
SCIENCE CHINA
Mathematics

October 2019 Vol. 62 No. 10: 1997–2014

https://doi.org/10.1007/s11425-018-9388-9

c⃝ Science China Press and Springer-Verlag GmbH Germany, part of Springer Nature 2019 math.scichina.com link.springer.com

. ARTICLES .

A conservative numerical method for the fractional
nonlinear Schrödinger equation in two dimensions

Rongpei Zhang1,∗ , Yong-Tao Zhang2 , Zhen Wang3 , Bo Chen4 & Yi Zhang1

1School of Mathematics and Systematic Sciences, Shenyang Normal University, Shenyang 110034, China;
2Department of Applied and Computational Mathematics and Statistics, University of Notre Dame,

Notre Dame, IN 46556, USA;
3College of Mathematics and Systems Science, Shandong University of Science and Technology,

Qingdao 266590, China;
4College of Mathematics and Statistics, Shenzhen University, Shenzhen 518060, China

Email: rzhang1@nd.edu, yzhang10@nd.edu, wangzhen@sdust.edu.cn, chenbo@szu.edu.cn, yizhang729@gmail.com

Received February 2, 2018; accepted September 3, 2018; published online May 16, 2019

Abstract This paper proposes and analyzes an efficient finite difference scheme for the two-dimensional non-

linear Schrödinger (NLS) equation involving fractional Laplacian. The scheme is based on a weighted and shifted

Grünwald-Letnikov difference (WSGD) operator for the spatial fractional Laplacian. We prove that the pro-

posed method preserves the mass and energy conservation laws in semi-discrete formulations. By introducing

the differentiation matrices, the semi-discrete fractional nonlinear Schrödinger (FNLS) equation can be rewrit-

ten as a system of nonlinear ordinary differential equations (ODEs) in matrix formulations. Two kinds of time

discretization methods are proposed for the semi-discrete formulation. One is based on the Crank-Nicolson

(CN) method which can be proved to preserve the fully discrete mass and energy conservation. The other one

is the compact implicit integration factor (cIIF) method which demands much less computational effort. It can

be shown that the cIIF scheme can approximate CN scheme with the error O(τ2). Finally numerical results

are presented to demonstrate the method’s conservation, accuracy, efficiency and the capability of capturing

blow-up.
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1 Introduction

The fractional nonlinear Schrödinger equations (FNLS) are generalizations of the classical (non-fractional)

nonlinear Schrödinger equation which plays an important role in many fields of physics. Laskin [17, 18]

derived the FNLS with quantum Riesz space-fractional derivative by extending the Feynman path integral

to a Lévy one. The FNLS equations can also be found in the continuum limit of discrete models with

long range interaction [15], in the mathematical description of Boson-stars [9,19], and in some models of

water wave dynamics [12, 28].
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In this paper, we consider the following two-dimensional symmetric space-fractional FNLS equation

on a bounded domain [a, b]× [c, d]:

i
∂u

∂t
=

∂αu

∂|x|α
+

∂αu

∂|y|α
+ β|u|2u, (1.1)

where i =
√
−1 is the complex unit, u = u(x, y, t) is a complex-valued function, 1 < α 6 2. The Riesz

fractional derivatives ∂αu
∂|x|α and ∂αu

∂|y|α are defined as follows:

∂αu

∂|x|α
=


−1

2 cos πα
2

(aD
α
xu+ xD

α
b u), 1 < α < 2,

∂2u

∂x2
, α = 2,

(1.2)

∂αu

∂|y|α
=


−1

2 cos πα
2

(cD
α
y u+ yD

α
d u), 1 < α < 2,

∂2u

∂y2
, α = 2.

(1.3)

The left and right Riemann-Liouville fractional derivatives, aD
α
x and xD

α
b , are respectively defined as

aD
α
xu =

1

Γ(2− α)

∂2

∂x2

∫ x

a

u(ξ, y)

(ξ − x)(α−1)
dξ, xD

α
b u =

1

Γ(2− α)

∂2

∂x2

∫ b

x

u(ξ, y)

(x− ξ)(α−1)
dξ, (1.4)

where Γ(·) denotes the standard Gamma function. It is noted that, when α = 2, this equation reduces

to the classical cubic nonlinear Schrödinger (NLS) equation.

Remark 1.1. In this paper, the fractional Laplacian operator is represented by a sequential Riesz

fractional-order derivative. There are also other definitions for the fractional Laplacian operator. For

example the fractional Laplacian can also be defined through the Fourier transform [17]. We choose

Riesz fractional-order derivative because the fractional Laplacian operator with the Fourier transform

breaches the principle of locality in physics and cannot accommodate boundary conditions on finite

domains [36]. As pointed in [22], the Lévy flight is equivalent to the Riesz fractional order space operator.

Thus the fractional order operators of fractional calculus have a direct representation in the extended

stochastic models of the conventional random walk. The sequential Riesz fractional-order Laplacian

operator follows from the introduction of an inverse power law distribution of jump lengths. We also note

that the fractional Laplacians defined by Riesz fractional derivative and Fourier transform formulations

are not equivalent, except for certain special cases. For example, in one dimension with zero Dirichlet

boundary conditions, these two formulations are the same [35]. However, in two dimensions, the two

formulations are different [7]. In this paper, we use (−∆∗)α/2 to represent the sequential fractional

Laplacian operator, i.e., that (−∆∗) = ∂αu
∂|x|α + ∂αu

∂|y|α . The difference between the operator (−∆∗)α/2

and the fractional Laplacian operator (−∆)α/2 lies in their Fourier transforms. The Fourier transform

of (−∆)α/2 is

F((−∆)α/2v) = (|ω1|2 + |ω2|2)α/2v̂(ω1 + ω2),

where v̂(ω1+ω2) denotes the Fourier transform of v. While the Fourier transform of (−∆∗)α/2 is defined as

F((−∆∗)α/2v) = (|ω1|α + |ω2|α)v̂(ω1 + ω2).

Similar to the cubic NLS equation case, the FNLS equation admits the following mass and energy

conservation by the time evolution [33]:

Mass : M(t) = ∥u∥2L2 = M(0) (1.5)

and

Energy : E(t) =

∥∥∥∥ ∂
α
2 u

∂|x|α2

∥∥∥∥2
L2

+

∥∥∥∥ ∂
α
2 u

∂|y|α2

∥∥∥∥2
L2

− β

2
∥u∥4L4 = E(0), (1.6)
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where ∥u∥2L2 and ∥u∥4L4 denote the L2- and L4-norm of u(x, y, t), respectively.

For classical Schödinger equations (where α = 2), it is well known that the solutions of the NLS equation

become singular with suitable initial condition data. Merle and Tsutsumi [24] proved that, for a blow-

up solution with radially symmetric initial data, the origin is a blow-up point and an L2-concentration

phenomenon occurs at the origin. For the FNLS equation (1.1), Boulenger et al. [3, Theorem 2] have

also theoretically proved that the solution u blows up in finite time if the initial energy E(0) < 0. In this

paper, the FNLS equation will be approximated to have a better understanding of the blow-up solutions’

behavior.

As it is difficult to get the analytic solutions of FNLS equations, different types of numerical approaches

to FNLS equations are proposed in recent years. Wang and Huang [32] studied an energy conservative

Crank-Nicolson difference scheme for nonlinear Riesz space-fractional Schrödinger equations. Then they

combined the split-step method with the alternating direction implicit (ADI) method for resolving the

multi-dimensions cases [33]. Yang [37] derived a class of linearized energy-conserved finite difference

schemes for nonlinear FNLS equations and the energy conservation and convergence were examined.

Khaliq et al. [14] combined the fourth-order implicit-explicit time-discretization scheme with a fourth-

order compact scheme in space for one-dimensional FNLS, and then extended to multi-dimensional cases

by using local extrapolation of the exponential operator splitting scheme [21]. Zhao et al. [40] utilized

a compact alternating direction implicit approach based on the linearized difference scheme to solve

two-dimensional space-fractional FNLS equation. A Fourier spectral method for one-dimensional FNLS

equation was developed by Klein et al. [16], in which the possibility of finite time blow-up and global

existence were studied. Bhrawy and Abdelkawy [2] developed a shifted Legendre collocation method to

numerically solve one- and two-dimensional time FNLS equations. Later, Duo and Zhang [8] proposed

three Fourier spectral methods to solve the FNLS equation, and proved the mass conservation and time

reversibility. Li et al. [20] proposed a Galerkin finite element method in space and the Crank-Nicolson

method in time for one-dimensional FNLS equations and derived conservation analysis and convergence

properties. Aboelenen [1] proposed a nodal discontinuous Galerkin method for solving the FNLS equations

and proved the L2 stability and optimal order of convergence.

For classical cubic NLS equations, a wealth of experience reveals that the conserve numerical methods

are favorable because they are able to maintain the phase and shape of the waves accurately for long

time integration. Extensive conservative schemes have been studied in the literature for integer order

NLS equations. These methods include the spectral (pseudospectral) method [10, 39], finite difference

method (FDM) [5,6] and discontinuous Galerkin (DG) method [34,38]. Naturally, it is also of interest to

construct the conservative numerical schemes for solving the FNLS equations. The main goal of this paper

is to construct a conservative and efficient difference scheme for solving the nonlinear two-dimensional

FNLS equation. Considerable schemes have been devoted to approximate the Riesz fractional derivative.

Meerschaert and Tadjeran [23] proposed the first-order shifted Grünwald formula. Based on the former

work, Tian et al. [30] developed two types of second-order weighted and shifted Grünwald-Letnikov

difference (WSGD) formulas. Recently Hou et al. [11] applied this method for solving the Allen-Cahn

equation. Ortigueira [29] firstly proposed the so-called fractional central difference scheme. Then Çelik

and Duman [4] analyzed this approximation and applied it to fractional diffusion equations. In this

paper, we use the second-order accurate WSGD method in the space discretization. The reason for this

choice is that the differential matrix of fractional derivatives is a real-value symmetric positive definite

matrix and has Cholesky decomposition. This Cholesky decomposition is extremely useful for the proof

of the discrete conservation laws. By using some useful lemmas, we will give the proof of the conservative

properties, i.e., mass conservation and energy conservation in the semi-discrete sense.

All numerical methods for multi-dimensional nonlinear diffusion problems face the same challenge in

implicit time stepping, i.e., how to efficiently solve a large nonlinear system at each time step. For

the multi-dimensional FNLS equation, the most frequently used method is alternating direction implicit

(ADI) [33, 40] schemes which reduce a multi-dimensional system to sets of independent one-dimensional

(1D) systems. This is particularly attractive to integer order Laplacian operator, because the resulting

1D systems are tridiagonal and can be efficiently solved by using the Thomas algorithm. However, the
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nonlocal property of fractional Laplacian leads to a full differential matrix and cannot apply the fast

tridiagonal matrix algorithm. Moreover, the ADI methods are limited to second-order accuracy in time.

In this paper, we will apply the compact implicit integration factor (cIIF) method for the nonlinear

ODEs in matrix formulation [26, 31]. After the space discretization by the WSGD method, the two-

dimensional FNLS equation is now discretized into a system of nonlinear ordinary differential equations

(ODEs). In order to reduce the required storage and CPU time, we introduce a compact representation

for the matrix approximating the differential operator. In particular, for a two-dimensional system of

N × N grid points, we can define an N × N matrix to store the unknown values at the grid points.

The fractional derivative operators in the x-direction and y-direction generate two differential matrice

Dx and Dy which are much smaller than the non-compact method. In the two-dimensional case the

operation count of cIIF schemes is O(N3) vs. O(N4) for non-compact ones. Then the cIIF method

applies matrix exponential operations sequentially in the x- and y-direction. As a result, the exponential

matrices eDx and eDy can be calculated and stored in the preprocessing stage. Another novel property of

the method is that the exact evaluation of the diffusion terms is decoupled from the implicit treatment

of the nonlinear terms [27]. We only solve a local nonlinear system with each spatial grid point at each

time-cycle. As a result, the cIIF is significantly more efficient in both storage and CPU cost for fractional

diffusion problems.

The rest of the paper is organized as follows: In Section 2 we present some notations and discretize

the two-dimensional FNLS equation into nonlinear ODEs in matrix formulation. Then we prove the

mass and energy conservation laws in semi-discrete formulation. In Section 3, we present two kinds of

time discretization methods: Crank-Nicolson (CN) and cIIF schemes. The efficiency of two methods is

compared in the numerical experiments in Section 4. We compute various FNLS equations to demonstrate

the convergence rates, the mass and energy conservation, and the excellent capability of capturing blow-up

of the proposed scheme. Finally, we summarize our conclusion in Section 5.

2 Numerical methods

2.1 Fractional centered difference

Now we present the method for the initial value problem (1.1) with the homogeneous Dirichlet boundary

condition. The spatial domain is discretized by rectangular mesh

Th = {(xj , yk) = (a+ jhx, c+ khy), j = 0, 1, . . . , Nx, k = 0, 1, . . . , Ny},

where hx = b−a
Nx

, hy = d−c
Ny

with Nx and Ny two positive even integers.

Assume U, V ∈ CNx×Ny . The element-by-element multiplication and inner product between two ma-

trices are defined as follows:

(U ⊙ V )j,k = (uj,kvj,k) (2.1)

and

(U, V ) = hxhy

Nx∑
j=1

Ny∑
k=1

Uj,kV j,k. (2.2)

We also define the complex magnitude and norms over space CNx×Ny as

(|U |)j,k = |uj,k| (2.3)

and

∥U∥pp = hxhy

Nx∑
j=1

Ny∑
k=1

|Uj,k|p, 0 < p < ∞, (2.4)

where V j,k denotes the conjugate of Vj,k.

In this paper, we use the second-order and third-order WSGDmethod [30] to approximate the Riemann-

Liouville space fractional derivatives, respectively. The essential idea of this approximation is using the
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weighted average to vanish the low order leading terms in asymptotic expansions for the truncation errors.

The WSGD formulas for the left and right Riemann-Liouville fractional derivatives in the x-direction are

defined as

aD
α
xu(xj , yk) =

1

hα

j+1∑
l=0

ω
(α)
k u(xj−l+1, yk) + o(hp),

xD
α
b u(xj , yk) =

1

hα

N−j+1∑
l=0

ω
(α)
k u(xj+l−1, yk) + o(hp)

(2.5)

for j = 1, . . . , Nx − 1, k = 1, . . . , Ny − 1.

If the solution u satisfies u ∈ C4(R2), the WSGD difference operator (2.5) has second-order accuracy,

i.e., that p = 2 in (2.5) (see [13]). The coefficients ω
(α)
k in (2.5) are given as

ω
(α)
0 =

α

2
g
(α)
0 , ω

(α)
k =

α

2
g
(α)
k +

2− α

2
g
(α)
k−1, k = 1, 2, . . . (2.6)

with

g
(α)
0 = 1, g

(α)
k =

(
1− 1 + α

k

)
g
(α)
k−1, k = 1, 2, . . . (2.7)

If the solution u satisfies u ∈ C5(R2), the WSGD difference operator (2.5) has third-order accuracy,

i.e., that p = 3 in (2.5) (see [13]). The coefficients in (2.5) are defined as

ω
(α)
0 = λ1g

(α)
0 , ω

(α)
1 = λ1g

(α)
1 + λ2g

(α)
0 , ω

(α)
k = λ1g

(α)
k + λ2g

(α)
k−1 + λ3g

(α)
k−2, k > 2, (2.8)

where λ1 = 5α
24 + α2

8 , λ2 = 1 + α
12 − α2

4 , λ3 = −7α
24 + α2

8 . The left and right Riemann-Liouville fractional

derivatives in the y-direction, cD
α
y and yD

α
d , can be discretized in the similar way.

Based on the discretization of Riemann-Liouville fractional derivatives, the Riesz fractional derivatives

in the x-direction can be discretized as

∂αu(xj , yk)

∂|x|α
=

−1

2 cos πα
2

(aD
α
xu(xj , yk) + xD

α
b u(xj , yk))

=
−1

2 cos πα
2

(
1

hα

j+1∑
l=0

ω
(α)
k u(xj−l+1, yk) +

1

hα

N−j+1∑
l=0

ω
(α)
k u(xj+l−1, yk)

)
+ o(hp), (2.9)

with p = 2 for second-order and p = 3 for third-order approximation. Riesz fractional derivatives in the

y-direction can be discretized in the similar way and we omit it.

We adopt a matrix representation for u, defining U = (uj,k) ∈ CNx−1×Ny−1 as the matrix formed by

the numerical solutions of u at the nodes (xj , yk):

U =


u1,1 u1,2 · · · u1,Ny−1

u2,1 u2,2 · · · u2,Ny−1

...
...

. . .
...

uNx−1,1 uNx−1,2 · · · uNx−1,Ny−1

 . (2.10)

Introducing the N ×N differentiation matrix of the differential operator

DN =



2ω
(α)
1 ω

(α)
0 + ω

(α)
2 · · · ω

(α)
N−1 ω

(α)
N

ω
(α)
0 + ω

(α)
2 2ω

(α)
1 ω

(α)
0 + ω

(α)
2 · · · ω

(α)
N−1

... ω
(α)
0 + ω

(α)
2 2ω

(α)
1 ω

(α)
0 + ω

(α)
2

...

ω
(α)
N−1

...
. . .

... ω
(α)
0 + ω

(α)
2

ω
(α)
N ω

(α)
N−1 · · · ω

(α)
0 + ω

(α)
2 2ω

(α)
1


, (2.11)
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the difference scheme (2.9) can be written in the following matrix formulations with mesh size h:

∂αu(xj , yk)

∂|x|α
= (DxU)j,k + o(hp), p = 2, 3, (2.12)

where

Dx =
1

−2hα
x cos πα

2

DNx−1. (2.13)

We adopt the similar method to discretize the Riesz fractional derivatives in the y-direction

∂αu(xj , yk)

∂|y|α
= (UDT

y )j,k + o(h2), (2.14)

where

Dy =
1

−2hα
y cos πα

2

DNy−1, (2.15)

and T denotes the transpose.

After this semi-discretization (2.12) and (2.14) in space, we get the difference scheme for the FNLS

equation as follows:

i
∂U

∂t
+DxU + UDT

y + β(|U | ⊙ |U |)⊙ U = 0. (2.16)

2.2 Conservation

The discrete mass and energy conservation laws are generally taken into consideration in the design of

the numerical schemes for the FNLS equation. The schemes preserving the mass and energy conservation

appear to approximate the solution better in the long time behavior. Next, we will prove that the semi-

discrete WSGD method (2.16) preserves the conservation law of the mass and energy. Before presentation

of the conservation of the scheme, we give some lemmas.

Lemma 2.1 (See [30]). The discretization matrices Dx and Dy defined in (2.13) and (2.15) are sym-

metric and negative definite for the second-order approximation case when 1 < α 6 2, and for the

third-order approximation case when 1+
√
73

6 < α 6 2.

Lemma 2.2. There exist real symmetric positive definite matrices Lx and Ly such that the following

inner product equalities hold:

(DxU, V ) = −(LxU,LxV ), (UDT
y , V ) = −(ULT

y , V LT
y ). (2.17)

Proof. Based on the lemma above, the matrix Dx is a real symmetric negative definite matrix. There

is a real orthogonal matrix P and a real diagonal matrix Λ = diag(λ) such that

Dx = −PΛPT = −(PΛ
1
2PT)T(PΛ

1
2PT) = −LT

xLx, (2.18)

where Λ
1
2 = diag(λ

1
2 ). Similarly, Dy = −LT

y Ly. It is easily derived that matrice Lx and Ly are real

symmetric positive definite matrice.

With the decomposition (2.18), we can get

(DxU, V ) = −hxhy

Nx∑
j=1

Ny∑
k=1

[ Nx∑
l=1

( Nx∑
m=1

Lx,mjLx,ml

)
Ulk

]
V jk

= −hxhy

Nx∑
j=1

Ny∑
k=1

[ Nx∑
m=1

( Nx∑
l=1

Lx,mlUlk

)
Lx,mj

]
V jk

= −hxhy

Nx∑
m=1

Ny∑
k=1

[( Nx∑
j=1

Lx,mjV jk

)( Nx∑
l=1

Lx,mlUlk

)]
= −(LxU,LxV ).

The second equality (UDT
y , V ) = −(ULT

y , V LT
y ) can be proved in the same way.



Zhang R P et al. Sci China Math October 2019 Vol. 62 No. 10 2003

On the basis of the definition of norms (2.4), the space discrete formulations of mass and energy are

defined as

Qh(t) = ∥U∥22 (2.19)

and

Eh(t) = ∥LxU∥22 + ∥ULT
y ∥22 −

β

2
∥U∥44 (2.20)

corresponding to (1.5) and (1.6), respectively.

Theorem 2.3. With the homogeneous Dirichlet boundary condition, the scheme preserves the mass

conservation law:
d

dt
Qh(t) ≡ 0. (2.21)

Proof. By taking the inner product of (2.16) with U , we can obtain

i

(
dU

dt
, U

)
+ (DxU,U) + (UDT

y , U) + β((|U | ⊙ |U |)⊙ U,U) = 0. (2.22)

According to Lemma 2.2, the second term becomes (DxU,U) = −(LxU,LxU) = −∥LxU∥22. Similarly, the

third term (UDT
y , U) = −(ULT

y , ULT
y ) = −∥ULT

y ∥22. The fourth term is

β((|U | ⊙ |U |)⊙ U,U) = hxhyβ

( Nx∑
j=1

Ny∑
k=1

|Uj,k|4
)

= β∥U∥44.

Now the equation (2.22) can be rewritten as

i

(
dU

dt
, U

)
− ∥LxU∥22 − ∥ULT

y ∥22 + β∥U∥44 = 0. (2.23)

Taking the complex conjugate for every term in the equation (2.23), we get

− i

(
U,

dU

dt

)
− ∥LxU∥22 − ∥ULT

y ∥22 + β∥U∥44 = 0. (2.24)

Taking the difference between (2.23) and (2.24), we obtain d
dt∥U∥22 ≡ 0. This completes the proof.

Theorem 2.4. With the homogeneous Dirichlet boundary conditions, the scheme preserves the energy

conservation law:
d

dt
Eh(t) ≡ 0. (2.25)

Proof. Taking the inner product of the scheme (2.16) with dU
dt yields

i

(
dU

dt
,
dU

dt

)
+

(
DxU,

dU

dt

)
+

(
UDT

y ,
dU

dt

)
+ β

(
(|U | ⊙ |U |)⊙ U,

dU

dt

)
= 0.

Based on Lemma 2.2, we can obtain

i

(
dU

dt
,
dU

dt

)
−
(
LxU,Lx

dU

dt

)
−
(
ULT

y ,
dU

dt
LT
y

)
+ β

(
(|U | ⊙ |U |)⊙ U,

dU

dt

)
= 0. (2.26)

Next, take the complex conjugate for every term in (2.26), i.e.,

− i

(
dU

dt
,
dU

dt

)
−
(
Lx

dU

dt
, LxU

)
−
(
dU

dt
LT
y , ULT

y

)
+ β

(
(|U | ⊙ |U |)⊙ dU

dt
, U

)
= 0. (2.27)

Taking the sum of the two equalities (2.26) and (2.27), we can derive

d

dt
(−(LxU,LxU)− (ULT

y , ULT
y )) + β

(
|U | ⊙ |U |, d(|U | ⊙ |U |)

dt

)
≡ 0.

From the above equation, we can get that

d

dt

(
− ∥LxU∥22 − ∥ULT

y ∥22 +
β

2
∥U∥44

)
≡ 0. (2.28)

Now we have completed the proof for the energy conservation law (2.25).
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3 Time integration

In the proceeding section, we have proved that the semi-discrete scheme (2.16) preserves mass and energy

conservation. In order to extend the mass and energy conservation property to the fully discrete method,

the usual choice of the time discretization scheme is the Crank-Nicolson method which can be proved

to preserve the mass and energy conservation in fully-discrete formulation. Despite the property of

preserving the conservation laws, solving such a nonlinear system is not practical due to extremely high

time complexity. The linearized iteration algorithm [37] can be implemented to overcome the difficulty.

However, the linearization procedure needs to reduce the time step to ensure the method convergent

for the strong nonlinear problem. Therefore we implement the other time discretization method: the

compact implicit integration factor (cIIF) method. The cIIF method is provided with the excellent

stability condition (assuring unconditional linear stability with respect to both diffusion and nonlinear

terms) and CPU efficiency which demands much less computational effort. The fully-discrete mass

and energy conservation can be numerically observed for the cIIF method. Moreover, the numerical

experiments in the next section show that the cIIF method is more efficient than the CN method. In the

time discretization method, we set the time step as τ and define the time level as tn = nτ , n = 0, 1, 2, . . .

3.1 The Crank-Nicolson method

By applying the implicit midpoint method in time for (2.16), the Crank-Nicolson difference scheme in

matrix formulation reads as follow:

i
Un+1 − Un

τ
+DxU

n+ 1
2 + Un+ 1

2DT
y + β

|Un+1|2 + |Un|2

2
Un+ 1

2 = 0, (3.1)

where Un+ 1
2 = Un+1+Un

2 . To check our method’s capability of preserving the mass and energy conserva-

tion, we define the discretized mass and energy as

Q(n) = ∥Un∥2, E(n) = ∥LxU
n∥2 + ∥UnLT

y ∥2 −
β

4
∥Un∥44.

The conservation in the one-dimensional case has been proposed in [32]. We extend the mass and energy

conservation for the two-dimensional fully discrete scheme.

Theorem 3.1. The Crank-Nicolson scheme (3.1) preserves the mass conservation law in fully discrete

formulation,

Q(n+ 1) = Q(n) = · · · = Q(0). (3.2)

Proof. These equalities are frequently used in the proof, listed as follows:

Re(Un+ 1
2 , Un+1 − Un) =

∥Un+1∥2 − ∥Un∥2

2
, (3.3)

Re(DxU
n+ 1

2 , Un+1 − Un) = ∥LxU
n+1∥2 − ∥LxU

n∥2, (3.4)

Re(Un+ 1
2DT

y , U
n+1 − Un) = ∥Un+1LT

y ∥2 − ∥UnLT
y ∥2, (3.5)

which can be easily verified by the inner product definition (2.2) and Lemma 2.2 and we omit the proof.

Taking the inner product of the scheme (3.1) with Un+ 1
2 yields(

i
Un+1 − Un

τ
, Un+ 1

2

)
+ (DxU

n+ 1
2 , Un+ 1

2 ) + (Un+ 1
2DT

y , U
n+ 1

2 )

+β

(
|Un+1|2 + |Un|2

2
Un+ 1

2 , Un+ 1
2

)
= 0. (3.6)

Based on Lemma 2.2, we can get(
i
Un+1 − Un

τ
, Un+ 1

2

)
− ∥LxU

n+ 1
2 ∥2 − ∥Un+ 1

2LT
y ∥2 + β

(
|Un+1|2 + |Un|2

2
, |Un+ 1

2 |2
)

= 0. (3.7)
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Taking the imaginary part, we can obtain

∥Un+1∥2 − ∥Un∥2 = 0 (3.8)

by using (3.3). We have completed the proof.

Theorem 3.2. The Crank-Nicolson scheme (3.1) preserves the energy conservation law in fully discrete

formulation,

E(n+ 1) = E(n) = · · · = E(0). (3.9)

Proof. Taking the inner product of the scheme (3.1) with Un+1 − Un yields(
i
Un+1 − Un

τ
, Un+1 − Un

)
+ (DxU

n+ 1
2 , Un+1 − Un) + (Un+ 1

2DT
y , U

n+1 − Un)

+

(
β
|Un+1|2 + |Un|2

2
Un+ 1

2 , Un+1 − Un

)
= 0. (3.10)

With the equalities (3.4) and (3.5), we can get

i
∥Un+1∥ − ∥Un∥2

τ
−∥LxU

n+1∥2+∥LxU
n∥2−∥Un+1LT

y ∥2+∥UnLT
y ∥2+

β

4
(∥Un+1∥44−∥Un∥44) = 0. (3.11)

Taking the real part,

− ∥LxU
n+1∥2 + ∥LxU

n∥2 − ∥Un+1LT
y ∥2 + ∥UnLT

y ∥2 +
β

4
(∥Un+1∥44 − ∥Un∥44) = 0. (3.12)

This completes the proof.

3.2 The compact implicit integration factor method

The semi-discrete formulation (2.16) can be written into the following nonlinear complex ODE system:

dU

dt
= AU + UB + F (U), (3.13)

where A = iDx, B = iDT
y and F (U) = iβ(|U | ⊙ |U |) ⊙ U . The following derivation procedure is similar

to the method in [26]. Multiplying (3.13) by the integration factor e−At from the left and e−Bt from the

right, and integrating over one time step from tn to tn+1, we can obtain

Un+1 = eAτUne
Bτ + eAτ

(∫ τ

0

e−AsF (U(tn + s))e−Bsds

)
eBτ . (3.14)

Then we approximate the integrand in (3.14) by using an (r − 1)-th order Lagrange interpolation poly-

nomial with interpolation points at tn+1, tn, . . . , tn−r+2 to obtain the r-th order cIIF scheme

Un+1 = eAτUne
Bτ + τ

(
α1F (Un+1) +

r−2∑
j=0

α−je
(j+1)AτF (Un−j)e

(j+1)Bτ

)
. (3.15)

See [26] for the values of coefficients αj , j = 1, 0, . . . , 2−r. In this paper, the second-order (cIIF2) as well

as the third-order (cIIF3) cIIF schemes are considered in an attempt to balance the spatial and temporal

accuracy of the overall approach:

Un+1 = eAτ

(
Un +

τ

2
F (Un)

)
eBτ +

τ

2
F (Un+1), (3.16)

Un+1 = eAτ

(
Un +

2τ

3
F (Un)

)
eBτ +

5τ

12
F (Un+1)−

τ

12
e2AτF (Un−1)e

2Bτ . (3.17)
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However, the third-order cIIF3 scheme (3.17) is not selfstarting, in the sense that the first time step

solution U1 has to be provided by the other two-level scheme with a smaller time step. In our numerical

simulation we use the cIIF2 scheme (3.16) with a time step τ
10 to calculate the value U(·, τ

10 ), and then

we use repeatedly the scheme (3.16) with timestep τ
10 until we get the values U1. Then we go ahead to

simulate the problem using the scheme (3.17) with time step τ .

Note that the four matrices eAτ , eBτ , e2Aτ and e2Bτ in (3.16)–(3.17) are Nx × Nx and Ny × Ny,

respectively. They have sizes of a one-dimensional problem. We only need to compute matrix exponentials

for matrices with sizes of one-dimensional problems. Otherwise, the size of the non-compact implicit

integration factor scheme is bigger than these orders of magnitude, which is NxNy×NxNy. The compact

implicit integration factor method not only saves storage critical for simulations with larger numbers of

spatial grid points, but also needs much fewer operations.

3.3 The relation between the CN and cIIF methods

We have proposed two time integration methods: the CN and cIIF methods. In the following, we will

analyze the two schemes to find the relation between them. The CN and cIIF2 methods both have the

second-order time accuracy. Although a complete proof of the conservation cannot be presented for the

cIIF2 method in this paper, we can show that the cIIF2 scheme (3.16) approximates the CN scheme (3.1)

with the error O(τ2).

Theorem 3.3. The fully discrete formulation cIIF 2 scheme (3.16) approximates the CN scheme (3.1)

with the error O(τ2).

Proof. By the (1, 1) Padé approximation [25], the exponential matrices eAτ and eBτ can be computed as

eAτ =

(
I − Aτ

2

)−1(
I +

Aτ

2

)
+O(τ2), eBτ =

(
I +

Bτ

2

)(
I − Bτ

2

)−1

+O(τ2), (3.18)

where I represents the unit matrix. Substituting (3.18) into the second-order cIIF scheme (3.16), we have

Un+1 =

(
I − Aτ

2

)−1(
I +

Aτ

2

)(
Un +

τ

2
F (Un)

)(
I +

Bτ

2

)(
I − Bτ

2

)−1

+
τ

2
F (Un+1) +O(τ2). (3.19)

Multiplying (I − Aτ
2 ) on the left and (I − Bτ

2 ) on the right for (3.19) yields(
I − Aτ

2

)
Un+1

(
I − Bτ

2

)
=

(
I +

Aτ

2

)(
Un +

τ

2
F (Un)

)(
I +

Bτ

2

)
+

(
I − Aτ

2

)
τ

2
F (Un+1)

(
I − Bτ

2

)
+O(τ2). (3.20)

Further expanding (3.20) and putting the term including τ2 into O(τ2), we get

Un+1 −
Aτ

2
Un+1 − Un+1

Bτ

2
= Un +

Aτ

2
Un + Un

Bτ

2
+

τ

2
(F (Un) + F (Un+1)) +O(τ2). (3.21)

Remembering A = iDx, B = iDT
y and F (U) = iβ(|U | ⊙ |U |) ⊙ U , we can get the following after some

simple calculation:

i
Un+1 − Un

τ
+DxU

n+ 1
2 + Un+ 1

2DT
y + β

|Un+1|2 + |Un|2

2
Un+ 1

2

=
β

4
(|Un+1|2 − |Un|2)(Un+1 − Un) +O(τ2). (3.22)

Based on the Taylor expansion, the term (|Un+1|2−|Un|2)(Un+1−Un) for the solution can be considered

as O(τ2). We finish the proof.
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4 Numerical experiments

In this section, we present some numerical experiments to test the performance of the proposed WSGD-

cIIF schemes (3.16) and (3.17). In all the numerical experiments, we use a uniform spatial step size

along each direction, i.e., that hx = hy = h. The theoretical analysis shows that the solution u(x, y, t)

of two-dimensional FNLS equation (1.1) blows up in finite time if the initial energy E(0) < 0 [3]. We

will verify this conclusion by some numerical examples. Firstly, we set the initial condition with positive

energy and find no blow-up phenomenon. Then we take a unique point as the origin of the radially

symmetric initial value to find the L2-concentration phenomenon. All the computations are performed

in Matlab platform based on a ThinkPad desktop with i3-3110 CPU and 4 GB memory.

Example 4.1. In this example, we perform the computation on a square domain [−10, 10]2 with β = 1.

The initial data are given as u(x, y, 0) = 2√
π
exp(−(x2 + y2)). We first validate the discrete conserva-

tion laws. Here, we choose h = 0.05 and τ = 0.01. Table 1 presents the values of the mass Q(n) and

Table 1 The values of Q(n) and E(n) at different time with τ = h = 0.05 and h = 0.01

α = 1.3 α = 1.5 α = 1.8

T Q(n) E(n) Q(n) E(n) Q(n) E(n)

T = 0 2.0000169 2.6644232 2.0000092 2.8003142 2.0000269 3.0969083

T = 2 2.0000269 2.6644239 2.0000269 2.8003146 2.0000270 3.0969082

T = 4 2.0000270 2.6644237 2.0000270 2.8003144 2.0000270 3.0969081

T = 6 2.0000270 2.6644237 2.0000270 2.8003144 2.0000270 3.0969083

T = 8 2.0000268 2.6644231 2.0000269 2.8003143 2.0000270 3.0969080

T = 10 2.0000269 2.6644236 2.0000270 2.8003143 2.0000270 3.0969088
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Figure 1 Evolution of mass Qn and energy En for different values of α
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Table 2 The space errors and convergence orders for the second-order WSGD method in Example 4.1

α = 1.3 α = 1.5 α = 1.8

m Error Order Error Order Error Order

5 6.02E−2 − 7.16E−2 − 8.56E−2 −
6 1.97E−2 1.61 2.35E−2 1.61 2.69E−2 1.67

7 5.30E−3 1.90 6.31E−3 1.90 6.85E−3 1.97

8 1.11E−3 2.25 1.32E−3 2.26 1.39E−3 2.29

Table 3 The temporal errors and convergence orders for the cIIF2 scheme in Example 4.1

α = 1.3 α = 1.5 α = 1.8

τ Error Order Error Order Error Order

2d− 2 2.04E−3 − 2.51E−4 − 6.80E-5 −
1d− 2 5.16E−4 1.98 6.31E−5 2.00 1.70E−5 2.00

5d− 3 1.29E−4 2.00 1.58E−5 2.00 4.26E−6 1.99

2.5d− 3 3.24E−5 1.99 3.95E−6 2.00 1.06E−6 2.01

Table 4 The space errors and convergence orders for the third-order WSGD method in Example 4.1

α = 1.3 α = 1.5 α = 1.8

m Error Order Error Order Error Order

5 1.20E−1 − 1.03E−1 − 9.81E−2 −
6 2.41E−2 2.32 2.07E−2 2.32 1.83E−2 2.42

7 3.55E−3 2.76 2.91E−3 2.83 2.05E−3 3.16

8 4.03E−4 3.14 3.12E−4 3.22 1.82E−4 3.50

Table 5 The temporal errors and convergence orders for the cIIF3 scheme in Example 4.1

α = 1.3 α = 1.5 α = 1.8

τ Error Order Error Order Error Order

2d− 2 9.06E−5 − 2.22E−5 − 1.08E−5 −
1d− 2 1.26E−5 2.84 2.96E−6 2.91 1.44E−6 2.91

5d− 3 1.65E−6 2.93 3.81E−7 2.96 1.85E−7 2.96

2.5d− 3 2.11E−7 2.97 4.84E−8 2.98 2.35E−8 2.98

Table 6 The CPU time (s) for CN and cIIF schemes

α = 1.3 α = 1.5 α = 1.8

h CN cIIF2 CN cIIF2 CN cIIF2

0.8 24.94 1.335E−7 25.87 0.475 27.79 0.446

0.4 463.50 1.528 445.60 1.449 461.80 1.333

0.2 − 5.675 − 5.437 − 5.279

energy E(n) at different time for α = 1.3, α = 1.5 and α = 1.8, respectively. Figure 1 depicts the

evolution of the discrete mass and energy in time interval [0, 10]. We can observe that the WSGD-cIIF

scheme conserves the mass and energy exactly from Figure 1 and Table 1. Nevertheless, unlike the mass

conservation which is independent of the value of α, the energy increases as α grows.
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Figure 2 Profile plot of |u| for different values of α at time t = 1 in Example 4.1

Table 7 The CPU time and |U |max for CN and cIIF2 schemes in Example 4.2

α = 1.3 α = 1.5 α = 1.8

|U |max CPU (s) |U |max CPU (s) |U |max CPU (s)

CN 14.55 1329.70 16.48 984.44 20.18 756.12

cIIF2 30.64 347.74 38.36 269.49 53.99 188.07
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Figure 3 Images |u| for the numerical solution of the FNLS equation in Example 4.2 with α = 1.3 at different time
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Figure 5 Images |u| for the numerical solution of the FNLS equation in Example 4.2 with α = 1.8 at different time

We use two numerical schemes: the second-order WSGD method with the cIIF2 scheme and the

third-order WSGD method with the cIIF3 scheme to demonstrate the accuracy of the space and time

discretization. Denote by {U(τ, h)} the numerical solution of the space grid h and the time grid τ at

time T . The error in the spatial direction with sufficiently small time step τ is calculated by

e(h) = ∥U(τ, h)− U(τ, h/2)∥∞
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Figure 6 Images |u| for the numerical solution of the FNLS equation in Example 4.2 with α = 2 at different time
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and the error in the temporal direction with sufficiently small h is similarly calculated by

e(τ) = ∥U(τ, h)− U(τ/2, h)∥∞.

The orders of convergence in space and time are computed as

q = log2(e(h)/e(h/2)) and p = log2(e(τ)/e(τ/2)),

respectively. Table 2 displays the space errors of the second-order WSGD scheme with different
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Figure 8 Evolution of energy En for different values of α

space grids h = 20
2m and values of α. The order of convergence is computed using a very small time

step τ = 1d − 3. In Table 3, the temporal errors and convergence orders of the cIIF2 scheme are given

for different time steps and α when the space grid is fixed to be h = 0.1. From Tables 2 and 3, we

conclude that the convergence rate in space and time is second-order. The space and temporal errors of

the third-order WSGD method coupled with cIIF3 schemes are shown in Tables 4 and 5. We can observe

that we obtain desired accuracy orders for all cases.

Next, we show the efficiency of our proposed WSGD-cIIF2 scheme by comparing the CPU time with

the WSGD-CN scheme. Choosing τ = 0.01 the CPU time is obtained at the final time T = 10 with

different h. As seen in Table 6, the CN scheme on our desktop with 4 GB RAM runs out of memory

when Nx = Ny = 100 because of storing matrices with a size of 104 × 104. On the other hand, the cIIF2

scheme can run on the same machine with much larger Nx because of its small memory requirement.

For smaller Nx such as Nx = 50, although the machine has enough memory for the CN scheme, it needs

almost 300 times more CPU time to achieve the same accuracy as cIIF2. Therefore we can draw that the

cIIF2 scheme is more efficient than the CN scheme, especially for the long time simulation of the large

size problem.

Finally, we use the WSGD scheme (2.16) coupled with the cIIF scheme (3.16) to simulate the dynamics

of the solution. The mesh steps used are τ = 0.01 and h = 0.1. We can compute the discretized energy

of the initial condition by (2.20) to obtain that E(0) = 2.66, E(0) = 2.79, E(0) = 3.09 and E(0) = 3.35

for α = 1.3, α = 1.5, α = 1.8 and α = 2, respectively. There is no blow-up because of the positive initial

energy. This agrees with the theoretical results. The contours of the modulus of the numerical function

at t = 1 are shown in Figure 2 with different α. Especially, comparing the solutions for α = 1.3, α = 1.5

and α = 1.8 with the classical case (α = 2) for reference, we can observe that the wave function decays

significantly faster and the wave shape becomes taller and steeper for progressively decreasing α. These

phenomena display that, the smaller the fractional order α is, the stronger the nonlocal effect is.

Example 4.2. In this example we show singular solutions for the FNLS equation (1.1) with the same

condition except the initial condition that is chosen as u(x, y, 0) = 6
√
2e−(x2+y2). The initial energy for

α = 1.3, α = 1.5, α = 1.8 and α = 2 is computed as E(0) = −1848.9, E(0) = −1841.2, E(0) = −1824.5
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and E(0) = −1809.6, respectively. The negative initial energy means that the solution will blow up in

finite time. We give the CPU time comparison of the CN and cIIF2 schemes for the blow-up case. By

choosing h = 0.2 for the CN scheme and h = 0.05 for the cIIF2 scheme, the CPU time and the maximum

absolute value of the solution, |U |max, are obtained at the blow-up time. We list the CPU time and |U |max

with α in Table 7. As seen in Table 7, the CN scheme needs more CPU time than the cIIF2 scheme even

with smaller grid numbers. The height of blow-up solutions it can reach is lower, which means that the

CN scheme is not appropriate to simulate the blow-up solution in two dimensions. By contrast the cIIF2

scheme is a good choice for two-dimensional fractional NLS equations. Figures 3–6 show the modulus of

the solution approximated using the WSGD-cIIF2 scheme with Nx = Ny = 512 and τ = 2d − 5. The

blow-up effect is obtained in finite time with different α. These plots show that the blow-up time gets

smaller and the tall peak gets sharper for progressively increasing α.

We also show the evolution of mass and energy for the blow-up solution in Figures 7 and 8 for Ex-

ample 4.2. Figure 7 shows that the mass could keep conservation till the solution blows up. However,

as shown in Figure 8, the energy conservation is violated because the energy contains the gradient term

which increases rapidly with blow-up solutions.

5 Conclusion

In this paper we have combined the WSGD space discretization method with the cIIF time discretization

method for computing the two-dimensional FNLS equation. We have proved that the WSGD method

can keep the conservation law in mass and energy in semi-discrete and fully-discrete formulation with

the Crank-Nicolson time scheme. Moreover, this method has uniform second- and third-order accuracy

in space and time. The numerical examples confirmed the excellent qualities of our method. In future

work, this method will be extended to the FNLS equation with damping terms or an angular momentum

rotation term as well as coupled FNLS equations.
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