PHYSICAL REVIEW E 68, 046709 (2003

Numerical viscosity and resolution of high-order weighted essentially nonoscillatory schemes
for compressible flows with high Reynolds numbers

Yong-Tao Zhan§
Department of Mathematics, University of California, Irvine, California 92697, USA

Jing Shi
Department of Mathematics, University of Texas at Austin, Austin, Texas 78712, USA

Chi-Wang Shii
Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA

Ye Zho?
Lawrence Livermore National Laboratory, University of California, Livermore, California 94550, USA
(Received 27 October 2002; revised manuscript received 7 July 2003; published 23 October 2003

A quantitative study is carried out in this paper to investigate the size of numerical viscosities and the
resolution power of high-order weighted essentially nonoscillattfzNO) schemes for solving one- and
two-dimensional Navier-Stokes equations for compressible gas dynamics with high Reynolds numbers. A
one-dimensional shock tube problem, a one-dimensional example with parameters motivated by supernova and
laser experiments, and a two-dimensional Rayleigh-Taylor instability problem are used as numerical test
problems. For the two-dimensional Rayleigh-Taylor instability problem, or similar problems with small-scale
structures, the details of the small structures are determined by the physical vistwsigfore, the Reynolds
numbej in the Navier-Stokes equations. Thus, to obtain faithful resolution to these small-scale structures, the
numerical viscosity inherent in the scheme must be small enough so that the physical viscosity dominates. A
careful mesh refinement study is performed to capture the threshold mesh for full resolution, for specific
Reynolds numbers, when WENO schemes of different orders of accuracy are used. It is demonstrated that
high-order WENO schemes are more CPU time efficient to reach the same resolution, both for the one-
dimensional and two-dimensional test problems.
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[. INTRODUCTION problems with small-scale structures, the details of the small
structures are determined by the physical viscosity in the
Navier-Stokes equations. Thus, to obtain faithful resolution
Recently, laboratory experiments conducted on hightg these small-scale structures, it is essential that the numeri-
energy laser facilities have opened a new opportunity fogal viscosity inherent in the scheme be small enough so that
experimental simulations of phenomena of interest for astrophysical viscosity dominates. We consider such numerical
physics, in particular the hydrodynamics of supernova exploresults to be fully resolved. Results {i7] indicate that
sions[1,2]. The evolution of hydrodynamic fluids for both higher-order WENO schemes are more efficient in CPU time
systems is governed by the compressible Navier-Stoke® reach the same resolution for Euler equations. In this pa-
equationd 3,4]. per, a careful mesh refinement study is performed to capture
The purpose of this paper is restricted to a quantitativehe threshold mesh related to specific Reynolds numbers for
study of the size of numerical viscosities and the resolutiorfull resolution, when WENO schemes of different orders of
power of high-order weighted essentially nonoscillatoryaccuracy are used to solve the Navier-Stokes equations. It is
(WENO) schemes for solving one- and two-dimensionaldemonstrated that higher-order WENO schemes are more
Navier-Stokes equations for compressible gas dynamics wit@PU time efficient to reach the same resolution, both for the
high Reynolds numbers. We use a one-dimensional shookne-dimensiona(1D) and two-dimensional2D) test prob-
tube problem, a one-dimensional example motivated by suems.
pernova and laser experiments, and a two-dimensional We remark that there are two dimensionless parameters in
Rayleigh-Taylor instability problerf,6,4] as our numerical the Navier-Stokes equations: the Reynolds number and the
test problems. It should be noted that for the two-Prandtl number. The focus of this paper is on the Reynolds
dimensional Rayleigh-Taylor instability problem, or similar number since it is the most important parameter for our ap-
plications. The Reynolds number also appears in both the
momentum and energy equations. Therefore, the value of the

A. Preliminaries

*Electronic address: zyt@math.uci.edu effective Reynolds number in the momentum equation con-
"Electronic address: jshi@mail.ma.utexas.edu trols the dissipation process that converts the eddies in the
*Electronic address: shu@dam.brown.edu Kolmogorov scale into the heat. On the other hand, the
SElectronic address: zhou3@lInl.gov Prandtl number appears only in the energy equation and has
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a role on the relative energy partition. While a Prandtl num-when the ninth-order WENO scheme is used. Time discreti-
ber of 0.7 may be appropriate for physical application, thezation is via the third-order total variation diminishing
numerical algorithm for the governing equations does nof{TVD) Runge-Kutta method in Shu and OsHdr2]. The
necessarily have a fixed Prandtl number. It is, however, be€ourant-Friedrichs-LevyCFL) number for the convective
yond the scope of this paper to determine the value of oupart is taken as 0.6 for all the runs, unless otherwise stated.
effective Prandtl number for a given resolution; this will be aSmaller time steps as well as higher-order time discretiza-
subject for future research. The conclusion of our paper isions do not seem to dramatically change the conclusions
not affected by the determination of the effective Prandtldrawn in this paper. All codes have been validated by first
number. computing the Navier-Stokes equations with suitable forcing
functions admitting exact, closed-form solutions, and verify-
B. Brief overview of WENO ing with a mesh refinement study that the correct order of
. . . accuracy is achieved.
In this paper, we compute the compressible Navier-Stokes The WENO finite-difference schemes have been chosen

equations in 1D and 2D, using the third-, fifth-, and ninth—in this - :
S : paper because they are uniformly high-order accurate
order finite-difference WENO schemes, which are based %Bnd robust for strong shocks or other discontinuities, which

the Lax-Friedrichs building blocks and the local characteris-

. . are features especially suitable for computing high-
tic decompositions for the Euler terms. These WENO ] o . 9
schemes were developed by Liu, Osher, and Chd8Jifor Reynolds-number Navier-Stokes equations containing both

the third-order case, by Jiang and Shu[@ for the fifth- sharp gradient regions and rich smooth solution structures.

. ) Notice that the dimension-by-dimension approach to ap-
ggii\rsC\?\?:Wﬁrgn?gg?\?ésg?e%ngri ?g&sgcf;romﬁgzlgéﬂ?gmsproximate derivatives in all directions is different from di-
here and refer 9] and[10], and also to the lecture notes mension splitting, and can retain high-order accuracy. We

[11], for most of the details. For a conservation laws syste resent the numerical results for th_e one_-dimensional pr_ob-
' : y em in Sec. Il and for the two-dimensional problem in

Ui f(U),+g(u)y =0, (1  Sec. il
the conservative finite-difference schemes we use approxi- C. Measurements of resolution and convergence
mate the point values;; at a uniform(or smoothly varying We assume there are two uniform Cartesian meghges
grid (x;,y;) in a conservative fashion. Namely, the derivativeandI'y,,, which have mesh sizésandh/2 in each direction,
f(u), at (x;,y;) is approximated along the line=y; by a  respectively. We further assume that the grid po{nd{é, i
conservative flux difference =1,2,..} of the coarse mesh, are also the grid points of the
fine meshl'y, i.e., {X", i=1,2,.}C{x" i=1,2,.]}. This
F(Wyly ~ = Gt assumption i§ not essential but_it does gllovy us to measure
XIx=xi = Ay \itV2 T2 the asymptotic erroE,, ; below without using interpolation.
We denoteu,, and u, to be the numerical solutions of our
where for the fifth-order WENO scheme the numerical fluxf-order WENO schemes on the two mestgsand Iy,
2 . respectively, andi to be the exact solution of our partial

fi 112 depends on the five-point valuéguy;), k=i—2,...j X ) . . R
+2, when the wind is positivi.e., whenf’(u)=0 for the differential equation. The error at egch grid pointé&g;
=Up ;—U; andeyzj = Upi— Ui . Whenu is smooth, we have

scalar case, or when the corresponding eigenvalue is positive

~ r 0T r
for the system case with a local characteristic decomposi€ni~CN anden,j~2"Ch". .
. . . - . . Definition 1.1 The asymptotic convergence error at a grid
tion]. This numerical fluxt; 1/, is written as a convex com-

bination of three third-order numerical fluxes based on thre O;g;)l(l Of) I;Sh évg;};c:dlsbalso a grid point of the more refined
different substencils of three points each, and the combina- 2 y

tion coefficients depend on a “smoothness indicator” mea- Eni2Up i — Unp; -

suring the smoothness of the solution in each stencil. Notice ' ' '

that this dimension-by-dimension approach to approximatdt is easy to sed&, ;~(1-2"")ey,; for a smooth solution.
derivatives in different directions is different from dimension The L! andL* asymptotic convergence errors in a regidn
splitting, and can retain high-order accuracy unlike dimen-are defined as

sion splitting. The resulting scheme can be proven uniformly
fifth-order accurate in smooth regions including at any
smooth extrema. For discontinuities, the solution is essen-
tially nonoscillatory and gives sharp shock transitions. The
ninth-order WENO schemes follow a similar recipe, with whereN is the number of grid points withif in the coarser
nine points in the stencil and five substencils of five pointsmeshI’},.

each. The “monotonicity preserving limiters” {rL0] arenot Note that when the solution is smooth, the asymptotic
used for the test cases in this paper. For the second derivativenvergence errgfE,|| is 1-2"" times the size of the nu-
viscous terms, we use fourth-order central difference apmerical errofey,| on the coarser mesh for arorder numeri-
proximations when the third- and fifth-order WENO schemescal scheme. It is obvious that the numerical order of accuracy
are used, and eighth-order central difference approximationsf the scheme is given approximately by

LN
”Eh”Ll(Q):NE |Enil,  IEnlL=()= max|Ep,l,

=1 1<i<N
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_ log(lEnl/l[Enrzl) Il. THE ONE-DIMENSIONAL PROBLEM

log 2 ' First we nondimensionalize the Navier-Stokes equations.

e ) _ i The actual computation is performed in the nondimensional-

Definition 1.2 Given £>0, a numerical solution for the jzeq quantities. Nondimensionalization is conducted with the
nondimensional Navier-Stokes equations is considered résame notation as that used in Ryutval. [13]. Denote the
solved on thes level in domain{) with respect to the norm lengthx scale bya cm, the density scale byb g/cn?, and
Il if the pressure scale byc dyn/cnf. Then the timet scale is
avb/c and the velocityu scale is\c/b. Takingx=x/a, p
=plb, p=p/c, t=t/(ayb/c), u=u/c/b, and omitting

where E;, measures the asymptotic convergence error, debars for the scaled variables, we obtain the nondimensional-

[Enlo=<e,

fined above, of the density. ized Navier-Stokes equations in 1D,
In our one- and two-dimensional numerical examples, dis-
continuous initial conditions are used. In order to make it prt(pu)x=0,

possible for the numerical viscosity of the WENO schemes
to be smaller than the physical viscosity when the mesh size
is suitably small, we smooth the discontinuous initial condi-
tion to be continuous but have a narrow transition region. For
example, if the initial condition is a step function,

1
(U}t (pUPH P)= R (4, @

112 ’ 1 )
Bt [UE+P) =gg3 (Ut (y——l)Pr(C )xx |-

a, x<Xg,
f(x)= 2 . _ _ 12
b, x=xg, Here E is the total energyiE=[p/(y—1)]+3pu®, wherey
o N ) is the ratio of specific heats, withh=1.4 for air. Pr is the
then the smoothed initial condition will be Prandtl number, with R+0.7. C is the sound speed, related
b—a bta to the pressur@ and the density by C?= yp/p. Re is the
f(x)= Tta”ffn(X—Xo)]ﬂL . 3) Reynolds number,
ayc/b
wheren determines the width of the transition region. The Re= B ()

biggern is, the narrower the transition region becomes.
Finally, we define a quantitative measurement for the difyyhere 4 is the kinematic viscosity, which is related to the
ference of two different numerical solutionéy;}i™, and dynamic viscosityu by
{vi}i_,, on two grids. These two grids can be the same or
different. When they are different, one can be a subset of the o
other, or they can be totally different. v= ;
Definition 1.3 {u;}{~, and{v;}{_, are numerical solu-
tions on meshek,, andI’",, of domain(), grid point number
n>m. {Ilv;}{", is the high-order ENO interpolation of

{vi}{_, from the finer mesH", to the coarser mesh,, if

©6)

A. WENO computation for the Navier-Stokes equations
on a shock tube problem

necessary. Thé! absolute difference betweanandv is We first solve Sod’s one-dimensional shock tube problem
defined as for the Navier-Stokes equatiort4). The computational do-
main is[—1.2,1.4. The Riemann initial condition is given by
1 m
E = — U_H il (1!011)1 Xgo
H h”Ll(Q) mgl | i U|| (p.u,p)= %)

(0.125,0,0.3, x>0

TheL! relative difference betweemandv is defined as ) .
smoothed out by Eq.3) with n=10 as our smoothed initial
condition. Final simulation time ist=0.4. WENOS3,

, WENOS5, and WENOQthird-, fifth-, and ninth-order WENO

schemek are used. Reynolds numbers are taken to be Re

=1000, 5000, and 10 000.

In Table |, we list theL! andL” asymptotic convergence
errors and numerical orders of accurdsge definition 1.1

Ui_HUi
Ui

1 m
”Er”Ll(Q): E;l

where we assume;#0, i=1,...m. The L! visual relative
difference between andv is defined as

1 m for WENO3 and WENO5 schemes when the Reynolds num-
—> |u;—Tvy;] ber Re=1000. The results for WENOS follow similar pat-
B mi=1 terns and are thus omitted to save space. We also present the
IEcllr)= MaXg = Ui — MiNg = =y U; same errors and orders when the Reynolds number Re
=10000 in Table II. The results for R&000 are similar and
where we assume MaX<mU#mini<j<mU; . hence are omitted to save space. We can clearly see that the
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TABLE |. Asymptotic convergence errors and numerical orders  TABLE Ill. Grid point humberN needed to obtain resolved
of accuracy for WENO3 and WENOS5; Reynolds numb&no0o0; solutions withL* asymptotic convergence errer10™ 4 on the do-
Sod’s shock tube problem. main[—1.2,1.4. Shock tube problem.

WENO3 Reynolds no. N of WENO3 N of WENO5 N of WENO9
1 ©

N L* error Order L* error Order 1000 1600 800 400

100 9.94x 10 * 1.34x1072 5000 8000 4000 2000

200 2.9%10* 1.73 6.44<10°3 1.05 10000 16 000 8000 4000

400 6.54<10°° 2.19 1.7%x10°8 1.86
800 9.24<10°° 2.82 3.10<10°4 2.51

1600 1.06¢10°° 312 3.9410°° 2.98 ber of grid points needed to reach this resolution for WENO9
WENO5 is about one-half that for WENO5, which in turn is about
N L! error Order L* error Order one-half that for WENOS3. . .
Next, we compare the number of grid points needed to
100 3.50<10°* 8.63x107° resolve in three different regions, namely the rarefaction
200 5.10<10°° 2.78 2.4%10°% 1.83 wave, the contact discontinuity, and the shock wave region
400 3.3% 1076 3.91 2.3 104 3.35 for the shock tube problem with Rel000. The L”
800 1.2% 1077 4.72 1.0410°° 4.52 asymptotic convergence error and orders of convergence for
1600 5.1410°° 4.65 3.7k 1077 4.81 WENOS are computed at three different regions, namely the

rarefaction wave regiop—0.7,0.1], the contact discontinuity
region[0.2,0.53, and the shock wave regi$0.6,0.§. From
numerical orders of accuracy approach the theoretically dehe results in Table IV, we can conclude that for the same
signed orders when the mesh is refined, as expected. Howtid point number, the asymptotic convergence error in the
ever, for |arger Reyno|ds numberS, more gnd points are re[arefa-ctlon yvaye regllon IS m.UCh. Smallgr than that in the con-
quired before we can see the numerical orders of accurad@ct discontinuity region, which in turn is much smaller than
approaching the theoretical value. On the other hand, wéat in the shock wave region, In this problem, for WENOS,
could ask the question of the number of grid points requiredN =800 points are needed to resolve the shock wave region
to achieve a fixe@ resolution, see definition 1.2. Notice that On the 10 level with respect to th&.” norm, while only

this is different from the question of asymptotic errors andN= 200 points are needed to resolve the contact discontinu-
orders but is, however, a more practical question since it igy region and onlyN= 100 points are needed to resolve the
directly related to the CPU cost of the algorithm to reach darefaction wave to the same level of resolution. The conclu-
fixed resolution. The grid point numbekswhich are needed sion is that, for the Navier-Stokes equations with high Rey-
to get a resolved solution on the=10"* level with respect nolds numbers, the rarefaction wave is the easiest to resolve,
to the L norm on the whole domaifl=[—1.2,1.4 for

WENO3, WENOS5, and WENOQOS9 are listed in Table Ill. In WENO3

Fig. 1, we plot the relationship of the Reynolds number and i
the threshold mesh point numbkr for this resolution. We 15000
can conclude the relationship is almost linear, and the num-
TABLE Il. Asymptotic convergence errors and numerical orders 10000}
of accuracy for WENO3 and WENO5; Reynolds number
=10000; Sod’s shock tube problem. =
WENO3 [
1 - 5000 |-
N L- error Order L™ error Order A
2000 3.3x10°° 8.33x 1073
4000 1.0k10°° 1.72 2.76<10° 3 1.59 - o
8000 1.70¢10°8 2.56 5.79¢10 4 2.25 o a0 555500
16000 2041077  3.06  7.6%10°5 291 Reynolds number
WENO5 FIG. 1. The relationship of the Reynolds number and the num-
N L! error Order L* error Order ber of mesh points needed to obtain resolved solutions With
convergence erro 10”4 on the domain—1.2,1.4. Shock tube
1000 4.4%10°° 1.31x10°? problem. Thex axis is the Reynolds numbers and thexis is the
2000 1.0810°° 2.06 4.6%10°3 1.49 threshold number of grid points that WENO uses to obtain
4000 7.9410°7 3.77 4.8%10* 3.26 10 “*-resolved solutions. The solid line with circles is for the third-
8000 3.4 1078 4,54 2.20x10°° 4.48 order WENO; the dashed line with triangles is for the fifth-order

WENO,; the dotted line with squares is for the ninth-order WENO.
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TABLE IV. Asymptotic convergence errors and numerical orders of accuracy for WENO5 at different
regions: the rarefaction wave regipr0.7, 0.1, the contact discontinuity regid®.2,0.53, and the shock
wave region0.6,0.8. Reynolds number 1000; Sod'’s shock tube problem.

Rarefaction Contact Shock

N L” error Order L” error Order L” error Order

50 6.64x 104 1.40x10°3 1.82x 102

100 5.54<10°° 3.58 1.65<10°4 3.09 8.6%10°° 1.08
200 2.0%10°° 4.77 4.1%10°° 1.98 2431073 1.83
400 6.58<10°8 4.94 1.5% 1078 4.71 2.3&% 1074 3.35
800 2.08<107° 4.98 5.61x10°8 4.83 1.04<10°5 4.52
1600 6.0% 10" 5.09 1.8%10°° 4.94 3.7 1077 4.81

the shock wave is the hardest to resolve, and contact discon-50 Mbar. Then the time is scaled byt =t/(a\/b/c) and
tinuity is in between in terms of difficulties for resolution.  the velocityu is scaled byu=u/+/c/b. We compute the non-
dimensionalized Navier-Stokes equatigdson these nondi-

B. WENO computation for the Navier-Stokes equations with mensionalized data to nondimensionalized timds

Reynolds numbers correspondlpg to the supernova =4ns/@a m) andt=6 ns/(a\/%)_ We omit the bars for
and the laser experiments the scaled variables in the following.

The objective of this subsection is to simulate the Navier- On the left boundarx=0, we use a characteristic bound-
Stokes equations with Reynolds numbers corresponding tary condition because the left boundary is not really an out-
the supernova and the laser experiments, respectivel§low boundary. On the right boundaky 9.5, we use a Neu-
WENO schemes with adequately refined meshes for a relimann boundary condition because it is an outflow boundary.
able resolution are used. Since the supernova and the laser In this subsection, we use the fifth-order finite difference
experiments should yield identical results under the scalinVENO schemd9] with uniform meshes. Since the original
when the Euler equations are used, we would like to see theéata are on a nonuniform mesh, we use a fourth-order ENO
effect of different physical viscosities corresponding to theinterpolation to obtain initial conditions on our mesh from
supernova and to the laser experiments. We emphasize thifie given data.
this is a one-dimensional model and does not take spherical Our one-dimensional example is motivated by the super-
geometry into consideration, however we do expect the esaova and laser experiments. The Reynolds numbers are esti-
sential conclusions about numerical viscosity, resolution, ane@hated to bgRyutov et al. [13] and Robeyet al. [15])
convergence in this simple model to give important guidance

to the real physical problems. Re=1.9x10' for the supernova,
We take the initial condition (in g/cnt), velocity u (in
cm/mg, and pressure (in Mbar) from the data at=2 ns in Re=1.4x10° for the laser experiments.
Drakeet al.[14], kindly provided to us by Omar Hurricane.
See Fig. 2 for the plot of density and pressure. The cases corresponding to these Reynolds numbers will be

The dimensional computational domain iss=<0.095in  called Supernova and Laser, respectively. One must note that
centimeters. We nondimensionalize the dataxbyx/a with other laser experiments may have different Reynolds num-
a=0.01cm, p=p/b with b=1 g/cn?, andp=p/c with ¢ bers.

35
30
2 o £
[77) 7 25
c 25 (/2]
[« o 20
o 2 =
.5 a s
; 10
05 5
0IAII|A|I|1]IIIII!|IIIII olllilellllljl'lxlllAll
0 0.02 0.04 0.06 0.08 0 0.02 0.04 X 0.08 0.08

FIG. 2. Dimensional initial data at time=2 ns. Left: density (in g/cn®); right: pressurep (in Mbar).
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----- N=13432

N=1679 N=1679
--------- N=3358 25F ——-——— N=3358
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————— N=13432 [ -~ - -~ N=13432
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] 2 3 8
X X
N=1679 N=1679
~~~~~~~~~ N=3358 r === N=3358
......... - N=6716 e N28 716

————— N=13432

6
X

%
X

FIG. 3. The fifth-order WENO solution witN= 1679 grid pointgthe solid ling, 3358 grid pointgthe dash-dotted line6716 grid points
(the dotted ling and 13432 grid pointéthe dashed line Left: results of Laser; right: results of Supernova. DengityTop: at timet
=4 ns/(a/b/c); bottom: at timet=6 ns/@b/c), wherea=0.01 cm,b=1 g/cn?, andc=50 Mbar.

Laser
————— Super Nova

Laser
————— Super Nova

O
X

FIG. 4. Overlay of fifth-order WENO solutions of Laser and Supernova with 13 432 grid points. (thsesolid ling vs Supernovdthe
dashed ling Left: the whole picture; right: enlarged region. Top: density bottom: pressurep. Time t=6 ns/@yb/c), where a

=0.01 cm,b=1 g/cn?, andc=50 Mbar.
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FIG. 5. Fifth-order WENO solutions of Euler with differeNtmatching converged solutions of the Navier-Stokes equations with different
Reynolds numbers. Pressysethe shock region. Top left: NS with Rel0® matching Euler withN=600; top right: NS with Re2x10°
matching Euler witiN=1000; bottom left: NS with Re 4x10° matching Euler wittN= 1600; bottom right: NS with Re8x 10°> matching

Euler with N=2500. Solid lines are for NS, dashed lines or circles are for Euler. Timé ns/@+b/c), wherea=0.01cm, b

=1 g/cn?, andc=50 Mbar.

Re=10°
o Euler, N=100

Re=10° vs. Euler

2 3 4

Re=4 x 10°
-3 Euler, N=400

Re=2 x 10°
o Euler, N=250

Re=2 x 10° vs. Euler

Re=8 x 10°
o Euler, N=600

FIG. 6. Fifth-order WENO solutions of Euler with differeNtmatching converged solutions of the Navier-Stokes equations with different
Reynolds numbers. Densipy the contact discontinuity region. Top left: NS with R&0°> matching Euler withN=100; top right: NS with
Re=2x10°* matching Euler withN=250; bottom left: NS with Re4x10* matching Euler withN=400; bottom right: NS with Re8

x10° matching Euler wittN=600. Solid lines are for NS, circles are for Euler. Tive6 ns/@+b/c), wherea=0.01 cm,b=1 g/cn?, and

c=50 Mbar.
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TABLE V. Physical viscosity versus numerical viscosity, in the ~ TABLE VI. Physical viscosity versus numerical viscosity, in the
shock region.A, number of pointsN for WENO9; B, number of  contact discontinuity regiom, number of pointdN for WENQ9; B,

pointsN for WENOS5; C, number of pointN for WENO3. number of pointsN for WENOS5; C, number of pointsN for
WENO3.
Reynolds no. A B C
Reynolds no. A B C
1000 400 600 1000
2000 600 1000 1600 1000 70 100 250
4000 1000 1600 2500 2000 100 250 400
8000 1600 2500 4500 4000 200 400 800
8000 300 600 1200

We can look at the convergence of the WENO schemes by
comparing the simulation results usifg=1679, 3358, tween the results for Laser and Supernova is very small but
6716, and 13432 uniform mesh points in Fig. 3 for still discernible, especially when enlarged at the place of rich
=4 ns/@yb/c) and for t=6 ns/(@\b/c) (only density is Structures; see the graphs at the right in Fig. 4. On a more
shown to save spagewherea=0.01 cm,b=1 g/cn?, and quantitative level, thé.! absolute difference of densiyin
c=50 Mbar. It is clear that on this scale, even the coarsedhe enlarged region between the Laser and Supernova cases
mesh gives adequate resolution in most parts of the domaifthe upper-right graph in Fig))4s 1.8< 1072, theL" relative
with the more refined meshes giving better resolutions neddifference is 9.6 1072, and thel.* visual relative difference
sharp gradient regions. On a more quantitative levelLthe iS 3.4< 10", all of them being more than a magnitude larger
asymptotic convergence error of the numerical solutions bethan the 10° resolution of the numerical solutions, hence

tween the two meshes witk=6716 and 13432 pointsee they are not due to numerical errors but are true differences
definition 1.1 is less than 1.810 3, theL® relative differ-  Of solutions to the Navier-Stokes equations with different

ence is less than 4210723, and theL! visual relative dif- Reynolds numbers. The same conclusion also holds for the
velocity u and for the pressune This indicates that there are
indeed small but discernible differences between the solu-
q’ons of the Navier-Stokes equations with Reynolds numbers
S . .
orresponding to the Supernova and to the Laser experiment.
hese differences are most prominent near the high gradient
regions in the solutionéhe enlarged regionsDepending on

ference is less than 9610 * for the densityp at botht.
The L? differences for the velocityi and for the pressurp
are on similar levels. This gives us confidence that the mo
refined mesh calculation is a numerically converged, or mor
precisely at least 1C°-resolved solution for the Navier-

Stokes equations for those Reynolds numbers. kWhether such differences are significant or not for the physi-

Next, we use the numerically converged solutions to loo al phenomena to be studied. the laser experiment may or
at the difference between Laser and Supernova. We plot the P . ’ P y
ay not be a suitable model to study supernova.

results using the most refined 13432 mesh points of Lasel'
and Supernova in the same graph. See Fig. 4 for the density

and pressure at=6 ns/(@a+b/c). The velocity at this time C. Study of numerical viscosity of WENO schemes

and all quantities at=4 ns/@yb/c) are not shown to save The objective of this subsection is to perform a quantita-
space, as they present similar patterns. The difference béve study on the size of the numerical viscosity of the third-,

WENO3 WENO3

4500 1200

4000 1100

1000
3500
3000
2500 700
2000
1500
1000

500

00 1000 2000 3000 4000 5000 6000 7000 8000 0 1000 2000 3000 4000 5000 6000 7000 8000

Reynolds number Reynolds number

FIG. 7. The relationship of the numerical viscosity of WENO schemes and the physical viscosity of the Navier-Stokes equations, in the
shock region(left) and in the contact discontinuity regidright). The x axis is the Reynolds number whose reciprocal is the physical
viscosity, and the axis is the number of grid pointd used in the WENO schemes. The solid line with circles is for the third-order WENO,
the dashed line with triangles is for the fifth-order WENO, and the dotted line with squares is for the ninth-order WENO.
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FIG. 8. Rayleigh-Taylor instability. Reynolds numbe25 000. Densityp; 15 equally spaced contour lines frop=0.952 269 top
=2.14589. Top from left to right: fifth-order WENO results with= 155, 755, 755, 555, bottom from left to right: ninth-order WENO results

. 1 1 1
with h= 135, 575, 780+ 960-

046709-9



ZHANG et al. PHYSICAL REVIEW E 68, 046709 (2003

1 1 1 1
WENOS5, h=1/240 WENOS5, h=1/480 WENOS5, h=1/960 L WENOS5, h=1/1920
09 Re=50000 oo Re=50000 oo Re=50000 o_gE. Re=50000
X
08 08 08F
07 0.7 0.7F
06 06 L3(9)
>05 >05 >0.5F
0.4 04 0.4F
03 0.3 03k
0.2"E 0.2 0.2
0.1:- 0.1 0.1
f
C‘- | | 1) 0 0
0.1 0.2
X
1 1 1 1r
WENOS9, h=1/240 WENO9, h=1/480 WENO9, h=1/960 [ WENOS9, h=1/1920
ool Re=50000 oo Re=50000 0o Re=50000 oo Re=50000

08F

e
=
-
e
-

0.7F

06 |
>0.5F

0.4F

0.3

0.1 0.2
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TABLE VII. Mesh size threshold valuek to obtain resolved

solutions. Rayleigh-Taylor instability. 1800

1600 |+

Reynolds no. h of WENO5 h of WENO9 ool WENOS
25000 1/480 1/240 1200
50 000 1/960 1/480 ook
100 000 1/1440 1/960 =
800 F-
600
fifth-, and ninth-order WENO schemes, using the one- a00f

dimensional test case in the previous subsection. In other 200f
words, we attempt to find the corresponding “numerical

Reynolds number” for the WENO schemes, which is of -
course a function of the number of grid points. Reynolds number
First we compute the “converged” solutions of Navier-
Stokes equations with Reynolds numbers=R6°, 2x 10, FIG. 12. The relationship of the Reynolds number and the num-

4x10%, 8x10° using fifth-order WENO schemes with an ber of mesh points in thg direction. Rayleigh-Taylor flow. The
adequately large number of grid points, with absolute andxis is the Reynolds numbers, and thexis is the threshold num-
relativeL ! asymptotic convergence errgeee definition 1.1 ber of grid points in they direction that WENO uses. The solid line
to be less than 1. We use these converged solutions aswith circles is for the fifth-order WENO; the dashed line with tri-
“exact solutions” of the Navier-Stokes equations and the vis-angles is for the ninth-order WENO.

cosities of these solutions as the physical viscosities. We then

try to match these “exact solutions” of the Navier-Stokes match them at the left shock, we cannot match them at the
equations with the numerical solutions of Euler equationsight shock. We cannot even match the bottom and the top of
using the third-order, fifth-order, or the ninth-order WENO e |eft shock of the pressure solution at the same time. So
schemegdenoted by WENO3, WENOS, and WEND@Nd  \ye have to concentrate on matching them at a small local

try to find the grid point numbeN with which the WENO 465 e obtain our matching results at the bottom part of the
solution of _the Euler equations mqtches the “exact solution left shock of the pressure solution. The same thing happens
ngse'lavéir'citSrﬁs seiﬂlé:tlt?lgsnvglr;herci)gael Sifstzhocic,sit?esggocl)??or the contact discontinuity. In Fig. 6 we cannot match the

‘ ' Bottom and the top of the contact discontinuity at the same

different format from the physical viscosities, this match . .
cannot be exact. A more accurate description is to find thgme’ SO we obtain C.)UN by ”.‘atCh'”g them at the bottom
part of the contact discontinuity.

grid point numbem with which theL! absolute difference . ) d _ .
between the WENO solution of the Euler equations and the (i) We find the number of grid points for the numerical
“exact solution” of the Navier-Stokes equations with one of Solution of thf’ Euler equations to match as well as possible
those Reynolds numbers is as small as possible. It turns ofifithin 5% L= relative erroy the “exact solutions” of the
that this is possible only if we isolate the shocked regionNawer—Stokes equations with certain Reynolds numbers, and
from the contact discontinuity region, because the ability oflist this correspondence in Table V for the shock case and in
the grid numbeN to achieve this match is different in these Table VI for the contact discontinuity case, with the third-,
two cases. fifth-, and ninth-order WENO schemes. We also plot the re-
We plot the matching pictures for the WENO5 case inlationship of this Reynolds number versus the number of grid
Figs. 5 and 6. The situations for the WENO3 and WENQO9pointsN in Fig. 7 for the shock casgeft) and for the contact
cases are qualitatively similar, hence the graphs are omittediscontinuity case(right). We can see that, for a WENO
In Fig. 5 we try to find the grid point numbeX for the  scheme of a given order, this relationship is almost linear.
numerical solution of the Euler equations to match the “ex-However, higher-order WENO schemes have much higher
act solution” of the Navier-Stokes equations at the bottom of‘numerical Reynolds numbers” than the lower-order ones
the left shock in the pressure solution, and in Fig. 6 we try tdfor the same number of grid poink
find them to match at the bottom of the contact discontinuity (iii) From Tables V and VI and Fig. 7, we can compare
of the density solution. These matchings are withinlan  the numerical viscosities of the third-, fifth-, and ninth-order
relative difference of less than 4%. WENO schemes. The conclusion is that the numerical vis-
We summarize the results as follows. cosity of the third-order WENO scheme is almost twice that
(i) It is impossible to match wellwithin 5% L* relative  of the fifth-order WENO scheme, because for the sdne
error the numerical solution of the Euler equations with the(N=1000,1600,2500 for the shock &=250,400 for the
“exact solution” of the Navier-Stokes equations everywherecontact discontinuity the corresponding Reynolds number
in the computational domain. This is because the exact formof the third-order WENO scheme is about one-half of the
of the numerical viscosity is different from that of the physi- fifth-order one. The same is true for the fifth-order WENO
cal viscosity, hence their ratio is not a constant throughouscheme versus the ninth-order one, i.e., the numerical viscos-
the computational domain. In Fig. 5 we can see that if weity of WENO5 is almost twice that of WENO9.
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FIG. 13. Rayleigh-Taylor instability problem. Ninth-order WENO scheme. Dengijtyl5 equally spaced contour lines from
=0.952 269 top=2.14589. Re=1.5x 10°. From left to right:h= 1355, 19350 and s The rightmost result witth = 5355 is a resolved
solution verified by further grid refinement.

| E WENO9, h=1/480 | WENO9, h=1/960 | WENO9, h=1/1920 | E WENOS, h=1/2880
09F Re=2x10° ook Re=2x10° ook Re=2x10° ooF Re=2x10°
o.af- 0.8 08 0.85—
0.7f 07 07 0.7:-
0.65- 0.6 0.6 0.65-
>-o.5f- >05 >05 >-o.5f-
y: 04 04 0.45—
0.3 0.3 03 03 -
02 0.2 0.2 0.2:
0.1 0.1 0.1 0.1F
0 ol 0 ot

FIG. 14. Rayleigh-Taylor instability. Ninth-order WENO scheme. Reynolds numer10°. Densityp; 15 equally spaced contour lines

from p=0.952 269 top=2.145 89. From left to righth= 755, 565, To55, 5556-

046709-14



NUMERICAL VISCOSITY AND RESOLUTION OF HIGH . .. PHYSICAL REVIEW E 68, 046709 (2003
IIl. THE TWO-DIMENSIONAL RAYLEIGH-TAYLOR FLOW
Now we consider the two-dimensional nondimensionalized Navier-Stokes equations with a gravitation source term;
pi+(pu)y+(pv)y=0,

2 1/4 1
(pU)e+ (pU+ Pt (pUL)y= | Ut Uyy+3Uxy |,

1
(pv)it(pUv)xt(pv®+P)y=go +p,

Uyxt §vyy+ §ny

1/(2 ) 2 1 ) 1 ) 2 5 2
Et+[u(E+p)]x+[v(E+p)]y:R_e §(U )xx_g(uvy)x+§(v )Xx+(vuy)x+§(u )yy+(uvx)y+§(v )yy_g(vux)y

1
+ —[(Cz)xx+ (Cz)yy]

(y—DPr oo ®

where p is the density, @,v) is the velocity,E is the total light fluid with densityp=1 is above the interface with the
energy, andp is the pressure, related to the total energy byacceleration in the positivedirection; the pressungis con-
E=[p/(y—1)]+ 3p(u?+v?) with the ratio of specific heats tinuous across the interface; a small perturbation is given to
v being a constanC is the sound speed ar@f=yp/p. Re  the y-direction fluid speed, thus forQy<3, p=2, u=0,

is the Reynolds number. P0.7 is the Prandtl number. p=2y+1, andv=—0.025 cos(8x); and for3<y=<1, p

We perform the numerical simulation for 2D Rayleigh- =1,u=0, p=y+ 3, andv = —0.025C cos(87x), whereC is
Taylor flow with the Navier-Stokes equatiof®). Rayleigh-  the sound speed; =/ yp/p, and the ratio of specific heats
Taylor instability happens on an interface between fluidsy=2: reflective boundary conditions are imposed for the left
with different densities when an acceleration is directed fromand right boundaries; at the top boundary, the flow values are
the heavy fluid to the light fluid. The instability has a finger- set asp=1, p=2.5,u=v=0, and at the bottom boundary
ing nature, with bubbles of light fluid rising into the ambient they arep=2, p=1, u=v=0; the source terrp is added to
heavy fluid and spikes of heavy fluid falling into the light the right-hand side of the third equation apd is added to
fluid; see, for example,16] and [17]. Small-scale features the fourth equation of the Navier-Stokes systé@n The fi-
are generated by this instability. If the Euler equations areyal simulation time ig=1.95.
solved, then the size and specific shapes of these small-scale The fifth-order finite-difference  WENO  scheme
features are dependent on the numerical schemes and th&/ENO5) [9] associated with a fourth-order central approxi-
mesh sizes; see, for exam|pig for the results obtained with mation to the viscous terms, and the ninth-order WENO
the high-order WENO schemes afitB] for the results ob-  schemegWENO9) [10] associated with an eighth-order cen-
tained with the discontinuous Galerkin method using anral approximation to the viscous terms, are used. The two-
adaptive mesh. dimensional computations reported in this paper are per-

While Euler simulations are important to identify the size formed on the IBM SP parallel computer using up to 72
of the numerical viscosities and to demonstrate the onset fyocessors at the Technology Center for Advanced Scientific
the small-scale features, the specific shape and growth @omputing and Visualization of Brown University. The par-
these small features obtained by an Euler equation simulggje| efficiency is over 90% when the operation per processor
tion is not reliable, as they are driven by the numerical vis+g kept constant, i.e., when the number of processors in-
cosities of the schemes, not by the physical viscosities of thgygages together with a mesh refinement.

Navier-Stokes equations. _ _ We first compute the cases of R2.5x 10%, 5x 10%, 10,

In this section, we attempt to simulate the Navier-Stokesyng ook for mesh size threshold values to get converged
equations(8) directly with resolved numerical solutions us- so|ytions for different Reynolds numbers, using WENO5 and
ing high-order WENO schemes. The onset, shapes, an/ENO9. We do the convergence study and refine the mesh
growth of the small-scale features obtained this way are regontinuously. The numerical results with different mesh sizes
liable, since they are driven by the physical viscosities in theyre shown in Figs. 8—10. We also present the cut of the
Navier-Stokes equations. We also compare the resolutiogmerical results ay=0.6 in Fig. 11, where the solutions
power of the fifth- and ninth-order WENO schemes for suchpaye the richest structures, to observe visually the conver-
simulations. _ gence of the numerical solutions.

We set up the problem as follows: the computational do-" \we jist the mesh size threshold values to obtain resolved
main is[0,7]x[0,1]; initially the interface is aty=3, the  solutions for Re=2.5x 10%, 5x 10*, 10° in Table VII. Re-
heavy fluid with densityp=2 is below the interface, and the solved solutions are measured by the absolute asymptotic
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convergence errors, as defined in definition 1.1, to be lessonoscillatory third-, fifth-, and ninth-order schemes. It
than 0.01(the relative asymptotic errors are at the same levseems that such numerical viscosities decrease linearly with
els). In Fig. 12, we plot the relationship of the Reynolds the mesh size for WENO with a given order of accuracy. For

number and the threshold mesh point numier 1/h in the @ fixed mesh, the numerical viscosity of a fifth-order WENO
y direction. We can conclude that the relationship is almosts about half that of a third-order WENO and that of a ninth-

linear. To obtain resolved solutions at the same levelorder WENO is about half that of a fifth-order WENO. Thus,
WENOS5 needs twice as many grid points in each direction a& would imply a reduction factor of #-64 space-time grid
WENOQ. points in 2D to use WENOO9 rather than WENO3 to obtain

Next we show in Fig. 13 the simulation results for the the same numerical viscosity and the same resolution. This

Reynolds number Rel.5x 10° using WENO9 on four dif- improves the computational efficiency tremendously. The
ferent meshes. with 3661440 480< 1920. 600 2400. and high-order WENO schemes also have excellent parallel effi-

; . : ciency. A one-dimensional shock tube problem, a one-

720x 2880 uniformly spaced mesh points, respectivéigm ; ; ;
X . ) imensional example motiv h rnova and laser
left to right). We can see that there are noticeable dlf“ferenced ensional example motivated by the supernova and lase

) : . . .3xperiments, and a two-dimensional Rayleigh-Taylor insta-
in the details of the solutions at these four mesh levels, 'nd'bility problem are used for the numerical tests. It is argued

cating that even at the mesh of 60400 points the solution that the only reliable small-scale features in such solutions

is still not a resolved solution. The result in the right picture ;.. 1, Jce driven by the physical rather than the numerical

using the 72.& 2830 mesh is a resolyed solution verified by viscosities, hence high-order WENO schemes are advanta-
a_f#rther 19”% relflnerg_(]acfnt studybusmg a 309600 mesh,h eous because they provide resolved solutions for the
with an L~ absolute difference between these two mesheg gyier.Stokes equations at much coarser meshes than the

being less thap %410 3. The small—scale structures i.n the |qwer-order schemes.
resolved solutions should be reliable as they are driven by
physical rather than numerical viscosities. ACKNOWLEDGMENTS
Finally, we present the simulation results for-R&x10° _
in Fig. 14, which appear to be a mixture of resolved and The authors are very grateful to Dr. O. Hurricane for pro-
under-resolved features. The small structures in the final figviding his laser simulation data reported in REf4]. The
ure are still not faithful since there are visually noticeableresearch of Y.-T. Zhang was partially supported by ARO
differences among all graphs shown in Fig. 14. THeab- ~ Grant No. DAAD19-00-1-0405 and NSF Grant No. DMS-
solute difference between the solutions of the two rightmosP804985. The research of C.-W.S. was partially supported by
graphs in F|g 14 is at the level 0f>410_2_ LLNL SubCOI’ltraCt No. 8513236, ARO Grant No. DAAD19-
00-1-0405, NSF Grant No. DMS-0207451, NASA Langley
Grant No. NCC1-01035, and AFOSR Grant No. F49620-02-
1-0113. The research of Y.Z. was performed under the aus-
In this paper, we have attempted to quantitatively studypices of the U.S. Department of Energy by the University of
the size of numerical viscosities, or numerical ReynoldsCalifornia Lawrence Livermore National Laboratory under
numbers, of high-order WENO(weighted essentially Contract No. W-7405-Eng-48.

IV. CONCLUDING REMARKS

[1] B. A. Remington, D. Arnett, R. P. Drake, and H. Takabe, Sci- Laws in B. Cockburn, C. Johnson, C.-W. Shu, and E. Tadmor,
ence284, 1488(1999. Advanced Numerical Approximation of Nonlinear Hyperbolic
[2] B. A. Remington, R. P. Drake, H. Takabe, and D. Arnett, Phys. Equations edited by A. Quarteroni, Lecture Notes in Math-
Plasmas7, 1641(2000. ematics Vol. 1691 Springer, Berlin, 1998 pp. 325—-432.
[3] L. D. Landau and E. M. LifshitzE-luid Mechanics(Pergamon,  [12] C.-W. Shu and S. Osher, J. Comput. Phga. 439 (1988.
Oxford, 1987. [13] D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Remington,
[4] S. Chandrasekhaydrodynamic and Hydromagnetic Stability and W. M. Woodvasey, Astrophys. 518, 821 (1999.
(Dover, New York, 1961 _ ~ [14]R. P. Drake, H. F. Robey, O. A. Hurricane, Y. Zhang, B. A.
[5] Lord Rayleigh,Scientific Papers. Volume @ambridge Uni- Remington, J. Knauer, J. Glimm, D. Arnett, J. O. Kane, K. S.

versity Press, Cambridge, UK, 1900
[6] G. I. Taylor, Proc. R. Soc. London, Ser.281, 192 (1950.
[7] J. Shi, Y.-T. Zhang, and C.-W. Shu, J. Comput. PH&6 690

Budil, and J. Grove, Astrophys. 364, 896 (2002.
[15] H. Robey, Y. Zhou, A. Buckingham, R. P. Drake, B. A. Rem-
ington, and P. Keiter, Phys. Plasm&3 614 (2003.

(2003. . .
. [16] C. L. Gardner, J. Glimm, O. McBryan, R. Menikoff, D. H.
8] X.-D. Liu, S. Osher, and T. Chan, J. Comput. Phi&5 200 .
[l (1994 P Sharp, and Q. Zhang, Phys. Fluid$, 447 (1988.

[9] G. Jiang and C.-W. Shu, J. Comput. Phy86, 202 (1996. [17] Y.-N. Young, H. Tufo, A. Dubey, and R. Rosner, J. Fluid Mech.

[10] D. Balsara and C.-W. Shu, J. Comput. Phy80, 405 (2000. 447, 377(2001.
[11] C.-W. Shu,Essentially Non-oscillatory and Weighted Essen-[18] J.-F. Remacle, J. E. Flaherty, and M. S. Shephard, SIAM Rev.
tially Non-oscillatory Schemes for Hyperbolic Conservation 45, 53 (2003.

046709-16



