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Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes
for compressible flows with high Reynolds numbers
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A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the
resolution power of high-order weighted essentially nonoscillatory~WENO! schemes for solving one- and
two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A
one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and
laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test
problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale
structures, the details of the small structures are determined by the physical viscosity~therefore, the Reynolds
number! in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the
numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A
careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific
Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that
high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-
dimensional and two-dimensional test problems.

DOI: 10.1103/PhysRevE.68.046709 PACS number~s!: 83.85.Pt
gh
fo
tro
lo

h
k

tiv
io
ry
a

wi
o
s
n

o
ar

all
the
ion
eri-

that
ical

me
pa-
ture
for

of
It is
ore

the

rs in
the
lds
ap-
the

f the
on-
the

the
has
I. INTRODUCTION

A. Preliminaries

Recently, laboratory experiments conducted on hi
energy laser facilities have opened a new opportunity
experimental simulations of phenomena of interest for as
physics, in particular the hydrodynamics of supernova exp
sions @1,2#. The evolution of hydrodynamic fluids for bot
systems is governed by the compressible Navier-Sto
equations@3,4#.

The purpose of this paper is restricted to a quantita
study of the size of numerical viscosities and the resolut
power of high-order weighted essentially nonoscillato
~WENO! schemes for solving one- and two-dimension
Navier-Stokes equations for compressible gas dynamics
high Reynolds numbers. We use a one-dimensional sh
tube problem, a one-dimensional example motivated by
pernova and laser experiments, and a two-dimensio
Rayleigh-Taylor instability problem@5,6,4# as our numerical
test problems. It should be noted that for the tw
dimensional Rayleigh-Taylor instability problem, or simil
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problems with small-scale structures, the details of the sm
structures are determined by the physical viscosity in
Navier-Stokes equations. Thus, to obtain faithful resolut
to these small-scale structures, it is essential that the num
cal viscosity inherent in the scheme be small enough so
physical viscosity dominates. We consider such numer
results to be fully resolved. Results in@7# indicate that
higher-order WENO schemes are more efficient in CPU ti
to reach the same resolution for Euler equations. In this
per, a careful mesh refinement study is performed to cap
the threshold mesh related to specific Reynolds numbers
full resolution, when WENO schemes of different orders
accuracy are used to solve the Navier-Stokes equations.
demonstrated that higher-order WENO schemes are m
CPU time efficient to reach the same resolution, both for
one-dimensional~1D! and two-dimensional~2D! test prob-
lems.

We remark that there are two dimensionless paramete
the Navier-Stokes equations: the Reynolds number and
Prandtl number. The focus of this paper is on the Reyno
number since it is the most important parameter for our
plications. The Reynolds number also appears in both
momentum and energy equations. Therefore, the value o
effective Reynolds number in the momentum equation c
trols the dissipation process that converts the eddies in
Kolmogorov scale into the heat. On the other hand,
Prandtl number appears only in the energy equation and
©2003 The American Physical Society09-1
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a role on the relative energy partition. While a Prandtl nu
ber of 0.7 may be appropriate for physical application,
numerical algorithm for the governing equations does
necessarily have a fixed Prandtl number. It is, however,
yond the scope of this paper to determine the value of
effective Prandtl number for a given resolution; this will be
subject for future research. The conclusion of our pape
not affected by the determination of the effective Pran
number.

B. Brief overview of WENO

In this paper, we compute the compressible Navier-Sto
equations in 1D and 2D, using the third-, fifth-, and nint
order finite-difference WENO schemes, which are based
the Lax-Friedrichs building blocks and the local characte
tic decompositions for the Euler terms. These WEN
schemes were developed by Liu, Osher, and Chan in@8# for
the third-order case, by Jiang and Shu in@9# for the fifth-
order case, and by Balsara and Shu in@10# for higher-order
cases. We will only give a very brief sketch of the algorithm
here and refer to@9# and @10#, and also to the lecture note
@11#, for most of the details. For a conservation laws syst

ut1 f ~u!x1g~u!y50, ~1!

the conservative finite-difference schemes we use appr
mate the point valuesui j at a uniform~or smoothly varying!
grid (xi ,yj ) in a conservative fashion. Namely, the derivati
f (u)x at (xi ,yj ) is approximated along the liney5yj by a
conservative flux difference

f ~u!xux5xi
'

1

Dx
~ f̂ i 11/22 f̂ i 21/2!,

where for the fifth-order WENO scheme the numerical fl
f̂ i 11/2 depends on the five-point valuesf (uk j), k5 i 22,...,i
12, when the wind is positive@i.e., whenf 8(u)>0 for the
scalar case, or when the corresponding eigenvalue is pos
for the system case with a local characteristic decomp
tion#. This numerical fluxf̂ i 11/2 is written as a convex com
bination of three third-order numerical fluxes based on th
different substencils of three points each, and the comb
tion coefficients depend on a ‘‘smoothness indicator’’ me
suring the smoothness of the solution in each stencil. No
that this dimension-by-dimension approach to approxim
derivatives in different directions is different from dimensio
splitting, and can retain high-order accuracy unlike dime
sion splitting. The resulting scheme can be proven uniform
fifth-order accurate in smooth regions including at a
smooth extrema. For discontinuities, the solution is ess
tially nonoscillatory and gives sharp shock transitions. T
ninth-order WENO schemes follow a similar recipe, wi
nine points in the stencil and five substencils of five poi
each. The ‘‘monotonicity preserving limiters’’ in@10# arenot
used for the test cases in this paper. For the second deriv
viscous terms, we use fourth-order central difference
proximations when the third- and fifth-order WENO schem
are used, and eighth-order central difference approximat
04670
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when the ninth-order WENO scheme is used. Time discr
zation is via the third-order total variation diminishin
~TVD! Runge-Kutta method in Shu and Osher@12#. The
Courant-Friedrichs-Levy~CFL! number for the convective
part is taken as 0.6 for all the runs, unless otherwise sta
Smaller time steps as well as higher-order time discret
tions do not seem to dramatically change the conclusi
drawn in this paper. All codes have been validated by fi
computing the Navier-Stokes equations with suitable forc
functions admitting exact, closed-form solutions, and veri
ing with a mesh refinement study that the correct order
accuracy is achieved.

The WENO finite-difference schemes have been cho
in this paper because they are uniformly high-order accu
and robust for strong shocks or other discontinuities, wh
are features especially suitable for computing hig
Reynolds-number Navier-Stokes equations containing b
sharp gradient regions and rich smooth solution structu
Notice that the dimension-by-dimension approach to
proximate derivatives in all directions is different from d
mension splitting, and can retain high-order accuracy.
present the numerical results for the one-dimensional pr
lem in Sec. II and for the two-dimensional problem
Sec. III.

C. Measurements of resolution and convergence

We assume there are two uniform Cartesian meshesGh
andGh/2 , which have mesh sizesh andh/2 in each direction,
respectively. We further assume that the grid points$xi

h , i
51,2,...% of the coarse meshGh are also the grid points of the
fine meshGh/2 , i.e., $xi

h , i 51,2,...%,$xi
h/2 , i 51,2,...%. This

assumption is not essential but it does allow us to meas
the asymptotic errorEh,i below without using interpolation
We denoteuh anduh/2 to be the numerical solutions of ou
r-order WENO schemes on the two meshesGh and Gh/2 ,
respectively, andu to be the exact solution of our partia
differential equation. The error at each grid point iseh,i
5uh,i2ui andeh/2,i5uh/2,i2ui . Whenu is smooth, we have
eh,i'Chr andeh/2,i'22rChr .

Definition 1.1. The asymptotic convergence error at a g
point xi of Gh ~which is also a grid point of the more refine
meshGh/2) is defined by

Eh,i,uh,i2uh/2,i .

It is easy to seeEh,i'(1 – 22r)eh,i for a smooth solutionu.
The L1 andL` asymptotic convergence errors in a regionV
are defined as

iEhiL1~V!5
1

N (
i 51

N

uEh,i u, iEhiL`~V!5 max
1< i<N

uEh,i u,

whereN is the number of grid points withinV in the coarser
meshGh .

Note that when the solutionu is smooth, the asymptotic
convergence erroriEhi is 1 – 22r times the size of the nu
merical erroriehi on the coarser mesh for anr-order numeri-
cal scheme. It is obvious that the numerical order of accur
of the scheme is given approximately by
9-2
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r 5
log~ iEhi /iEh/2i !

log 2
.

Definition 1.2. Given «.0, a numerical solution for the
nondimensional Navier-Stokes equations is considered
solved on the« level in domainV with respect to the norm
i•i if

iEhiV<«,

where Eh measures the asymptotic convergence error,
fined above, of the densityr.

In our one- and two-dimensional numerical examples, d
continuous initial conditions are used. In order to make
possible for the numerical viscosity of the WENO schem
to be smaller than the physical viscosity when the mesh
is suitably small, we smooth the discontinuous initial con
tion to be continuous but have a narrow transition region.
example, if the initial condition is a step function,

f ~x!5H a, x,x0 ,

b, x>x0 ,
~2!

then the smoothed initial condition will be

f ~x!5
b2a

2
tanh@n~x2x0!#1

b1a

2
, ~3!

wheren determines the width of the transition region. T
biggern is, the narrower the transition region becomes.

Finally, we define a quantitative measurement for the d
ference of two different numerical solutions,$ui% i 51

m and
$v i% i 51

n , on two grids. These two grids can be the same
different. When they are different, one can be a subset of
other, or they can be totally different.

Definition 1.3. $ui% i 51
m and $v i% i 51

n are numerical solu-
tions on meshesGm andGn of domainV, grid point number
n.m. $Pv i% i 51

m is the high-order ENO interpolation o
$v i% i 51

n from the finer meshGn to the coarser meshGm , if
necessary. TheL1 absolute difference betweenu and v is
defined as

iEhiL1~V!5
1

m (
i 51

m

uui2Pv i u.

The L1 relative difference betweenu andv is defined as

iEr iL1~V!5
1

m (
i 51

m Uui2Pv i

ui
U,

where we assumeuiÞ0, i 51,...,m. The L1 visual relative
difference betweenu andv is defined as

iEviL1~V!5

1

m (
i 51

m

uui2Pv i u

max1< i<m ui2min1< i<m ui
,

where we assume max1<i<muiÞmin1<i<mui .
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II. THE ONE-DIMENSIONAL PROBLEM

First we nondimensionalize the Navier-Stokes equatio
The actual computation is performed in the nondimension
ized quantities. Nondimensionalization is conducted with
same notation as that used in Ryutovet al. @13#. Denote the
lengthx scale bya cm, the densityr scale byb g/cm3, and
the pressurep scale byc dyn/cm2. Then the timet scale is
aAb/c and the velocityu scale isAc/b. Taking x̄5x/a, r̄

5r/b, p̄5p/c, t̄ 5t/(aAb/c), ū5u/Ac/b, and omitting
bars for the scaled variables, we obtain the nondimensio
ized Navier-Stokes equations in 1D,

r t1~ru!x50,

~ru! t1~ru21p!x5
1

Re
~ 4

3 uxx!, ~4!

Et1@u~E1p!#x5
1

ReF2

3
~u2!xx1

1

~g21!Pr
~C2!xxG .

HereE is the total energy,E5@p/(g21)#1 1
2 ru2, whereg

is the ratio of specific heats, withg51.4 for air. Pr is the
Prandtl number, with Pr50.7. C is the sound speed, relate
to the pressurep and the densityr by C25gp/r. Re is the
Reynolds number,

Re5
aAc/b

n
, ~5!

where n is the kinematic viscosity, which is related to th
dynamic viscositym by

n5
m

r
. ~6!

A. WENO computation for the Navier-Stokes equations
on a shock tube problem

We first solve Sod’s one-dimensional shock tube probl
for the Navier-Stokes equations~4!. The computational do-
main is@21.2,1.2#. The Riemann initial condition is given by

~r,u,p!5H ~1,0,1!, x<0

~0.125,0,0.1!, x.0
~7!

smoothed out by Eq.~3! with n510 as our smoothed initia
condition. Final simulation time ist50.4. WENO3,
WENO5, and WENO9~third-, fifth-, and ninth-order WENO
schemes! are used. Reynolds numbers are taken to be
51000, 5000, and 10 000.

In Table I, we list theL1 andL` asymptotic convergence
errors and numerical orders of accuracy~see definition 1.1!
for WENO3 and WENO5 schemes when the Reynolds nu
ber Re51000. The results for WENO9 follow similar pat
terns and are thus omitted to save space. We also presen
same errors and orders when the Reynolds number
510 000 in Table II. The results for Re55000 are similar and
hence are omitted to save space. We can clearly see tha
9-3
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ZHANG et al. PHYSICAL REVIEW E 68, 046709 ~2003!
numerical orders of accuracy approach the theoretically
signed orders when the mesh is refined, as expected. H
ever, for larger Reynolds numbers, more grid points are
quired before we can see the numerical orders of accu
approaching the theoretical value. On the other hand,
could ask the question of the number of grid points requi
to achieve a fixed« resolution, see definition 1.2. Notice th
this is different from the question of asymptotic errors a
orders but is, however, a more practical question since
directly related to the CPU cost of the algorithm to reach
fixed resolution. The grid point numbersN which are needed
to get a resolved solution on the«51024 level with respect
to the L` norm on the whole domainV5@21.2,1.2# for
WENO3, WENO5, and WENO9 are listed in Table III. I
Fig. 1, we plot the relationship of the Reynolds number a
the threshold mesh point numberN for this resolution. We
can conclude the relationship is almost linear, and the n

TABLE I. Asymptotic convergence errors and numerical ord
of accuracy for WENO3 and WENO5; Reynolds number51000;
Sod’s shock tube problem.

WENO3
N L1 error Order L` error Order

100 9.9431024 1.3431022

200 2.9931024 1.73 6.4431023 1.05
400 6.5431025 2.19 1.7731023 1.86
800 9.2431026 2.82 3.1031024 2.51
1600 1.0631026 3.12 3.9431025 2.98

WENO5
N L1 error Order L` error Order

100 3.5031024 8.6331023

200 5.1031025 2.78 2.4331023 1.83
400 3.3931026 3.91 2.3831024 3.35
800 1.2931027 4.72 1.0431025 4.52
1600 5.1431029 4.65 3.7031027 4.81

TABLE II. Asymptotic convergence errors and numerical orde
of accuracy for WENO3 and WENO5; Reynolds numb
510 000; Sod’s shock tube problem.

WENO3
N L1 error Order L` error Order

2000 3.3031025 8.3331023

4000 1.0031025 1.72 2.7631023 1.59
8000 1.7031026 2.56 5.7931024 2.25

16 000 2.0431027 3.06 7.6931025 2.91

WENO5
N L1 error Order L` error Order

1000 4.4931025 1.3131022

2000 1.0831025 2.06 4.6931023 1.49
4000 7.9431027 3.77 4.8931024 3.26
8000 3.4131028 4.54 2.2031025 4.48
04670
e-
w-
-

cy
e
d

is
a

d

-

ber of grid points needed to reach this resolution for WEN
is about one-half that for WENO5, which in turn is abo
one-half that for WENO3.

Next, we compare the number of grid points needed
resolve in three different regions, namely the rarefact
wave, the contact discontinuity, and the shock wave reg
for the shock tube problem with Re51000. The L`

asymptotic convergence error and orders of convergence
WENO5 are computed at three different regions, namely
rarefaction wave region@20.7,0.1#, the contact discontinuity
region@0.2,0.52#, and the shock wave region@0.6,0.8#. From
the results in Table IV, we can conclude that for the sa
grid point number, the asymptotic convergence error in
rarefaction wave region is much smaller than that in the c
tact discontinuity region, which in turn is much smaller th
that in the shock wave region, In this problem, for WENO
N5800 points are needed to resolve the shock wave reg
on the 1024 level with respect to theL` norm, while only
N5200 points are needed to resolve the contact discont
ity region and onlyN5100 points are needed to resolve t
rarefaction wave to the same level of resolution. The conc
sion is that, for the Navier-Stokes equations with high Re
nolds numbers, the rarefaction wave is the easiest to reso

FIG. 1. The relationship of the Reynolds number and the nu
ber of mesh points needed to obtain resolved solutions withL`

convergence error,1024 on the domain@21.2,1.2#. Shock tube
problem. Thex axis is the Reynolds numbers and they axis is the
threshold number of grid points that WENO uses to obt
1024-resolved solutions. The solid line with circles is for the thir
order WENO; the dashed line with triangles is for the fifth-ord
WENO; the dotted line with squares is for the ninth-order WEN

s TABLE III. Grid point number N needed to obtain resolve
solutions withL` asymptotic convergence error,1024 on the do-
main @21.2,1.2#. Shock tube problem.

Reynolds no. N of WENO3 N of WENO5 N of WENO9

1000 1600 800 400
5000 8000 4000 2000

10 000 16 000 8000 4000
9-4
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TABLE IV. Asymptotic convergence errors and numerical orders of accuracy for WENO5 at diffe
regions: the rarefaction wave region@20.7, 0.1#, the contact discontinuity region@0.2,0.52#, and the shock
wave region@0.6,0.8#. Reynolds number51000; Sod’s shock tube problem.

N

Rarefaction Contact Shock

L` error Order L` error Order L` error Order

50 6.6431024 1.4031023 1.8231022

100 5.5431025 3.58 1.6531024 3.09 8.6331023 1.08
200 2.0331026 4.77 4.1731025 1.98 2.4331023 1.83
400 6.5831028 4.94 1.5931026 4.71 2.3831024 3.35
800 2.0831029 4.98 5.6131028 4.83 1.0431025 4.52
1600 6.09310211 5.09 1.8331029 4.94 3.7031027 4.81
co

er
g
e

re
la
lin
t

he
t

ric
e

an
nc

.

-
ut-

ary.
ce
l
NO
m

er-
esti-

ll be
that
m-
the shock wave is the hardest to resolve, and contact dis
tinuity is in between in terms of difficulties for resolution.

B. WENO computation for the Navier-Stokes equations with
Reynolds numbers corresponding to the supernova

and the laser experiments

The objective of this subsection is to simulate the Navi
Stokes equations with Reynolds numbers correspondin
the supernova and the laser experiments, respectiv
WENO schemes with adequately refined meshes for a
able resolution are used. Since the supernova and the
experiments should yield identical results under the sca
when the Euler equations are used, we would like to see
effect of different physical viscosities corresponding to t
supernova and to the laser experiments. We emphasize
this is a one-dimensional model and does not take sphe
geometry into consideration, however we do expect the
sential conclusions about numerical viscosity, resolution,
convergence in this simple model to give important guida
to the real physical problems.

We take the initial conditionr ~in g/cm3!, velocity u ~in
cm/ms!, and pressurep ~in Mbar! from the data att52 ns in
Drakeet al. @14#, kindly provided to us by Omar Hurricane
See Fig. 2 for the plot of density and pressure.

The dimensional computational domain is 0<x<0.095 in
centimeters. We nondimensionalize the data byx̄5x/a with
a50.01 cm, r̄5r/b with b51 g/cm3, and p̄5p/c with c
04670
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550 Mbar. Then the timet is scaled byt̄ 5t/(aAb/c) and
the velocityu is scaled byū5u/Ac/b. We compute the non-
dimensionalized Navier-Stokes equations~4! on these nondi-
mensionalized data to nondimensionalized timest̄
54 ns/(aAb/c) and t̄ 56 ns/(aAb/c). We omit the bars for
the scaled variables in the following.

On the left boundaryx50, we use a characteristic bound
ary condition because the left boundary is not really an o
flow boundary. On the right boundaryx59.5, we use a Neu-
mann boundary condition because it is an outflow bound

In this subsection, we use the fifth-order finite differen
WENO scheme@9# with uniform meshes. Since the origina
data are on a nonuniform mesh, we use a fourth-order E
interpolation to obtain initial conditions on our mesh fro
the given data.

Our one-dimensional example is motivated by the sup
nova and laser experiments. The Reynolds numbers are
mated to be~Ryutov et al. @13# and Robeyet al. @15#!

Re51.931011 for the supernova,

Re51.43105 for the laser experiments.

The cases corresponding to these Reynolds numbers wi
called Supernova and Laser, respectively. One must note
other laser experiments may have different Reynolds nu
bers.
FIG. 2. Dimensional initial data at timet52 ns. Left: densityr ~in g/cm3!; right: pressurep ~in Mbar!.
9-5



ZHANG et al. PHYSICAL REVIEW E 68, 046709 ~2003!
FIG. 3. The fifth-order WENO solution withN51679 grid points~the solid line!, 3358 grid points~the dash-dotted line!, 6716 grid points

~the dotted line!, and 13 432 grid points~the dashed line!. Left: results of Laser; right: results of Supernova. Densityr. Top: at time t̄

54 ns/(aAb/c); bottom: at timet̄ 56 ns/(aAb/c), wherea50.01 cm,b51 g/cm3, andc550 Mbar.

FIG. 4. Overlay of fifth-order WENO solutions of Laser and Supernova with 13 432 grid points. Laser~the solid line! vs Supernova~the

dashed line!. Left: the whole picture; right: enlarged region. Top: densityr; bottom: pressurep. Time t̄ 56 ns/(aAb/c), where a
50.01 cm,b51 g/cm3, andc550 Mbar.
046709-6
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FIG. 5. Fifth-order WENO solutions of Euler with differentN matching converged solutions of the Navier-Stokes equations with diffe
Reynolds numbers. Pressurep, the shock region. Top left: NS with Re5103 matching Euler withN5600; top right: NS with Re523103

matching Euler withN51000; bottom left: NS with Re543103 matching Euler withN51600; bottom right: NS with Re583103 matching

Euler with N52500. Solid lines are for NS, dashed lines or circles are for Euler. Timet̄ 56 ns/(aAb/c), where a50.01 cm, b
51 g/cm3, andc550 Mbar.

FIG. 6. Fifth-order WENO solutions of Euler with differentN matching converged solutions of the Navier-Stokes equations with diffe
Reynolds numbers. Densityr, the contact discontinuity region. Top left: NS with Re5103 matching Euler withN5100; top right: NS with
Re523103 matching Euler withN5250; bottom left: NS with Re543103 matching Euler withN5400; bottom right: NS with Re58

3103 matching Euler withN5600. Solid lines are for NS, circles are for Euler. Timet̄ 56 ns/(aAb/c), wherea50.01 cm,b51 g/cm3, and
c550 Mbar.
046709-7
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We can look at the convergence of the WENO schemes
comparing the simulation results usingN51679, 3358,
6716, and 13 432 uniform mesh points in Fig. 3 fort̄

54 ns/(aAb/c) and for t̄ 56 ns/(aAb/c) ~only density is
shown to save space!, wherea50.01 cm,b51 g/cm3, and
c550 Mbar. It is clear that on this scale, even the coars
mesh gives adequate resolution in most parts of the dom
with the more refined meshes giving better resolutions n
sharp gradient regions. On a more quantitative level, theL1

asymptotic convergence error of the numerical solutions
tween the two meshes withN56716 and 13 432 points~see
definition 1.1! is less than 1.931023, theL1 relative differ-
ence is less than 4.231023, and theL1 visual relative dif-
ference is less than 9.631024 for the densityr at both t̄ .
The L1 differences for the velocityu and for the pressurep
are on similar levels. This gives us confidence that the m
refined mesh calculation is a numerically converged, or m
precisely at least 1023-resolved solution for the Navier
Stokes equations for those Reynolds numbers.

Next, we use the numerically converged solutions to lo
at the difference between Laser and Supernova. We plot
results using the most refined 13 432 mesh points of La
and Supernova in the same graph. See Fig. 4 for the de
and pressure att̄ 56 ns/(aAb/c). The velocity at this time
and all quantities att̄ 54 ns/(aAb/c) are not shown to save
space, as they present similar patterns. The difference

TABLE V. Physical viscosity versus numerical viscosity, in th
shock region.A, number of pointsN for WENO9; B, number of
pointsN for WENO5; C, number of pointsN for WENO3.

Reynolds no. A B C

1000 400 600 1000
2000 600 1000 1600
4000 1000 1600 2500
8000 1600 2500 4500
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tween the results for Laser and Supernova is very small
still discernible, especially when enlarged at the place of r
structures; see the graphs at the right in Fig. 4. On a m
quantitative level, theL1 absolute difference of densityr in
the enlarged region between the Laser and Supernova c
~the upper-right graph in Fig. 4! is 1.831022, theL1 relative
difference is 9.631022, and theL1 visual relative difference
is 3.431022, all of them being more than a magnitude larg
than the 1023 resolution of the numerical solutions, henc
they are not due to numerical errors but are true differen
of solutions to the Navier-Stokes equations with differe
Reynolds numbers. The same conclusion also holds for
velocity u and for the pressurep. This indicates that there ar
indeed small but discernible differences between the s
tions of the Navier-Stokes equations with Reynolds numb
corresponding to the Supernova and to the Laser experim
These differences are most prominent near the high grad
regions in the solutions~the enlarged regions!. Depending on
whether such differences are significant or not for the phy
cal phenomena to be studied, the laser experiment ma
may not be a suitable model to study supernova.

C. Study of numerical viscosity of WENO schemes

The objective of this subsection is to perform a quanti
tive study on the size of the numerical viscosity of the thir

TABLE VI. Physical viscosity versus numerical viscosity, in th
contact discontinuity region.A, number of pointsN for WENO9;B,
number of pointsN for WENO5; C, number of pointsN for
WENO3.

Reynolds no. A B C

1000 70 100 250
2000 100 250 400
4000 200 400 800
8000 300 600 1200
s, in the
ical
NO,
FIG. 7. The relationship of the numerical viscosity of WENO schemes and the physical viscosity of the Navier-Stokes equation
shock region~left! and in the contact discontinuity region~right!. The x axis is the Reynolds number whose reciprocal is the phys
viscosity, and they axis is the number of grid pointsN used in the WENO schemes. The solid line with circles is for the third-order WE
the dashed line with triangles is for the fifth-order WENO, and the dotted line with squares is for the ninth-order WENO.
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FIG. 8. Rayleigh-Taylor instability. Reynolds number525 000. Densityr; 15 equally spaced contour lines fromr50.952 269 tor
52.145 89. Top from left to right: fifth-order WENO results withh5

1
120, 1

240, 1
480, 1

960; bottom from left to right: ninth-order WENO result
with h5

1
120, 1

240, 1
480, 1

960.
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FIG. 9. Rayleigh-Taylor instability. Reynolds number550 000. Densityr; 15 equally spaced contour lines fromr50.952 269 tor
52.145 89. Top from left to right: fifth-order WENO results withh5

1
240, 1

480, 1
960, 1

1920; bottom from left to right: ninth-order WENO result
with h5

1
240, 1

480, 1
960, 1

1920.
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FIG. 10. Rayleigh-Taylor instability. Reynolds number5105. Density r; 15 equally spaced contour lines fromr50.952 269 tor
52.145 89. Top from left to right: fifth-order WENO results withh5

1
480, 1

960, 1
1440,

1
1920; bottom from left to right: ninth-order WENO result

with h5
1

480, 1
960, 1

1440,
1

1920.
046709-11
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FIG. 11. Rayleigh-Taylor instability. Densityr, 1D cut aty50.6 for numerical results with different mesh sizes. Left: fifth-order WEN
scheme; right: ninth-order WENO scheme. Top: Re525 000; middle: Re550 000; bottom: Re5105.
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NUMERICAL VISCOSITY AND RESOLUTION OF HIGH- . . . PHYSICAL REVIEW E 68, 046709 ~2003!
fifth-, and ninth-order WENO schemes, using the on
dimensional test case in the previous subsection. In o
words, we attempt to find the corresponding ‘‘numeric
Reynolds number’’ for the WENO schemes, which is
course a function of the number of grid points.

First we compute the ‘‘converged’’ solutions of Navie
Stokes equations with Reynolds numbers Re5103, 23103,
43103, 83103 using fifth-order WENO schemes with a
adequately large number of grid points, with absolute a
relativeL1 asymptotic convergence errors~see definition 1.1!
to be less than 1023. We use these converged solutions
‘‘exact solutions’’ of the Navier-Stokes equations and the v
cosities of these solutions as the physical viscosities. We
try to match these ‘‘exact solutions’’ of the Navier-Stok
equations with the numerical solutions of Euler equatio
using the third-order, fifth-order, or the ninth-order WEN
schemes~denoted by WENO3, WENO5, and WENO9!, and
try to find the grid point numberN with which the WENO
solution of the Euler equations matches the ‘‘exact solutio
of the Navier-Stokes equations with one of those Reyno
numbers. Of course, since the numerical viscosities are
different format from the physical viscosities, this mat
cannot be exact. A more accurate description is to find
grid point numberN with which theL1 absolute difference
between the WENO solution of the Euler equations and
‘‘exact solution’’ of the Navier-Stokes equations with one
those Reynolds numbers is as small as possible. It turns
that this is possible only if we isolate the shocked reg
from the contact discontinuity region, because the ability
the grid numberN to achieve this match is different in thes
two cases.

We plot the matching pictures for the WENO5 case
Figs. 5 and 6. The situations for the WENO3 and WEN
cases are qualitatively similar, hence the graphs are omi
In Fig. 5 we try to find the grid point numberN for the
numerical solution of the Euler equations to match the ‘‘e
act solution’’ of the Navier-Stokes equations at the bottom
the left shock in the pressure solution, and in Fig. 6 we try
find them to match at the bottom of the contact discontinu
of the density solution. These matchings are within anL1

relative difference of less than 4%.
We summarize the results as follows.
~i! It is impossible to match well~within 5% L1 relative

error! the numerical solution of the Euler equations with t
‘‘exact solution’’ of the Navier-Stokes equations everywhe
in the computational domain. This is because the exact f
of the numerical viscosity is different from that of the phys
cal viscosity, hence their ratio is not a constant through
the computational domain. In Fig. 5 we can see that if

TABLE VII. Mesh size threshold valuesh to obtain resolved
solutions. Rayleigh-Taylor instability.

Reynolds no. h of WENO5 h of WENO9

25 000 1/480 1/240
50 000 1/960 1/480
100 000 1/1440 1/960
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match them at the left shock, we cannot match them at
right shock. We cannot even match the bottom and the to
the left shock of the pressure solution at the same time.
we have to concentrate on matching them at a small lo
area. We obtain our matching results at the bottom part of
left shock of the pressure solution. The same thing happ
for the contact discontinuity. In Fig. 6 we cannot match t
bottom and the top of the contact discontinuity at the sa
time, so we obtain ourN by matching them at the bottom
part of the contact discontinuity.

~ii ! We find the number of grid pointsN for the numerical
solution of the Euler equations to match as well as poss
~within 5% L1 relative error! the ‘‘exact solutions’’ of the
Navier-Stokes equations with certain Reynolds numbers,
list this correspondence in Table V for the shock case an
Table VI for the contact discontinuity case, with the third
fifth-, and ninth-order WENO schemes. We also plot the
lationship of this Reynolds number versus the number of g
pointsN in Fig. 7 for the shock case~left! and for the contact
discontinuity case~right!. We can see that, for a WENO
scheme of a given order, this relationship is almost line
However, higher-order WENO schemes have much hig
‘‘numerical Reynolds numbers’’ than the lower-order on
for the same number of grid pointsN.

~iii ! From Tables V and VI and Fig. 7, we can compa
the numerical viscosities of the third-, fifth-, and ninth-ord
WENO schemes. The conclusion is that the numerical v
cosity of the third-order WENO scheme is almost twice th
of the fifth-order WENO scheme, because for the sameN
(N51000,1600,2500 for the shock orN5250,400 for the
contact discontinuity!, the corresponding Reynolds numb
of the third-order WENO scheme is about one-half of t
fifth-order one. The same is true for the fifth-order WEN
scheme versus the ninth-order one, i.e., the numerical vis
ity of WENO5 is almost twice that of WENO9.

FIG. 12. The relationship of the Reynolds number and the nu
ber of mesh points in they direction. Rayleigh-Taylor flow. Thex
axis is the Reynolds numbers, and they axis is the threshold num
ber of grid points in they direction that WENO uses. The solid lin
with circles is for the fifth-order WENO; the dashed line with tr
angles is for the ninth-order WENO.
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FIG. 13. Rayleigh-Taylor instability problem. Ninth-order WENO scheme. Densityr; 15 equally spaced contour lines fromr
50.952 269 tor52.145 89. Re51.53105. From left to right:h5

1
1440,

1
1920,

1
2400, and 1

2880. The rightmost result withh5
1

2880 is a resolved
solution verified by further grid refinement.

FIG. 14. Rayleigh-Taylor instability. Ninth-order WENO scheme. Reynolds number523105. Densityr; 15 equally spaced contour line
from r50.952 269 tor52.145 89. From left to right:h5

1
480, 1

960, 1
1920,

1
2880.
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III. THE TWO-DIMENSIONAL RAYLEIGH-TAYLOR FLOW

Now we consider the two-dimensional nondimensionalized Navier-Stokes equations with a gravitation source term

r t1~ru!x1~rv !y50,

~ru! t1~ru21p!x1~ruv !y5
1

ReS 4

3
uxx1uyy1
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vxyD ,
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wherer is the density, (u,v) is the velocity,E is the total
energy, andp is the pressure, related to the total energy
E5@p/(g21)#1 1

2 r(u21v2) with the ratio of specific heats
g being a constant.C is the sound speed andC25gp/r. Re
is the Reynolds number. Pr50.7 is the Prandtl number.

We perform the numerical simulation for 2D Rayleig
Taylor flow with the Navier-Stokes equations~8!. Rayleigh-
Taylor instability happens on an interface between flu
with different densities when an acceleration is directed fr
the heavy fluid to the light fluid. The instability has a finge
ing nature, with bubbles of light fluid rising into the ambie
heavy fluid and spikes of heavy fluid falling into the lig
fluid; see, for example,@16# and @17#. Small-scale features
are generated by this instability. If the Euler equations
solved, then the size and specific shapes of these small-
features are dependent on the numerical schemes and
mesh sizes; see, for example@7# for the results obtained with
the high-order WENO schemes and@18# for the results ob-
tained with the discontinuous Galerkin method using
adaptive mesh.

While Euler simulations are important to identify the si
of the numerical viscosities and to demonstrate the onse
the small-scale features, the specific shape and growt
these small features obtained by an Euler equation sim
tion is not reliable, as they are driven by the numerical v
cosities of the schemes, not by the physical viscosities of
Navier-Stokes equations.

In this section, we attempt to simulate the Navier-Stok
equations~8! directly with resolved numerical solutions u
ing high-order WENO schemes. The onset, shapes,
growth of the small-scale features obtained this way are
liable, since they are driven by the physical viscosities in
Navier-Stokes equations. We also compare the resolu
power of the fifth- and ninth-order WENO schemes for su
simulations.

We set up the problem as follows: the computational

main is @0,1
4 #3@0,1#; initially the interface is aty5 1

2 , the
heavy fluid with densityr52 is below the interface, and th
04670
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light fluid with densityr51 is above the interface with th
acceleration in the positivey direction; the pressurep is con-
tinuous across the interface; a small perturbation is given
the y-direction fluid speed, thus for 0<y, 1

2 , r52, u50,
p52y11, andv520.025C cos(8px); and for 1

2 <y<1, r
51, u50, p5y1 3

2 , andv520.025C cos(8px), whereC is
the sound speed,C5Agp/r, and the ratio of specific heat
g5 5

3 ; reflective boundary conditions are imposed for the l
and right boundaries; at the top boundary, the flow values
set asr51, p52.5, u5v50, and at the bottom boundar
they arer52, p51, u5v50; the source termr is added to
the right-hand side of the third equation andrv is added to
the fourth equation of the Navier-Stokes system~8!. The fi-
nal simulation time ist51.95.

The fifth-order finite-difference WENO schem
~WENO5! @9# associated with a fourth-order central appro
mation to the viscous terms, and the ninth-order WEN
scheme~WENO9! @10# associated with an eighth-order ce
tral approximation to the viscous terms, are used. The t
dimensional computations reported in this paper are p
formed on the IBM SP parallel computer using up to
processors at the Technology Center for Advanced Scien
Computing and Visualization of Brown University. The pa
allel efficiency is over 90% when the operation per proces
is kept constant, i.e., when the number of processors
creases together with a mesh refinement.

We first compute the cases of Re52.53104, 53104, 105,
and look for mesh size threshold values to get conver
solutions for different Reynolds numbers, using WENO5 a
WENO9. We do the convergence study and refine the m
continuously. The numerical results with different mesh siz
are shown in Figs. 8–10. We also present the cut of
numerical results aty50.6 in Fig. 11, where the solution
have the richest structures, to observe visually the con
gence of the numerical solutions.

We list the mesh size threshold values to obtain resol
solutions for Re52.53104, 53104, 105 in Table VII. Re-
solved solutions are measured by the absolute asymp
9-15
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ZHANG et al. PHYSICAL REVIEW E 68, 046709 ~2003!
convergence errors, as defined in definition 1.1, to be
than 0.01~the relative asymptotic errors are at the same l
els!. In Fig. 12, we plot the relationship of the Reynold
number and the threshold mesh point numberN51/h in the
y direction. We can conclude that the relationship is alm
linear. To obtain resolved solutions at the same lev
WENO5 needs twice as many grid points in each direction
WENO9.

Next we show in Fig. 13 the simulation results for th
Reynolds number Re51.53105 using WENO9 on four dif-
ferent meshes, with 36031440, 48031920, 60032400, and
72032880 uniformly spaced mesh points, respectively~from
left to right!. We can see that there are noticeable differen
in the details of the solutions at these four mesh levels, in
cating that even at the mesh of 60032400 points the solution
is still not a resolved solution. The result in the right pictu
using the 72032880 mesh is a resolved solution verified
a further grid refinement study using a 90033600 mesh,
with an L1 absolute difference between these two mes
being less than 431023. The small-scale structures in th
resolved solutions should be reliable as they are driven
physical rather than numerical viscosities.

Finally, we present the simulation results for Re523105

in Fig. 14, which appear to be a mixture of resolved a
under-resolved features. The small structures in the final
ure are still not faithful since there are visually noticeab
differences among all graphs shown in Fig. 14. TheL1 ab-
solute difference between the solutions of the two rightm
graphs in Fig. 14 is at the level of 431022.

IV. CONCLUDING REMARKS

In this paper, we have attempted to quantitatively stu
the size of numerical viscosities, or numerical Reyno
numbers, of high-order WENO~weighted essentially
ci
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y

n
on
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nonoscillatory! third-, fifth-, and ninth-order schemes.
seems that such numerical viscosities decrease linearly
the mesh size for WENO with a given order of accuracy. F
a fixed mesh, the numerical viscosity of a fifth-order WEN
is about half that of a third-order WENO and that of a nint
order WENO is about half that of a fifth-order WENO. Thu
it would imply a reduction factor of 43564 space-time grid
points in 2D to use WENO9 rather than WENO3 to obta
the same numerical viscosity and the same resolution. T
improves the computational efficiency tremendously. T
high-order WENO schemes also have excellent parallel e
ciency. A one-dimensional shock tube problem, a o
dimensional example motivated by the supernova and la
experiments, and a two-dimensional Rayleigh-Taylor ins
bility problem are used for the numerical tests. It is argu
that the only reliable small-scale features in such soluti
are those driven by the physical rather than the numer
viscosities, hence high-order WENO schemes are adva
geous because they provide resolved solutions for
Navier-Stokes equations at much coarser meshes than
lower-order schemes.
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