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Abstract

The weighted essentially non-oscillatory (WENO) schemes are a popular class of high or-

der numerical methods for hyperbolic partial differential equations (PDEs). While WENO

schemes on structured meshes are quite mature, the development of finite volume WENO

schemes on unstructured meshes is more difficult. A major difficulty is how to design a robust

WENO reconstruction procedure to deal with distorted local mesh geometries or degenerate

cases when the mesh quality varies for complex domain geometry. In this paper, we com-

bine two different WENO reconstruction approaches to achieve a robust unstructured finite

volume WENO reconstruction on complex mesh geometries. Numerical examples including

both scalar and system cases are given to demonstrate stability and accuracy of the scheme.
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1 Introduction

Weighted essentially non-oscillatory (WENO) schemes are a class of high order numerical

methods for solving partial differential equations (PDEs) whose solutions may contain discon-

tinuities, sharp gradient regions, and other complex solution structures. They are designed

based on the successful ENO schemes in [9, 19]. The first WENO scheme was constructed

in [13] for a third order finite volume version. In [12], third and fifth order finite differ-

ence WENO schemes in multi-space dimensions were constructed, with a general framework

for the design of the smoothness indicators and non-linear weights. The main idea of the

WENO scheme is to form a weighted combination of several local reconstructions based on

different stencils (usually referred to as small stencils) and use it as the final WENO recon-

struction. The combination coefficients (also called non-linear weights) depend on the linear

weights, often chosen to increase the order of accuracy over that on each small stencil, and

on the smoothness indicators which measure the smoothness of the reconstructed function

in the relevant small stencils. Hence an adaptive interpolation or reconstruction procedure

is actually the essential part of the WENO schemes.

WENO schemes have the advantage of attaining uniform high order accuracy in smooth

regions of the solution while maintaining sharp and essentially monotone shock transitions.

While finite differece WENO schemes on structured meshes have been developed and studied

extensively [12, 17, 10, 22, 6, 2, 14], the development of WENO schemes on unstructured

meshes (e.g. triangular or tetrahedral meshes) for dealing with complex domain geometries

is less advanced. Since the finite difference approach [12] requires mesh smoothness and

cannot be used on unstructured meshes while maintaining local conservation, we must use

the more complicated and more costly finite volume approach [13, 11, 18].

There are two types of finite volume WENO schemes on unstructured meshes in the

literature. The first type (type I) consists of WENO schemes whose order of accuracy is

not higher than that of the reconstruction on each small stencil. This is similar as ENO

schemes. For this type of WENO schemes, the non-linear weights do not contribute towards
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the increase of the order of accuracy, and they are designed purely for the purpose of nonlinear

stability, or to avoid spurious oscillations. Because type I WENO schemes just need to choose

the linear weights as arbitrary positive numbers for better linear stability (e.g. the centered

small stencil is assigned a larger linear weight than the others), they are easier to construct

than the type II WENO schemes discussed in the following paragraph. Type I WENO

schemes include the WENO schemes in [7, 20] for two dimensional (2D) triangulations and

in [3, 4] for three dimensional (3D) triangulations.

The second type (type II) consists of WENO schemes whose order of accuracy is higher

than that of the reconstruction on each small stencil. For example, the third order WENO

scheme on 2D triangular meshes in [11] is based on second order linear polynomial reconstruc-

tions on small stencils, and the fourth order WENO scheme in [11] is based on third order

quadratic polynomial reconstructions on small stencils. See also [23] for similar WENO

schemes on 2D triangular meshes for solving Hamilton-Jacobi equations, which belong to

type II as well. On 3D tetrahedral meshes, type II WENO schemes were constructed in [24],

and Hermite WENO schemes were developed in [27]. Type II WENO schemes are more

difficult to construct, however they have a more compact stencil than type I WENO schemes

of the same accuracy, which is an advantage in some applications, such as when the WENO

methodology is used as limiters for the discontinuous Galerkin methods [15, 16, 25, 26].

A crucial step in building a type II WENO scheme on unstructured meshes is to con-

struct lower order polynomials whose weighted average will give the same result as the high

order reconstruction at each Gaussian quadrature point for the flux integral on the element

boundary. This step is actually the most difficult step in designing a robust second type

high order WENO schemes on unstructured meshes, since we can not guarantee the quality

of the unstructured meshes when the domain geometry is very complicated. The local linear

system for finding linear weights could have very large condition number or is even singular

at the places where mesh quality is bad (e.g. there are very obtuse triangles). Directly solv-

ing the ill-posed local linear system leads to very negative large linear weights and instability
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can appear even if we use the procedure to deal with the negative linear weights as in [18].

Specifically, the problems needed to be solved are: how to find linear weights for distorted

local mesh geometries? how to deal with the degenerate cases which could happen when the

mesh quality is not good? A robust strategy needs to be developed for finding the linear

weights with respect to various mesh geometries. This is even more important for higher

order schemes and three dimensional problems.

In this paper, we hybrid the approaches of type II and type I WENO schemes, and avoid

the appearance of very negative large linear weights no matter the quality of the unstructured

meshes. The idea is to switch to the approach of assigning linear weights of type I WENO

schemes at the places where the linear weight system of type II WENO scheme is ill-posed

or singular, i.e., the linear weights do not exist or are very negative large, i.e., larger than a

preset threshold value. The tradeoff is that the compactness of the type II WENO scheme

will be lost at these places. But we will obtain a robust reconstruction with respect to

the quality of unstructured meshes and the complexity of the domain. Furthermore, the

overall percentage of the places where the type I WENO approach is applied is quite small,

according to our numerical experiments in this paper.

The organization of this paper is as follows. The algorithm is developed in section

2. Section 3 contains extensive numerical examples verifying stability, convergence and

accuracy of the algorithm, on unstructured meshes including meshes with distorted local

mesh geometries. Concluding remarks are given in section 4.

2 A robust unstructured WENO reconstruction

In this paper we use two-dimensional problems to test the proposed hybrid method. But

this method can also be applied to higher dimensional problems straightforwardly.
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2.1 The finite volume formulation on 2D triangular meshes

We solve the two-dimensional conservation law

∂u

∂t
+

∂f(u)

∂x
+

∂g(u)

∂y
= 0 (2.1)

using the finite volume formulation as in [11]. Computational control volumes are triangles.

Taking the triangle △i as our control volume, we formulate the semi-discrete finite volume

scheme of (2.1) as

dūi(t)

dt
+

1

|△i|

∫

∂△i

F · ndS = 0 (2.2)

where the cell average ūi(t) = 1
|△i|

∫

△i
udxdy, F = (f, g)T , and n is the outward unit normal

of the triangle boundary ∂△i.

In (2.2), the line integral is discretized by a q-point Gaussian quadrature formula,

∫

∂△i

F · nds ≈

3
∑

k=1

Sk

q
∑

j=1

wjF (u(G
(k)
j , t)) · nk (2.3)

where Sk is the length of the k-th side of ∂△i, G
(k)
j and wj are the Gaussian quadrature

points and weights respectively, and F (u(G
(k)
j , t)) · nk is approximated by a numerical flux.

We use the Lax-Friedrichs flux in this paper, which is given by

F (u(G
(k)
j , t))·nk ≈

1

2

[(

F (u−(G
(k)
j , t)) + F (u+(G

(k)
j , t))

)

· nk − α
(

u+(G
(k)
j , t) − u−(G

(k)
j , t)

)]

,

(2.4)

where α is taken as an upper bound for the magnitude of the eigenvalues of the Jacobian

in the nk direction, and u− and u+ are the values of u inside the triangle and outside the

triangle (inside the neighboring triangle) at the Gaussian point.

In this paper we use a third order finite volume scheme to test our hybrid WENO

reconstruction procedure, so the two-point Gaussian quadrature q = 2 is used. For the

line with endpoints P1 and P2, the Gaussian quadrature points are G1 = cP1 + (1 − c)P2,

G2 = cP2+(1−c)P1, where c = 1
2
+

√
3

6
; and the Gaussian quadrature weights are w1 = w2 = 1

2
.
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2.2 WENO reconstruction

The key step in finite volume WENO schemes is to build a high order WENO reconstruction

for the point values at the Gaussian quadrature points. The big stencil S in a WENO

reconstruction is a union of small stencils {Sm : m = 1, 2, ..., N}. Cell average values of u in

S are used to construct a polynomial p(x, y), which will have the same cell average as u on

the target cell △0 (i.e., the control volume cell). Both type I and type II WENO schemes

need to obtain a linear combination of reconstructions on small stencils. The reconstruction

values at the Gaussian points should satisfy

p(xG, yG) =
N

∑

m=1

γmpm(xG, yG), (2.5)

where (xG, yG) is a Gaussian point, pm is a reconstruction polynomial on a small stencil Sm,

and γm is called a linear weight. The major difference between type I and type II WENO

reconstructions is the different method to construct small stencils and find linear weights.

We will discuss the details in the following sub-sections. Based on (2.5), nonlinear WENO

reconstruction values at the Gaussian points are

pweno(x
G, yG) =

N
∑

m=1

ωmpm(xG, yG), (2.6)

where ωm is a nonlinear WENO weight defined as

ωm =
ω̃m

∑N

m=1 ω̃m

, ω̃m =
γm

(ǫ + ISm)2.
(2.7)

ISm is the smoothness indicator for the m-th reconstruction polynomial pm(x, y) associated

with the m-th small stencil Sm, and ǫ is a small positive number to aoid the denominator

to become 0. We take ǫ = 10−3 for all the computations in this paper. Usually larger ǫ is

more friendly for smooth solutions but may generate small oscillations for shock waves, while

smaller ǫ is more friendly to shocks. In a range of ǫ from 10−2 to 10−6, the numerical results

are not very sensitive to ǫ. The smoothness indicator measures how smooth the function pm

is on the target cell △0: the smaller the smoothness indicator, the smoother the function pm
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is on △0. We follow [12, 11] and define it as

ISm =
∑

1≤|α|≤k

∫

△0

|△0|
|α|−1(Dαpm(x, y))2dxdy, (2.8)

where k is the degree of polynomial pm, α is a multi-index and D is the derivative operator.

2.2.1 Type I linear reconstruction

Type I reconstructions for WENO schemes on unstructured meshes were developed in [7,

3, 4, 20]. For example, we can use the big stencil S shown in Figure 2.1 for a third order

type I WENO reconstruction. Four small stencils consists of one central stencil S0 and three

sectorial stencils Si, Sj, Sk. All small stencils include the target cell △0 (the cell “0” as

shown in Figure 2.1) which should be at the central position of the big stencil S. The central

stencil S0 includes the target cell △0 and its two layers of neighbors. In Figure 2.1, S0 =

{△0,△i1 ,△j1 ,△k1
,△i2 ,△i3 ,△j2 ,△j3 ,△k2

,△k3
}. By connecting the barycenter of △0 with

its three vertices, we obtain three lines Li, Lj and Lk. These three lines partition the domain

into three sectors. Every sectorial stencil consists of a few layers of neighboring cells of △0,

and the barycenters of these cells fall inside the sector. For a third order reconstruction, we

need to reconstruct a quadratic polynomial on each sectorial stencil. As shown in Figure 2.1,

the sectorial stencils Si = {△0,△i1 ,△i2 ,△i3 , · · · ,△i7}, Sj = {△0,△j1 ,△j2 ,△j3 , · · · ,△j7},

Sk = {△0,△k1
,△k2

,△k3
, · · · ,△k7

}. On each sectorial stencil, we determine a quadratic

polynomial by requiring that it has the same cell average as u on △0, and also it matches

the cell averages of u on the triangles of the sectorial stencil except △0 in a least-square sense

[1]. Notice that we use more than 6 triangles for each sectorial stencil to obtain a quadratic

polynomial. The strategy (i.e., to use more elements in the stencil than the minimal required

elements) is recommended in the literature (e.g. [7, 3, 4, 20]) for better stability on general

meshes. We obtain four quadratic polynomials p0(x, y), pi(x, y), pj(x, y), pk(x, y) on S0, Si,

Sj and Sk respectively. A linear reconstruction at the Gaussian points is formed as

p(xG, yG) = γ0p0(x
G, yG) + γipi(x

G, yG) + γjpj(x
G, yG) + γkpk(x

G, yG) (2.9)
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where γ0, γi, γj, γk are the linear weights. As in type I WENO reconstructions, we assign

the central stencil a large linear weight γ0 = 103. Smaller linear weights γi = γj = γk = 1

are assigned to the sectorial stencils. Note that the sum of linear weights is not 1 at this

time. This problem is automatically solved when the nonlinear WENO weights (2.7) are

calculated.

G1

G2

0

i1

i2

i3

i4

i5

i6

i7

j1

j2

j3

j4

j5

j6

j7

k1
k2

k3

k4

k5

k6

k7

Li Lj

Lk

Figure 2.1: A big stencil S for a third order type I WENO reconstruction.
Four small stencils consists of one central stencil S0 and three sectorial stencils
Si, Sj, Sk. All small stencils include the target cell △0 (i.e., the cell “0”). S0 =
{△0,△i1 ,△j1 ,△k1

,△i2 ,△i3 ,△j2 ,△j3 ,△k2
,△k3

}; Si includes the cell △0 and the cells in
black color, i.e. Si = {△0,△i1 ,△i2 ,△i3 , · · · ,△i7}; Sj includes the cell △0 and the cells
in green color, i.e. Sj = {△0,△j1 ,△j2 ,△j3 , · · · ,△j7}; Sk includes the cell △0 and the cells
in blue color, i.e. Sk = {△0,△k1

,△k2
,△k3

, · · · ,△k7
}.

2.2.2 Type II linear reconstruction

Type II reconstructions (e.g. [11, 24, 27]) for WENO schemes use a much more compact

big stencil. A third order type II WENO scheme on 2D triangular meshes [11] uses a

big stencil S as shown in Figure 2.2. It includes the target cell △0 and its two layers of

neighbors: S = {△0,△i,△j,△k,△ia,△ib,△ja,△jb,△ka,△kb}. Notice that here S is the

same as the central small stencil S0 in the type I reconstruction. Then we determine a
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quadratic polynomial p(x, y) by requiring that it has the same cell average as u on △0, and

also it matches the cell averages of u on the triangles of the big stencil S except △0 in a

least-square sense [1]. Notice that some of the second layer neighbors may coincide, but

this does not affect the least-square procedure to determine p(x, y). Let m denote the total

number of cells in the big stencil S. If m < 6, there is no enough information for constructing

a quadratic polynomial. Then we must go to the next neighboring layer and include more

cells into the big stencil S. For every quadrature point (xG, yG), we compute a series of

constants {cl}
m
l=1 which depend on the local geometry only, such that

p(xG, yG) =
m

∑

l=1

clūl (2.10)

where every constant cl corresponds to one cell in the big stencil S, and ūl is the cell average

of u on that cell.

0

ij

k

ia

ibja

jb

ka kb

G1

G2

Figure 2.2: A big stencil S for a third order type II WENO reconstruction.

The key step in building a high order type II WENO scheme is to construct lower order

polynomials whose weighted average will give the same result as the high order reconstruction

at each quadrature point. This is the most difficult step for type II WENO schemes on

unstructured meshes. The benefit by doing this is that type II WENO schemes have much
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more compact stencils than type I WENO schemes. We use several linear polynomials to

give the lower order reconstructions in the third order WENO reconstruction.

Using the big stencil S in Figure 2.2, we have 9 small stencil candidates and the corre-

sponding 9 linear polynomials by agreeing with the cell averages of u on these small stencils.

They are listed as following.

p1
1(x, y) : S1 = {△0,△j ,△k}, p1

2(x, y) : S2 = {△0,△k,△i}, p1
3(x, y) : S3 = {△0,△i,△j},

p1
4(x, y) : S4 = {△0,△i,△ia}, p1

5(x, y) : S5 = {△0,△i,△ib}, p1
6(x, y) : S6 = {△0,△j ,△ja},

p1
7(x, y) : S7 = {△0,△j ,△jb}, p1

8(x, y) : S8 = {△0,△k,△ka}, p1
9(x, y) : S9 = {△0,△k,△kb}.

Notice that we use 9 small stencils instead of grouping them as in [11]. Our purpose by doing

this is to test a general procedure for dealing with very general including highly distorted

unstructured meshes. And this procedure proposed in this paper could be straightforwardly

extented to higher order WENO schemes and 3D tetrahedral meshes.

For every quadrature point (xG, yG), on every small stencil Si we compute three constants

{c
(i)
l }3

l=1 which depend on the local geometry only, such that

p1
i (x

G, yG) =
3

∑

l=1

c
(i)
l ū

(i)
l (2.11)

where every constant c
(i)
l corresponds to one cell in the small stencil Si, and ū

(i)
l is the cell

average of u on that cell.

Since a quadratic polynomial p(x, y) has three more degrees of freedom than each linear

polynomial p1
i (x, y), namely ξ2, η2, ξη, where ξ = (x − x0)/h and η = (y − y0)/h are the

scaled local basis functions on the target cell △0 with the barycenter (x0, y0) and h =
√

|△0|.

For the degrees of freedom 1, ξ, η, both the quadratic polynomial reconstruction and linear

polynomial reconstruction can reproduce them exactly. To obtain the linear weights {γi}
9
i=1,

we form the linear system at every Gaussian quadrature point (xG, yG): take u = ξ2, η2, ξη

respectively, the equalities are:

9
∑

i=1

γip
1
i (x

G, yG) = u(xG, yG) (2.12)
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where p1
i is the linear reconstruction polynomial for u, using the small stencil Si. Together

with the requirement
9

∑

i=1

γi = 1, (2.13)

we obtain a 4 × 9 linear system

Aγ = b, (2.14)

where A ∈ R4×9, and b ∈ R4. This is an under-determined system and there are infinitely

many solutions. We define the optimal linear weights {γi}
9
i=1 as following. The third order

reconstruction by the linear combination of the second order reconstructions using the op-

timal linear weights {γi}
9
i=1 is the ”closest” one from the third order reconstruction by the

big stencil S, in the least square sense. We form the linear system

Mγ
l
= c, (2.15)

where
l
= means that the equality holds in the least square sense, and M ∈ Rm×9, c ∈ Rm.

The vector c = (c1, c2, · · · , cm)T , and {cl}
m
l=1 are the approximation constants in (2.10) for

the big stencil. Each column of the matrix M corresponds to the approximation constants

in (2.11) for one of the small stencils. The systems (2.14) and (2.15) are solved together to

give the optimal linear weights {γi}
9
i=1. Then we have obtained a type II third order linear

reconstruction

p(xG, yG)
l
=

9
∑

i=1

γip
1
i (x

G, yG). (2.16)

Note that the equation (2.16) holds in the least square sense.

2.2.3 Hybrid WENO reconstruction

It is obvious that the big stencil of a type II WENO scheme (Figure 2.2) is much more

compact than that of a same order type I WENO scheme (Figure 2.1). Here the first one is

just the central small stencil of the second one. However, when the spatial domain has high

dimension and complex geometry, the quality of the unstructured meshes is hard to control.

Distorted local mesh geometries are generated. This leads to very negative linear weights in
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type II WENO schemes, or even the linear weights do not exist. For mild negative linear

weights, the splitting technique developed in [18] can be applied effectively. For the case that

linear weights are very negative large or do not exist, we propose a more robust approach

in this section. Here we hybrid the approaches of type II and type I WENO schemes, and

avoid the appearance of very negative large linear weights. Since for a general triangulation,

distorted mesh geometries only occur in small parts of the whole domain. Hence type II

WENO schemes can be applied for the major parts of the domain. At the places where the

linear weights of the type II WENO reconstructions do not exist or are larger than a preset

threshold value, the type I WENO reconstructions are applied. We summarize the hybrid

WENO reconstruction algorithm at a Gaussian point in the following.

To form WENO reconstructions of the numerical values at a quadrature point (xG, yG)

in the Lax-Friedrichs flux (2.4):

1. Calculate linear weights {γi}
9
i=1 in type II linear reconstruction (2.16), using the

method described in section 2.2.2. If such linear weights do not exist, then go to

step 3.

2. For a preset threshold value ζ, if max{|γi|, i = 1, 2, ..., 9} ≤ ζ, then we form a WENO

reconstruction (2.6) using the type II linear reconstruction (2.16). And the splitting

technique in [18] is applied if min(γ1, · · · , γ9) < 0.

3. If max{|γi|, i = 1, 2, ..., 9} > ζ or type II linear weights do not exist, then we form a

WENO reconstruction (2.6) using the type I linear reconstruction (2.9) described in

section 2.2.1.

Remark: Via numerical experiments in the next section, we find that the numerical

results are not sensitive with respect to the choice of the threshold value ζ when ζ is in the

range from 1 to 10. Hence a value of ζ between 1 to 10 is recommended for all numerical

examples in this paper. If ζ is chosen to be bigger than 10, we observe an increase in

12



accuracy errors and loss of numerical accuracy order in the numerical experiments with

distorted meshes.

3 Numerical examples

In this section, we apply the hybrid WENO reconstructions developed in the section 2 to

both linear and non-linear scalar and system problems. We use triangular meshes with large

obtuse angle mesh structures in the accuracy test problems. This kind of meshes gives very

large negative linear weights in type II WENO reconstructions. They are used to show the

robustness of the hybrid WENO reconstructions. The CFL number is taken as 0.3 in all the

cases. For the temporal discretization, we use the third-order TVD Runge-Kutta scheme of

Shu and Osher in [19]. To improve the accuracy of the WENO scheme, we adopt a mapped

weights technique introduced in [10]. In the numerical convergence studies, we measure the

discrete L1 and L∞ errors and convergence orders. The discrete L1 and L∞ errors at a final

time T are calculated from the point errors at the Gaussian quadrature points in the finite

volume scheme. Namely, we use the point errors at these Gaussian quadrature points G
(k)
j

in (2.3) to approximate the integral in the L1 error and to find the maximum value in the

L∞ error.

Example 1. Linear equation:
{

ut + ux + uy = 0, −2 ≤ x ≤ 2,−2 ≤ y ≤ 2;

u(x, y, 0) = sin(π
2
(x + y)),

(3.1)

with periodic boundary condition. We use random perturbations of unform meshes to gen-

erate meshes with large obtuse angles and test our hybrid WENO reconstructions. This

kind of meshes generate large negative linear weights in the type II WENO reconstructions.

See Figure (3.1) for two of such meshes. In the convergence study, the refinement of meshes

is done by cutting each triangle into four smaller similar ones. We use the hybrid WENO

schemes to solve the PDE (3.1) to T = 2. First we use successively refined meshes of the left

mesh in Figure (3.1) to test the accuracy and numerical convergence orders. The results are
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reported in Table 3.1 and Table 3.2, for different preset threshold value ζ = 1 and ζ = 10

respectively. We also report the most negative linear weight in type II WENO reconstruc-

tions on every mesh, and the percentage of using type I WENO reconstructions on Gaussian

points. We would like to point out that the most negative linear weight is determined by

the meshes only, hence the same mesh generates the same most negative linear weight, as

shown in Tables of this example and the next example. From Table 3.1 and Table 3.2, we

can observe third order accuracy in L1 and L∞ errors, although the most negative linear

weight is around −200. Furthermore, the percentage of using type I WENO reconstructions

is very small, and it is decreasing when the mesh is refined. This is because the percentage

of “bad” quality triangles is still small. Hence at most of places, we are still using compact

type II WENO reconstructions. Notice that, L∞ errors are slightly larger than L1 errors,

and L∞ convergence orders are not as uniform as L1 convergence orders. This is due to

the highly non-uniform of the meshes. Comparing Table 3.1 and Table 3.2, we can see that

the accuracy and convergence orders are comparable. With the tests of other ζ values (not

shown here), we found that the accuracy and orders are not sensitive with respect to the

preset threshold value ζ when its value is less than 10. With bigger ζ values, we use even less

type I WENO reconstructions. Then we perform the convergence studies using even worse

quality meshes which are refined meshes of the right mesh in Figure (3.1). The results are

reported in Table 3.3 and Table 3.4. For these meshes, the most negative linear weight can

reach −8000. From the results, we can see that our hybrid approach still performs very well

and similar conclusion can be obtained.

Table 3.1: Accuracy for 2D Linear Equation. Computational meshes are refined meshes of
the left mesh in Figure (3.1). ζ = 1.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

10368 0.107E-02 – 0.747E-02 – -199.72 1.19%
41472 0.109E-03 3.30 0.307E-03 4.60 -199.88 0.59%
165888 0.137E-04 2.99 0.470E-04 2.71 -200.53 0.29%
663552 0.172E-05 2.99 0.775E-05 2.60 -201.20 0.15%
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Figure 3.1: Coarsest meshes in the convergence study. Left: the mesh is obtained by ran-
domly perturbing a 10 × 10 uniform mesh within ±30% for every interior node; Right: the
mesh is obtained by randomly perturbing a 20 × 20 uniform mesh within ±35% for every
interior node.

Table 3.2: Accuracy for 2D Linear Equation. Computational meshes are refined meshes of
the left mesh in Figure (3.1). ζ = 10.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

10368 0.107E-02 – 0.754E-02 – -199.72 0.13%
41472 0.109E-03 3.30 0.299E-03 4.66 -199.88 0.06%
165888 0.137E-04 2.99 0.458E-04 2.71 -200.53 0.03%
663552 0.172E-05 2.99 0.778E-05 2.56 -201.20 0.02%

Table 3.3: Accuracy for 2D Linear Equation. Computational meshes are refined meshes of
the right mesh in Figure (3.1). ζ = 1.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

11552 0.945E-03 – 0.633E-02 – -5426.19 3.44%
46208 0.104E-03 3.18 0.357E-03 4.15 -5574.93 1.72%
184832 0.130E-04 3.00 0.478E-04 2.90 -6457.42 0.86%
739328 0.164E-05 2.99 0.672E-05 2.83 -8006.47 0.43%

Example 2. Nonlinear Burgers’ equation:

ut + (
u2

2
)x + (

u2

2
)y = 0 (3.2)
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Table 3.4: Accuracy for 2D Linear Equation. Computational meshes are refined meshes of
the right mesh in Figure (3.1). ζ = 10.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

11552 0.951E-03 – 0.652E-02 – -5426.19 0.35%
46208 0.103E-03 3.21 0.358E-03 4.18 -5574.93 0.18%
184832 0.130E-04 2.99 0.478E-04 2.90 -6457.42 0.09%
739328 0.164E-05 2.99 0.671E-05 2.83 -8006.47 0.04%

with the initial condition

u0(x, y) = 0.3 + 0.7 sin(
π

2
(x + y)) (3.3)

(x, y) ∈ [−2, 2] × [−2, 2], with periodic boundary condition. We apply the hybrid WENO

schemes to solve the PDE (3.2) to T = 0.5/π2, when the solution is still smooth. Again we

used the same meshes with large obtuse angles as those in Example 1. Numerical results

are reported in Table 3.5, Table 3.6, Table 3.7 and Table 3.8. We observe good third order

accuracy and the same conclusion can be obtained as that in Example 1.

Table 3.5: Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of
the left mesh in Figure (3.1). ζ = 1.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

10368 0.106E-03 – 0.116E-02 – -199.72 1.19%
41472 0.125E-04 3.08 0.164E-03 2.82 -199.88 0.59%
165888 0.159E-05 2.97 0.236E-04 2.80 -200.53 0.29%
663552 0.201E-06 2.98 0.378E-05 2.64 -201.20 0.15%

Table 3.6: Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of
the left mesh in Figure (3.1). ζ = 10.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

10368 0.107E-03 – 0.112E-02 – -199.72 0.13%
41472 0.125E-04 3.10 0.157E-03 2.83 -199.88 0.06%
165888 0.159E-05 2.97 0.233E-04 2.75 -200.53 0.03%
663552 0.201E-06 2.98 0.374E-05 2.64 -201.20 0.02%
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Table 3.7: Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of
the right mesh in Figure (3.1). ζ = 1.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

11552 0.101E-03 – 0.193E-02 – -5426.19 3.44%
46208 0.120E-04 3.07 0.195E-03 3.30 -5574.93 1.72%
184832 0.157E-05 2.93 0.301E-04 2.70 -6457.42 0.86%
739328 0.203E-06 2.95 0.490E-05 2.62 -8006.47 0.43%

Table 3.8: Accuracy for 2D Burgers Equation. Computational meshes are refined meshes of
the right mesh in Figure (3.1). ζ = 10.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

11552 0.103E-03 – 0.576E-02 – -5426.19 0.35%
46208 0.120E-04 3.10 0.178E-03 5.02 -5574.93 0.18%
184832 0.157E-05 2.93 0.270E-04 2.72 -6457.42 0.09%
739328 0.203E-06 2.95 0.438E-05 2.62 -8006.47 0.04%

Example 3. (2D vortex evolution problem [11].) We solve the compressible Euler equations

of gas dynamics :

ξt + f(ξ)x + g(ξ)y = 0, (3.4)

where

ξ = (ρ, ρu, ρv, E),

f(ξ) = (ρu, ρu2 + p, ρuv, u(E + p)),

g(ξ) = (ρv, ρuv, ρv2 + p, v(E + p)).

Here ρ is the density, (u, v) is the velocity, E is the total Energy, p is the pressure, and

E =
p

γ − 1
+

1

2
ρ(u2 + v2),

with γ = 1.4. The mean flow is ρ = 1, p = 1, and (u, v) = (1, 1). An isentropic vortex

is added to the mean flow, i.e., perturbations in (u, v) and the temperature T = p

ρ
, no

perturbation in the entropy S = p

ργ :

(δu, δv) =
ǫ

2π
e0.5(1−r2)(−ȳ, x̄)
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δT = −
(γ − 1)ǫ2

8γπ2
e1−r2

, δS = 0,

where (x̄, ȳ) = (x−5, y−5), r2 = x̄2 + ȳ2, and the vortex strength ǫ = 5. The computational

domain is taken as [0, 10] × [0, 10], and periodic boundary conditions are used. Solution of

the system is smooth, hence it is often used as a benchmark problem for testing accuracy

of numerical schemes for solving Euler systems. We use the mesh shown in Figure 3.2 and

its refined ones to test the accuracy of our hybrid WENO scheme. The final time T = 2.0.

Numerical results are reported in Table 3.9 and Table 3.10. Again, we observe good third

order accuracy and the same conclusion is obtained as that in the previous examples.

0 2 4 6 8 10
0

2

4

6

8

10

Figure 3.2: The coarsest mesh in the convergence study for the vortex evolution problem.

Table 3.9: Accuracy for 2D Vortex Evolution Problem, ζ = 1.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

928 0.808E-02 – 0.171E+00 – -380.02 7.94%
3712 0.213E-02 1.92 0.610E-01 1.49 -487.20 5.35%
14848 0.391E-03 2.45 0.215E-01 1.50 -486.50 2.74%
59392 0.319E-04 3.62 0.630E-03 5.09 -486.35 1.39%
237568 0.405E-05 2.98 0.807E-04 2.96 -485.37 0.70%
950272 0.541E-06 2.90 0.120E-04 2.75 -495.94 0.35%
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Table 3.10: Accuracy for 2D Vortex Evolution Problem. ζ = 10.0.

# of cells L1 error Order L∞ error Order most negative weight percentage

928 0.958E-02 – 0.172E+00 – -380.02 0.83%
3712 0.252E-02 1.93 0.681E-01 1.34 -487.20 0.61%
14848 0.403E-03 2.64 0.237E-01 1.52 -486.50 0.29%
59392 0.318E-04 3.66 0.632E-03 5.23 -486.35 0.14%
237568 0.405E-05 2.97 0.806E-04 2.97 -485.37 0.07%
950272 0.541E-06 2.90 0.119E-04 2.76 -495.94 0.04%

Example 4. (Double mach reflection problem [21].) We solve the Euler equations (3.4) in

a computational domain [0, 3.2] × [0, 1]. A reflecting wall lies at the bottom of the domain

starting from x = 1
6
. Initially a right moving Mach 10 shock is located at x = 1

6
, y = 0,

making a 60◦ angle with the x axis. The reflective boundary condition is used at the wall.

The exact postshock condition is imposed for the rest of the bottom boundary (i.e., the part

from x = 0 to x = 1
6
). At the top boundary, the flow values are set to describe the exact

motion of the Mach 10 shock. The final time is T = 0.2.

We randomly perturbe the uniform computational meshes with equilateral triangles in

[11] within ±10% for every interior node, and use the hybrid WENO reconstructions to

perform simulations on successively refined meshes. The most negative weights in type II

WENO reconstructions for these meshes are about −100. We observed the convergence of

the numerical solution. Here we present the numerical solution in Figure 3.3 for the most

refined mesh (side length of each triangle in the mesh is roughly equal to rectangular element

case of ∆x = ∆y = 1
400

). We compare the results by using different threshold values ζ = 1

and ζ = 10. For ζ = 1, the percentage of using type I WENO reconstructions is 0.10%, while

it is 0.02% for ζ = 10.0. The results are similar for different threshold values, and they are

comparable with the results in [11] by using the uniform computational meshes.

Example 5. (A hyperbolic model for chemosensitive movement [5].) We apply the third

order hybrid WENO method to solve a hyperbolic model for cell chemosensitive movement.

The model was developed in [8]. In [5], a high order finite difference WENO scheme was
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Figure 3.3: Double mach reflection. Density contours with 30 equally spaced contour lines
from 1.5 to 21.5. Top: ζ = 1; bottom: ζ = 10.

constructed to simulate it. The model equations are































∂n

∂t
+ ∇ · (n~v) = 0;

∂~v

∂t
+ ~v · ∇~v = β∇c;

∂c

∂t
= D△c + αn −

c

τ
,

(3.5)

where n denote the cell density, ~v is the velocity of cell movements. c is the concentration of

chemicals secreted by the cells. β represents the strength of chemotactic interactions. The

cell density n and velocity ~v satisfy hyperbolic conservation laws. Chemical concentration c

satisfies a reaction-diffusion equation. D is the diffusion rate, α is the production rate, and

1/τ is the degradation rate. We consider the 2D case ~v = (v1, v2)
T , and write the system
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(3.5) in a conservative form























































∂n

∂t
+

∂(nv1)

∂x
+

∂(nv2)

∂y
= 0;

∂(nv1)

∂t
+

∂(nv2
1)

∂x
+

∂(nv1v2)

∂y
= nβ

∂c

∂x
;

∂(nv2)

∂t
+

∂(nv1v2)

∂x
+

∂(nv2
2)

∂y
= nβ

∂c

∂y
;

∂c

∂t
= D(

∂2c

∂x2
+

∂2c

∂y2
) + αn −

c

τ
.

(3.6)

The first three equations in (3.6) is the hyperbolic part of the system, and we use the

third order finite volume hybrid WENO method to solve them. The fourth equation is a

parabolic equation, and we do not need to use WENO reconstruction. We use finite volume

formulation in section 2.1 with the flux F = −D∇c. Different from the numerical flux (2.4)

for hyperbolic PDEs, we use the average numerical flux

F (∇c(G
(k)
j , t)) · nk ≈

1

2

(

F (∇c−(G
(k)
j , t)) + F (∇c+(G

(k)
j , t))

)

· nk. (3.7)

The gradient ∇p of reconstructed quadratic polynomial p(x, y) for c on the big stencil (Figure

2.2) is directly used to approximate ∇c. We use the following parameters [8]:

β = 1.0, D = 2.0, α = 1.0, τ = 1.0. (3.8)

We perform numerical simulations on both a square domain [0, 20] × [0, 20] and a circular

domain with the center (10, 10) and radius 10. Periodic boundary condition and non-flux

boundary condition are used for the square domain and the circular domain respectively.

Initially certain number of cells are randomly distributed in the domain. We assume that

cells have shape of Gaussian bumps. So the initial cell density n is taken as a normalized

superposition of randomly distributed Gaussian bumps with width σ = 0.175

n(x, y) =
1

(2πσ)2

N
∑

i=1

exp(−
(x − xi)

2 + (y − yi)
2

2σ2
), (3.9)

where (xi, yi)1≤i≤N are uniformly distributed random points in the domain. N here represents

the total number of cells, and N = 10000 is used in our simulation. The initial cell velocity
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and chemical concentration are taken as 0. See Figure (3.4) for the initial cell density on two

different domains. The domains are partitioned by triangular meshes with 144646 elements

for the square domain, and 121592 elements for the circular domain. We use the third order

hybrid WENO method to perform the simulations till t = 1.56, and again compare the

results for ζ = 1 and ζ = 10. The triangular mesh for the square domain generates the

most negative weight −1284 in the type II WENO reconstructions. In our simulations, only

0.15% of all elements (if ζ = 1) and 0.01% of all elements (if ζ = 10) use the type I WENO

reconstructions. For the circular domain, the triangular mesh we use generates the most

negative weight −333 in the type II WENO reconstructions, and 0.16% of all elements (if

ζ = 1) and 0.01% of all elements (if ζ = 10) use the type I WENO reconstructions. See

Figure (3.5) and Figure (3.6) for the simulation results on different domains. We can observe

that network patterns similar to early blood vessel structures are generated. Again, different

threshold values ζ = 1 and ζ = 10 generate similar numerical results.

Figure 3.4: Initial cell density n. Left: the square domain; right: the circular domain.

4 Concluding remarks

A difficult step in designing robust high order type II WENO schemes on unstructured

meshes is how to deal with ill-posed or singular systems for finding linear weights when
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the mesh quality is not good. This problem is even more important in developing type II

WENO schemes on higher dimensional unstructured meshes. In this paper, we solve this

problem by hybriding the approaches of the type II and the type I WENO reconstructions.

The resulting hybrid finite volume WENO reconstructions are robust in dealing with bad

quality meshes. Although the compactness of the type II WENO reconstructions is lost at

the places where mesh quality is bad, the overall percentage of the places where the type

I WENO reconstructions are applied is quite small. Numerical experiments including both

scalar and hyperbolic system cases show the robutness of our approach.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Numerical simulations of the cell density evolution. (a)(b): t = 0.76; (c)(d): t
= 1.16; (e)(f): t = 1.56. (a)(c)(e): ζ = 1; (b)(d)(f): ζ = 10.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.6: Numerical simulations of the cell density evolution. (a)(b) t = 0.76; (c)(d) t =
1.16; (e)(f) t = 1.56. (a)(c)(e): ζ = 1; (b)(d)(f): ζ = 10.
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