linear reaction–diffusion–advection system on a rectangle
X = (0,2p)k � Rk for k = 1, 2, 3,
Table 1
Error, a
converg

N

10
20
40
80

160
320
640

Table 2
Error, a

N

10
20
40
80

160
320
640
@u
@t þr � ðauÞ ¼ dDu� buþ v;
@v
@t þr � ðavÞ ¼ dDv � cv ;

(
ð33Þ
with periodic boundary conditions. For an initial condition with the following form,
ujt¼0 ¼ cosðxþ yþ zÞ; v jt¼0 ¼ cosðxþ yþ zÞ; ð34Þ
the system has the following exact solution in three-dimensions,
uðx; y; z; tÞ ¼ ðe�ðbþdÞt þ e�ðcþdÞtÞ cosðxþ yþ z� atÞ;
vðx; y; z; tÞ ¼ ðb� cÞe�ðcþdÞt cosðxþ yþ z� atÞ:

(
ð35Þ
We stiffen the reaction by choosing the set of parameters a = c = d = 1 and b = 100 as a means of examining the effectiveness
of different schemes by observing how each handles the stiffness of the reaction [6].

We first study RWR and WRW schemes for the one-dimensional system. As expected, the time step must be proportional
to the square of the spatial grid size when the explicit Runge–Kutta is used to solve the diffusion–reaction part as seen in
Table 1 due to the stability constraint from the diffusion term. At the same numerical resolution, i.e. for the same number
of spatial grid points, both RWR and WRW schemes have similar size of errors and a similar order of accuracy, which is two.
For both schemes, when N doubles, the CPU time increases by a fold of eight in Table 1 because the time steps have to be
decreased by a factor of four to meet the stability constraint on diffusion. The CPU time for RWR is about half of that for
WRW which is likely because one WENO step is more expensive than one Runge–Kutta step and WRW consists of two WENO
steps while RWR has only one WENO step.

The advantages of CWC and WCW schemes over RWR and WRW are evident in Table 2. Although all four schemes achieve
similar sizes of errors and an order of two accuracy, the CPU times for CWC and WCW schemes are smaller than RWR and
WRW schemes at the same N with similar errors. This results from the broader stability properties of CWC and WCW
schemes that arise from the use of IIF on the reaction–diffusion part of the system.

The improved efficiency of CWC and WCW schemes in comparison to RWR and WRW schemes is highlighted even more
so in two- and three-dimensional simulations as shown in Tables 3 and 4. The accuracy and size of errors for the four dif-
ferent schemes are very similar using a fixed spatial resolution N. For example, CPU times for the WRW scheme are eight to
nine times larger than those for the WCW scheme in two-dimensional and three-dimensional systems for N = 80.

For the case of low spatial resolution N = 10, both WCW and WRW schemes show divergence while CWC and RWR
schemes remain to converge. This indicates that the DAD splitting sequence may be more robust in both stability and error
ccuracy and CPU time of RWR and WRW schemes for a one-dimensional system. N is the number of spatial grid points and NC stands for no
ence.

RWR & WRW RWR WRW
Dt = Dx/(6p) Dt = Dx2/(6p) Dt = Dx2/(6p)

Error Order CPU (s) Error Order CPU (s) Error Order CPU (s)

NC – – 0.859 – 1.00e�3 NC – –
NC – – 0.136 2.65 8.00e�3 0.136 – 1.40e�2
NC – – 2.16e�2 2.65 6.00e�2 2.16e�2 2.65 0.111
NC – – 5.56e�3 1.96 0.477 5.56e�3 1.96 0.891
NC – – 1.39e�3 1.99 3.80 1.39e�3 1.99 7.11
NC – – 3.61e�4 1.94 30.7 3.61e�4 1.94 57.4
NC – – 9.80e�5 1.88 244.7 9.80e�5 1.88 457.9

ccuracy and CPU time of CWC and WCW schemes for a one-dimensional system. N is the number of spatial grid points and NC stands for no convergence.

CWC WCW
Dt = Dx/(6p) Dt = Dx/(6p)

Error Order CPU (s) Error Order CPU (s)

0.866 – 2.00e�3 NC – –
0.136 2.67 6.00e�3 0.138 – 9.00e�3
2.16e�2 2.65 2.30e�2 2.16e�2 2.68 3.00e�2
5.55e�3 1.96 0.144 5.54e�3 1.96 0.176
1.39e�3 1.99 1.18 1.39e�3 1.99 1.47
3.60e�4 1.94 11.9 3.59e�4 1.94 11.1
9.80e�5 1.88 110.5 9.77e�5 1.88 94.4



Table 3
Error, accuracy and CPU time of RWR and WRW schemes in two- and three-dimensions.

N RWR & WRW RWR WRW
Dt = Dx/(6p) Dt = Dx2/(6p) Dt = Dx2/(6p)

Error Order CPU (s) Error Order CPU (s) Error Order CPU (s)

2-Dim. 10 NC – – 4.98 – 2.00e-2 NC – –
20 NC – – 0.745 2.74 0.308 0.276 – 0.564
40 NC – – 0.118 2.66 4.91 4.36e�2 2.66 8.99
80 NC – – 2.98e�2 1.99 78.7 9.51e�3 2.20 144.1

3-Dim. 10 NC – – 2.93 – 2.98 NC – –
20 NC – – 0.413 2.83 9.45 0.413 – 17.6
40 NC – – 6.39e�2 2.69 315.4 6.40e�2 2.69 587.9
80 NC – – 1.34e�2 2.25 10658.6 1.34e�2 2.26 19088.1

Table 4
Error, accuracy and CPU time of CWC and WCW methods in two- and three-dimensions.

N CWC WCW
Dt = Dx/(6p) Dt = Dx/(6p)

Error Order CPU (s) Error Order CPU (s)

2-Dim. 10 1.73 – 3.20e-2 NC – –
20 0.272 2.67 0.161 0.275 – 0.279
40 4.33e�2 2.65 1.42 4.32e�2 2.67 1.81
80 1.11e�2 1.96 15.3 1.11e�2 1.96 16.2

3-Dim. 10 2.597 – 0.496 NC – –
20 0.407 2.67 4.91 0.412 – 8.26
40 6.43e�2 2.66 93.3 6.42e�2 2.68 116.7
80 1.56e�2 2.04 2563.1 1.56e�2 2.04 2388.9
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control than ADA splitting sequence for stiff systems. This observation is consistent with the linear stability analysis and pre-
vious results on splitting sequences for stiff systems [5].

Remark: In the splitting method, the advection step and reaction–diffusion step are decoupled. The method used for solv-
ing the convection step, such as WENO used here, could be directly applied to nonlinear advection terms.

4. Application to two biological systems

Reaction–diffusion–advection systems often arise in modeling biological systems, where the advection may stem from
tissue growth [28,29], tumor formation [30], population dispersion [31,32], interstitial fluid flow [33] or various other
sources. Often reactions involving interactions among components at different time and spatial scales are stiff and contain
rate constants that vary by several orders of magnitude. In this section, we consider a one-dimensional morphogen system
and also a two-dimensional pattern formation system and use both CWC and WCW schemes to handle stiffness of the dif-
fusion–reaction–advection systems.

4.1. A one-dimensional morphogen system with advection

Experimental evidence demonstrates that in the developing Drosophila wing disc, the slope of the gradient of the morpho-
gen Decapentaplegic (Dpp) secreted from the dorsal–ventral axis regulates the growth of the disc [34]. This process, along
with the binding of Dpp with its receptor Thickveins (Tkv), has been modeled on a growing domain [35]. Here, we study a
simplified system with constant advection and nonlinear reactions on a fixed domain. Below is the system of equations [35]
in a non-dimensionalized form,
@d
@t þ a @d

@x ¼ D @2d
@x2 � �ðk1dr þ k�1bÞ � ad;

@r
@t þ a @r

@x ¼ �k1dr þ k�1bþ q
ðbþrÞn1þ1� br 1þ rdn2

hn2þdn2

� �
;

@b
@t þ a @b

@x ¼ k1dr � k�1b� b;

ð36Þ
on the interval [0,1] with no-flux boundary conditions at both ends. Here, d, r, and b, represent Dpp, Tkv, and their bound
complex, respectively; D is the diffusion coefficient for d; a is the flux coefficient for the tissue growth; k1 and k�1 are the
on- and off-reaction rates of the ligand-receptor binding; a and b are degradation rates for d and r; q and r are effective max-
imum feedback coefficients; h is an EC-50 value for the feedback of d onto r; and � arises from scaling the equation.



Table 5
Errors, orders of accuracy in time, and CPU time for numerical simulations of Eq. (36). The chosen parameters are: D = a = k�1 = q = r = b = h = n1 = n2 = 1,
k1 = � = a = 10. Initial conditions are given by d(x, t = 0) = r(x, t = 0) = b(x, t = 0) = 3/2 + cos (px).

Dt CWC WCW

Error Order CPU (s) Error Order CPU (s)

2.0e�3 6.18e�5 – 7.30e�2 2.54e�4 – 9.10e�2
1.0e�3 1.54e�5 2.01 0.117 6.34e�5 2.00 0.166
5.0e�4 3.80e�6 2.01 0.214 1.57e�5 2.02 0.302
2.5e�4 9.05e�7 2.01 0.412 3.73e�6 2.07 0.586
1.25e�4 1.81e�7 – 0.814 7.47e�7 – 1.16
6.25e�5 – – 1.57 – – 2.30

Table 6
Errors, orders of accuracy in time, and CPU time for numerical simulations of Eq. (36). The chosen parameters given by the original Dpp-Tkv model in [35] are:
D = a = � = 1, k1 = 5, k�1 = 0.1, a = 10, q = 0.8, b = 0.5, r = 10, h = 20, n1 = n2 = 4. Initial conditions are given by d(x, t = 0) = r(x, t0) = b(x, t0) = 10 + 10cos (px).

Dt CWC WCW

Error Order CPU (s) Error Order CPU (s)

1.0e�2 8.69e�2 – 3.60e�2 0.382 – 4.10e�2
5.0e�3 2.11e�2 2.04 4.70e�2 8.81e�2 2.11 5.40e�2
2.5e�3 5.16e�3 2.03 7.70e�2 2.13e�2 2.05 8.50e�2
1.25e�3 1.22e�3 2.08 0.121 5.05e�3 2.08 0.153
6.25e�4 2.44e�4 – 0.211 1.01e�3 – 0.272
3.125e�4 – – 0.398 – – 0.511
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We choose two different sets of parameters and initial conditions as shown in Tables 5 and 6 such that the maximum and
minimum eigenvalues of the Jacobian of the reaction terms at the initial state are on the orders of �100 and �1, respectively.
We apply CWC and WCW schemes to solve both stiff systems up to non-constant states at time t = 0.5 for both systems. The
listed error values in Tables 5 and 6 are calculated by a maximal difference between each simulation and the one using the
smallest Dt since an analytical solution for the system cannot be obtained. In Tables 5 and 6, the orders of the second to last
row are not calculated, because the order of accuracy would artificially increase when the resolution of simulation is too
close to the reference resolution [36]. Different from the linear cases, the order of accuracy in time is calculated by varying
Dt on a fixed spatial grid of size N = 40. Of course, the largest Dt used in the calculations satisfies the CFL condition.

Both CWC and WCW schemes achieve a second order accuracy in time with comparable CPU times, yet it is important to
note a stark contrast in error values calculated. Using the same grid size and time step, CWC schemes achieve an approxi-
mate fourfold smaller error value. As a result, a WCW scheme must use half the time-step to obtain an error value compa-
rable to that of a CWC scheme. From here, it is evident that the CWC and WCW schemes achieve the same order of accuracy
although CWC is still more accurate for computing stiff nonlinear systems, which differs from the results of the stiff linear
testing case. This highlights the benefits of splitting the stiff reaction part twice as opposed to the advection part twice. As a
result, it seems fitting to implement CWC in nonlinear systems as it may reach desired results more efficiently than WCW.
This very notion is visually demonstrated in the following two-dimensional patterning systems.
4.2. A two-dimensional patterning system with advection

Pattern formation in biological species have been well-modeled by reaction–diffusion systems; however it has also been
explored using reaction–diffusion–advection systems to account for growth in developmental systems [37,38] and applied to
ecological control strategies [39] and phyllotaxic systems [40].

Consider the following Gierer–Meinhardt system [41] with added advection [29],
@u
@t þ ar � u ¼ d1Duþ p u2

v � q1uþw1;
@v
@t þ ar � v ¼ d2Dv þ pu2 � q2v þw2;

(
ð37Þ
on a rectangle (0,10) � (0,10) with periodic boundary conditions. The error values listed for CWC and WCW in Table 7 are
again calculated through a maximal difference between each simulation and the one using the smallest time step size. We
first start from a smooth initial condition and simulate the system up to a transient non-constant state at time t = 0.5.

Similar to the one-dimensional morphogen system, both CWC and WCW simulations achieve a second order accuracy
with comparable CPU times, but differences remain in error values. The CWC scheme has an approximately fourfold smaller
error value than that of its WCW counterpart. Since the same fourfold difference in the two schemes is achieved by halving
time alone in the one-dimensional morphogen system, it follows that this difference likely occurs as an error in time.



Table 7
Errors, orders of accuracy, and CPU time for numerical simulations of Eq. (37). The chosen parameters are: a = 0.3, d1 = 10�3, d2 = 50, p = 0.1, q1 = 1, q2 = 100,
w1 = w2 = 1. The smooth initial conditions are given by uðx; t ¼ 0Þ ¼ vðx; t ¼ 0Þ ¼ cos p

5 ðx þ yÞ
� �

þ 10.

Dt CWC (Dt = Dx/20) WCW (Dt = Dx/20)

Error Order CPU (s) Error Order CPU (s)

20 0.575 – 9.90e�2 – – NC
40 0.125 2.20 0.715 0.507 – 0.936
80 2.76e�2 2.18 7.12 0.109 2.21 7.73

160 5.44e�3 2.34 87.2 2.14e�2 2.35 77.8
320 – – 1305.9 – – 952.6
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The difference in error between CWC and WCW is more significant when the initial conditions of the system are chosen to
be white noise ranging between values of 0 and 10. For this set of initial conditions, the system produces spotty patterns as
displayed in Fig. 5 and 6. For a time step of Dt = 6.25 � 10�3, the spots generated by the CWC scheme in Fig. 5 are clear and
distinct while those generated by the WCW scheme in Fig. 6(a) are reasonably more obscure and less refined.

Halving the time step to Dt = 3.125 � 10�3 for a WCW simulation resolves the pattern and the result stands quite com-
parable to the one produced by the original CWC simulation as shown in Fig. 6(b).
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Fig. 5. Patterns generated by CWC scheme simulations on an 80 � 80 grid up to t = 30 with Dt = 6.25 � 10�3. The parameters of the system are the same as
those used in Table 7.
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Fig. 6. Patterns generated by WCW scheme simulations on an 80 � 80 grid up to t = 30 with (a) Dt = 6.25 � 10�3 and (b) Dt = 3.125 � 10�3. The parameters
of the system are the same as those used in Fig. 5.
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When considering the errors produced in both nonlinear systems, we note that this discrepancy in the patterns produced
by the two schemes is essentially a reflection of the differences in error of the simulations. This demonstrates that the CWC
scheme achieves better accuracy than the WCW scheme in solving nonlinear stiff reaction–diffusion–advection systems. This
is consistent with the previous observation that the DAD splitting sequence should be more desirable for advection–diffu-
sion–reaction systems [5].

5. Conclusions

Stiff reaction–diffusion–advection equations are difficult to solve, because each part of the equation exhibits different
characteristics that require particular algorithms for treatment. In this paper, we have introduced a family of second order
splitting scheme for reaction–diffusion–advection equations in which the reaction–diffusion term is solved by cIIF while
WENO is used for the advection term. A key benefit of cIIF is its unconditional linear stability (of its second order version),
leading to better stability properties for the overall splitting method, in particular, when applied to a system with stiff reac-
tions. Stability analysis and direct simulations have demonstrated excellent efficiency of this new class of methods. In par-
ticular, we have explored two different splitting sequences: DAD (diffusion–reaction, advection, and diffusion–reaction) and
ADA (advection, diffusion–reaction, and advection). Both linear stability analysis and nonlinear simulations of stiff systems
have suggested that the DAD splitting approach, in which cIIF is used twice for the reaction–diffusion term and WENO once
for the advection term at each time step (CWC scheme), performs better than the ADA splitting (WCW scheme).

The overall approach of CWC scheme (or WCW scheme) can be directly extended to systems with adaptive mesh refine-
ment in space and other coordinates (e.g. polar coordinates) because of the flexibility of cIIF in inclusion of complex spatial
components [42]. It is conceivable that for an advection-dominated system, the WCW scheme in which WENO is utilized
twice at each time step may be more advantageous than CWC scheme. In general, both CWC and WCW schemes that are
easy to implement with good stability properties are efficient algorithms for solving reaction–diffusion–advection equations.
Although the cases studied here are with linear advection terms, the approach can be directly applied to the nonlinear advec-
tion terms through robust hyperbolic solvers such as WENO schemes.

Acknowledgments

This work was partially supported by NIH grants R01GM75309, R01GM67247, and P50GM76516, and NSF grant DMS-
0917492 (to Q. N.), and NSF grants DMS-1019544 (to X. L.) and DMS-0810413 (to Y. Z.).

References

[1] D.A. Fournier, J.R. Sibert, J. Hampton, P.J. Bills, An advection–diffusion–reaction model for the estimation of fish movement parameters from tagging
data, with application to skipjack tuna (Katsuwonus pelamis), Canadian Journal of Fisheries and Aquatic Sciences 56 (1999) 925–938.

[2] G. Hauke, A simple subgrid scale stabilized method for the advection–diffusion–reaction equation, Computer Methods in Applied Mechanics and
Engineering 191 (2002) 2925–2947.

[3] R. Dillon, H.G. Othmer, A mathematical model for outgrowth and spatial patterning of the vertebrate limb bud, Journal of Theoretical Biology 197
(1999) 295–330.

[4] D.L. Ropp, J.N. Shadid, Stability of operator splitting methods for systems with indefinite operators: advection–diffusion–reaction systems, Journal of
Computational Physics 228 (2009) 3508–3516.

[5] B. Sportisse, An analysis of operator splitting techniques in the stiff case, Journal Computational Physics 161 (1) (2000) 140–168.
[6] Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics 214 (2) (2006) 521–537.
[7] Q. Nie, F.Y.M. Wan, Y.-T. Zhang, X.-F. Liu, Compact integration factor methods in high spatial dimensions, Journal of Computational Physics 227 (10)

(2008) 5238–5255.
[8] C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems, SIAM Review 51 (1) (2009) 82–126.
[9] G. Beylkin, J.M. Keiser, L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, Journal of Computational Physics 147

(1998) 362–387.
[10] T.Y. Hou, J. Lowengrub, M.J. Shelley, Removing the stiffness from interfacial flows with surface tension, Journal of Computational Physics 114 (1994)

312.
[11] P.H. Leo, J.S. Lowengrub, Q. Nie, Microstructural evolution in orthotropic elastic media, Journal of Computational Physics 157 (2000) 44–88.
[12] H.J. Jou, P.H. Leo, J.S. Lowengrub, Microstructural evolution in inhomogeneous elastic media, Journal of Computational Physics 131 (1997) 109.
[13] Q. Du, W. Zhu, Stability analysis and applications of the exponential time differencing schemes, Journal of Computational Mathematics 22 (2004) 200.
[14] Q. Du, W. Zhu, Modified exponential time differencing schemes: analysis and applications, BIT Numerical Mathematics 45 (2005) 307–328.
[15] A.-K. Kassam, L.N. Trefethen, Fourth-order time stepping for stiff PDEs, SIAM Journal on Scientific Computing 26 (2005) 1214–1233.
[16] X.-D. Liu, S. Osher, T. Chan, Weighted essentially nonoscillatory schemes, Journal of Computational Physics 115 (1994) 200–212.
[17] G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes, Journal of Computational Physics 126 (1996) 202–228.
[18] C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock capturing schemes, Journal of Computational Physics 77 (1988) 439–

471.
[19] B. Van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, Journal of Computational Physics 32

(1) (1979) 101–136.
[20] A. Harten, High resolution schemes for hyperbolic conservation laws, Journal of Computational Physics 49 (3) (1983) 357–393.
[21] P. Colella, P.R. Woodward, The Piecewise Parabolic Method (PPM) for gas-dynamical simulations, Journal of Computational Physics 54 (1) (1984) 174–

201.
[22] G. Strang, On the construction and comparison of difference schemes, SIAM Journal on Numerical Analysis 5 (3) (1968) 506–517.
[23] S. Gottlieb, C.-W. Shu, Total variation diminishing Runge–Kutta schemes, Mathematics of Computation 67 (221) (1998) 73–85.
[24] G. Dahlquist, Error analysis for a class of methods for stiff non-linear initial value problems, Lecture Notes in Mathematics 506 (1976) 60–72.
[25] E. Hairer, M. Zennaro, On error growth functions of Runge–Kutta methods, Applied Numerical Mathematics 22 (1996) 205–216.
[26] E. Hairer, G. Wanner, Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems, Springer, 1996.



S. Zhao et al. / Journal of Computational Physics 230 (2011) 5996–6009 6009
[27] A. Stuart, A.R. Humphries, Model problems in numerical stability theory for initial value problems, SIAM Review 36 (1994) 226–257.
[28] C.-S. Chou, W.-C. Lo, K.K. Gokoffski, Y.-T. Zhang, F.Y.M. Wan, A.D. Lander, A.L. Calof, Q. Nie, Spatial dynamics of multi-stage cell-lineages in tissue

stratification, Biophysical Journal 99 (10) (2010) 3145–3154.
[29] E.J. Crampin, E.A. Gaffney, P.K. Maini, Reaction and diffusion on growing domains: scenarios for robust pattern formation, Bulletin of Mathematical

Biology 61 (6) (1999) 1093–1120.
[30] S.M. Wise, J.S. Lowengrub, H.B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth–I. Model and numerical method, Journal

of Theoretical Biology 253 (3) (2008) 524–543.
[31] R. Hambrock, Y. Lou, The evolution of conditional dispersal strategies in spatially heterogeneous habitats, Bulletin of Mathematical Biology 71 (8)

(2009) 1793–1817.
[32] M.A. Lewis, P. Kareiva, Allee dynamics and the spread of invading organisms, Theoretical Population Biology 43 (2) (1993) 141–158.
[33] P.H. Feenstra, C.A. Taylor, Drug transport in artery walls: a sequential porohyperelastic-transport approach, Computer Methods in Biomechanics and

Biomedical Engineering 12 (3) (1987) 263–276.
[34] D. Rogulja, K.D. Irvine, Regulation of cell proliferation by a morphogen gradient, Cell 123 (3) (2005) 449–461.
[35] R.E. Baker, P.K. Maini, A mechanism for morphogen-controlled domain growth, Journal of Mathematical Biology 54 (5) (2007) 597–622.
[36] C. Ober, J. Shadid, Studies on the accuracy of time-integration methods for the radiation-diffusion equations, Journal of Computational Physics 195

(2004) 743–772.
[37] A.J. Perumpanani, J.A. Sherratt, P.K. Maini, Phase differences in reaction–diffusion–advection systems and applications to morphogenesis, IMA Journal

of Applied Mathematics 55 (1) (1995) 19–33.
[38] R.A. Satnoianu, M. Menzinger, A general mechanism for inexact phase differences in reaction–diffusion–advection systems, Physics Letters A 304 (5–6)

(2002) 149–156.
[39] J.D. Murray, Mathematical Biology II: Spatial Models and Biomedical Applications, Interdisciplinary Applied Mathematics, vol. 18, Springer, New York,

2003.
[40] G.P. Bernasconi, J. Boissonade, Phyllotactic order induced by symmetry breaking in advected turing patterns, Physics Letters A 232 (3–4) (1997) 224–

230.
[41] A. Gierer, H. Meinhardt, A theory of biological pattern formation, Biological Cybernetics 12 (1) (1972) 30–39.
[42] X. Liu, Q. Nie, Compact integration factor methods for complex domains and adaptive mesh refinement, Journal of Computational Physics 229 (16)

(2010) 5692–5706.


	Operator splitting implicit integration factor methods for stiff reaction–diffusion–advection systems
	1 Introduction
	2 Operator-splitting method combined with WENO and cIIF methods
	2.1 Two splitting schemes
	2.1.1 Diffusion–advection–diffusion (DAD) splitting
	2.1.2 Advection–diffusion–advection (ADA) splitting

	2.2 Truncation error
	2.2.1 CWC scheme
	2.2.2 WCW scheme

	2.3 Linear stability analysis
	2.3.1 CWC scheme
	2.3.2 WCW scheme
	2.3.3 A comparison between CWC and WCW schemes


	3 Numerical tests
	4 Application to two biological systems
	4.1 A one-dimensional morphogen system with advection
	4.2 A two-dimensional patterning system with advection

	5 Conclusions
	Acknowledgments
	References


