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methods for advection-diffusion-reaction equations
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Abstract

Implicit integration factor (IIF) methods were developed in the literature for solv-
ing time-dependent stiff partial differential equations (PDEs). Recently, IIF methods
are combined with weighted essentially non-oscillatory (WENO) schemes in [Jiang and
Zhang, Journal of Computational Physics, 253 (2013) 368-388] to efficiently solve stiff
nonlinear advection-diffusion-reaction equations. The methods can be designed for ar-
bitrary order of accuracy. The stiffness of the system is resolved well and the methods
are stable by using time step sizes which are just determined by the non-stiff hyperbolic
part of the system. To efficiently calculate large matrix exponentials, Krylov subspace
approximation is directly applied to the implicit integration factor (IIF) methods. So
far, the IIF methods developed in the literature are multistep methods. In this paper,
we develop Krylov single-step IIF-WENO methods for solving stiff advection-diffusion-
reaction equations. The methods are designed carefully to avoid generating positive
exponentials in the matrix exponentials, which is necessary for the stability of the
schemes. We analyze the stability and truncation errors of the single-step IIF schemes.
Numerical examples of both scalar equations and systems are shown to demonstrate
the accuracy, efficiency and robustness of the new methods.
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1 Introduction

A central question in numerically solving time dependent partial differential equations
(PDEs) is how to design efficient and high order temporal numerical schemes. In the
literature, a lot of state-of-the-art high order time-stepping methods were developed.
For example, the total variation diminishing (TVD) Runge-Kutta (RK) schemes [33,
34, 12, 13]; spectral deferred correction (SDC) methods [4, 8, 17, 24, 28]; high order
implicit-explicit (IMEX) multistep / RK methods [1, 21, 23, 37, 39]; hybrid methods of
SDC and high order RK schemes [6]; etc.

Integration factor (IF) methods are a class of “exactly linear part” time discretization
methods for the solution of nonlinear partial differential equations (PDEs) with the
linear highest spatial derivatives. This class of methods performs the time evolution of
the stiff linear operator via evaluation of an exponential function of the corresponding
matrix. Hence the integration factor type time discretization can remove both the
stability constraint and time direction numerical errors from the high order derivatives
[3, 7, 27, 22].

In [30], a class of efficient implicit integration factor (IIF) methods were developed
for solving systems with both stiff linear and nonlinear terms. A novel property of the
methods is that the implicit terms are free of the exponential operation of the linear
terms. Hence when the methods are applied to PDEs with stiff nonlinear reactions (e.g.
the reaction-diffusion systems arising from mathematical models in computational devel-
opmental biology), the exact evaluation of the linear part is decoupled from the implicit
treatment of the nonlinear reaction terms. As a result, the size of the nonlinear system
arising from the implicit treatment is independent of the number of spatial grid points;
it only depends on the number of the original PDEs. This distinguishes IIF methods
[30] from implicit exponential time differencing (ETD) methods in [3]. The methods
can have high order accuracy (arbitrary order in principle) for stiff reaction-diffusion
systems with linear diffusion terms, and large stability region due to the implicit na-
ture of the schemes. To deal with the difficulty in implementing integration factor type
method for high dimensional problems, we developed the compact IIF methods [31] on
rectangular meshes, and Krylov IIF methods [5] on general unstructured meshes for
complex domains. The compact IIF methods were extended to curvilinear coordinates,
such as polar and spherical coordinates in [25].

Recently in [19], we developed Krylov IIF weighted essentially non-oscillatory (IIF-
WENO) methods for solving nonlinear advection-diffusion-reaction (ADR) equations.
The ADR equations in three spatial dimensions have the following general form

ut + f(u)x + g(u)y + h(u)z = ∇ · (D∇u) + r(u), (1)

where u is the unknown, f , g and h are advection fluxes in three spatial dimensions
respectively, D is the diffusion coefficient matrix, and r is the reaction term. The IIF-
WENO methods can be designed for arbitrary order of accuracy. The stiffness of the
system is resolved well and the methods are stable by using time step sizes which are
just determined by the non-stiff hyperbolic part of the system. Large time step size
computations are obtained. Krylov subspace approximations are applied in efficiently
dealing with large matrix exponential computations in high spatial dimension problems.

The IIF methods developed in the literature so far are multistep methods. It is an
open problem how to develop single-step IIF methods for solving stiff problems. While
single-step explicit integration factor (EIF) methods can be designed straightforwardly
as shown in this paper, the single-step IIF methods need to be designed carefully to
preserve the “local implicit” property of the original IIF schemes in [30]. Namely, the
implicit terms are free of the exponential operation. As a result, the implicit nonlinear
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system is decoupled for each spatial grid point. The size of the implicit nonlinear system
at every spatial grid point only depends on the number of the original PDEs. This
“local implicit” property provides a key factor for the computational efficiency of the
IIF schemes, since no coupled large nonlinear system needs to be solved at every time
step. The small size implicit nonlinear system can be efficiently solved by a fixed-point
iteration method [30] or a Newton iteration method [5].

In this paper, we develop Krylov single-step IIF-WENO methods for solving stiff
advection-diffusion-reaction equations. The methods are designed carefully to avoid
generating positive exponentials in the matrix exponentials, which is necessary for the
stability of the schemes. “local implicit” property of the original IIF schemes and all
other properties of Krylov multistep IIF-WENO methods in [19] are preserved. The
rest of the paper is organized as following. In Section 2, we derive and formulate the
Krylov single-step IIF-WENO methods for ADR equations. In Section 3, the truncation
error and linear stability analysis are performed. Numerical experiments are presented
in Section 4. Discussions and conclusions are given in Section 5.

2 High order Krylov single-step IIF-WENO methods

In this section we describe the new methods in details. The single-step integration
factor (SIF) methods are derived. The novel part of the methods is in their temporal
discretization. However for the self-contained description of the methods, the spatial
discretizations are given at first.

2.1 Spatial discretization

In this paper, we use the third order finite difference WENO scheme with Lax-Friedrichs
flux splitting [18] to discretize the nonlinear advection terms. WENO schemes are
robust in dealing with nonlinear advection under different situations. We will give a
brief sketch of the algorithms here. For the advection terms f(u)x + g(u)y + h(u)z, the
conservative finite-difference schemes we use approximate the point values at a uniform
(or smoothly varying) grid (xi, yj , zk) in a conservative fashion. Namely, the derivative
f(u)x at (xi, yj , zk) is approximated along the line y = yj , z = zk by a conservative flux
difference

f(u)x|x=xi ≈
1

Δx
(f̂i+1/2 − f̂i−1/2), (2)

where for the third order WENO scheme the numerical flux f̂i+1/2 depends on the
three-point values f(ul) (here for the simplicity of notations, we use ul to denote the
value of the numerical solution u at the point xl along the line y = yj , z = zk with the
understanding that the value could be different for different y and z coordinates), l =
i−1, i, i+1, when the wind is positive (i.e., when f ′(u) ≥ 0 for the scalar case, or when
the corresponding eigenvalue is positive for the system case with a local characteristic
decomposition). This numerical flux f̂i+1/2 is written as a convex combination of two
second order numerical fluxes based on two different substencils of two points each,
and the combination coefficients depend on a “smoothness indicator” measuring the
smoothness of the solution in each substencil. The detailed formulae is

f̂i+1/2 = w0

[
1

2
f(ui) +

1

2
f(ui+1)

]
+ w1

[
−1

2
f(ui−1) +

3

2
f(ui)

]
, (3)

where

wr =
αr

α1 + α2
, αr =

dr
(ε+ βr)2

, r = 0, 1. (4)
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d0 = 2/3, d1 = 1/3 are called the ”linear weights”, and β0 = (f(ui+1) − f(ui))
2, β1 =

(f(ui)− f(ui−1))
2 are called the “smoothness indicators”. ε is a small positive number

chosen to avoid the denominator becoming 0. We take ε = 10−3 in this paper.
When the wind is negative (i.e., when f ′(u) < 0), right-biased stencil with numerical

values f(ui), f(ui+1) and f(ui+2) are used to construct a third order WENO approxi-

mation to the numerical flux f̂i+1/2. The formulae for negative and positive wind cases
are symmetric with respect to the point xi+1/2. For the general case of f(u), we perform
the ”Lax-Friedrichs flux splitting”

f+(u) =
1

2
(f(u) + αu), f−(u) =

1

2
(f(u)− αu), (5)

where α = maxu |f ′(u)|. f+(u) is the positive wind part, and f−(u) is the negative
wind part. Corresponding WENO approximations are applied to find numerical fluxes
f̂+
i+1/2 and f̂−

i+1/2 respectively. Similar procedures are applied to the other directions for

g(u)y and h(u)z. See [18, 35] for more details. For diffusion terms, the second or fourth
order central finite difference approximations (depending on the order of accuracy of
time discretization) are used.

2.2 Krylov single-step IIF methods

2.2.1 Single-step explicit integration factor methods

We first present single-step explicit integration factor (SEIF) methods. The SEIF meth-
ods can be used to resolve the stiffness arising from the diffusion terms in advection-
diffusion equations or advection-diffusion-reaction equations with nonstiff reaction terms.
The SEIF method is straightforward to be derived and has been developed in the litera-
ture, for example as shown in [7] and its references, or in [20]. After spatial dicretizations
of an ADR equation (1), the following semi-discretized ODE system is obtained

d�U

dt
= C�U + �F (�U), (6)

where C�U is the approximation for the diffusion terms by the second or fourth order
finite difference schemes, and the nonlinear term �F (�U) includes the approximation for
the nonlinear advection terms by the third order finite difference WENO scheme and
nonstiff reaction terms. To derive SEIF methods, we multiply both sides of (6) by an
integration factor e−Ct to obtain

e−Ct d
�U

dt
= e−Ct(C�U + �F (�U)), (7)

and rewrite (7) as

d(e−Ct�U)

dt
= e−Ct �F (�U). (8)

Denote Y = e−Ct�U , then (8) can be written in term of Y as

Yt = e−Ct �F (eCtY ). (9)

The next step we apply Runge-Kutta methods, for example the Heun’s second order
method or the Kutta’s third order method to (9) to approximate Y (t) instead of �U(t).
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At last the relation �U = eCtY is used to get following schemes (SEIF2 and SEIF3)

for �U . The second order single-step explicit integration factor (SEIF2) scheme is⎧⎪⎨
⎪⎩
�U (1) = eCΔt

(
�Un +Δt �F (�Un)

)
,

�Un+1 = eCΔt

(
�Un +

Δt

2
�F (�Un)

)
+

Δt

2
�F (�U (1)).

(10)

And the third order single-step explicit integration factor (SEIF3) scheme is⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�U (1) = eCΔt/2

(
�Un +

Δt

2
�F (�Un)

)
,

�U (2) = eCΔt
(
�Un −Δt �F (�Un)

)
+ 2ΔteCΔt/2 �F (�U (1)),

�Un+1 = eCΔt

(
�Un +

Δt

6
�F (�Un)

)
+

2Δt

3
eCΔt/2F (�U (1)) +

Δt

6
�F (�U (2)).

(11)

In order to efficiently calculate the product of a large matrix exponential and a
vector, Krylov subspace approximation is used, as that in the Krylov multistep IIF-
WENO schemes for ADR systems in [19]. The details are presented in the following
section 2.2.3.

2.2.2 Single-step implicit integration factor methods

In this section we develop new single-step implicit integration factor (SIIF) methods.
For advection-diffusion-reaction equations arising from biological and physical applica-
tions, they often have stiff nonlinear reaction terms. It is necessary to treat nonlinear
stiff reaction terms implicitly in order to achieve large time step sizes for efficient time
evolution. However, unlike the SEIF methods, it is not straightforward to derive SIIF
methods. There are two difficulties here. One is that the approach used in the last
section for SEIF methods, i.e., directly applying implicit Runge-Kutta methods to the
transformed equation (9), often leads to positive exponentials in the matrix exponen-
tials. Our numerical experiments show that the computations are unstable with these
positive exponentials. The second question is how to preserve the local implicit property
of the original multistep IIF schemes in [30]. Namely, the implicit terms are free of the
exponential operation. As a result, the implicit nonlinear system is decoupled for each
spatial grid point. The size of the implicit nonlinear system at every spatial grid point
only depends on the number of the original PDEs. Motivated by the ideas in [7] for
developing Runge-Kutta type ETD schemes, we derive single-step implicit integration
factor (SIIF) methods here.

We start from the following semi-discretized ODE system after spatial dicretizations
of the ADR system (1)

�Ut = C�U + �F (�U) + �R(�U), (12)

where C�U is from the diffusion terms, �F (�U) is from the advection terms and �R(�U)
is from the reaction terms. Notice that different from the form (6), here we separate
the nonlinear advection terms and the nonlinear reaction terms since they are treated
differently in the implicit IF schemes.

To construct SIIF methods for (12), we multiply it by the integration factor e−Ct

and integrate over one time step from tn to tn+1 = tn +Δt to obtain

�U(tn+1) = eCΔt�U(tn) + eCΔt

∫ Δt

0

e−Cτ
(
�F (�U(tn + τ)) + �R(�U(tn + τ))

)
dτ. (13)
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Note that the time step size Δt can vary at every time step, so it is actually Δtn. For
the simplicity of notations, we use Δt here. The linear term C�U has been integrated
exactly in the time direction, hence the stiffness associated with the linear operator is
removed. Two of the nonlinear terms in (13) have different properties. The nonlinear

reaction term �R(�U) is usually stiff but local, while the nonlinear term �F (�U) derived
from WENO approximations to the advection term is nonstiff but couples numerical
values at grid points of the stencil. Hence we use different methods to treat them and
avoid solving a large coupled nonlinear system. The advection term is treated explicitly
while implicit approach is used for the reaction term.

Denote the numerical approximation to �U(tn) by �Un, and let �G1(τ) � e−Cτ �F (�U(tn+

τ)) and �G2(τ) � e−Cτ �R(�U(tn+τ)). If we use the constants �G1(0) to approximate �G1(τ)

and �G2(Δt) to approximate �G2(τ) inside the integral of (13) as following

�U(tn+1) ≈ eCΔt�U(tn) + eCΔt

∫ Δt

0

e−C·0 �F (�U(tn + 0)) + e−CΔt �R(�U(tn +Δt)dτ, (14)

then the first order single-step IIF scheme (SIIF1) is obtained

�Un+1 = eCΔt�Un +ΔteCΔt �F (�Un) + Δt �R(�Un+1). (15)

Note that the implicit term �R(�Un+1) is free of matrix exponential operation. To con-
struct a second order single-step IIF (SIIF2) scheme, analogous to the Runge-Kutta

methods we introduce a middle stage �Hn which is given by the first order explicit
integration factor (EIF1) scheme

�Hn = eCΔt�Un +ΔteCΔt �F (�Un) + ΔteCΔt �R(�Un). (16)

�Hn is a first order approximation to �U(tn+1). A linear polynomial interpolation is

constructed to approximate the integrand in (13) as following. �Un and �Hn are used as

interpolation values of �U(t) at the points tn and tn +Δt for �G1(τ) which involves the

advection term. �Un and �Un+1 are used as interpolation values of �U(t) at the points tn
and tn +Δt for �G2(τ) which involves the stiff reaction term. Hence we have

�G1(τ)+ �G2(τ) ≈ (�F + �R)(�Un)+
τ

Δt

[
e−CΔt(�F ( �Hn) + �R(�Un+1))− (�F + �R)(�Un)

]
. (17)

Substituting (17) to (13), we obtain the SIIF2 scheme

�Un+1 = eCΔt�Un +
Δt

2

[
�F ( �Hn) + �R(�Un+1) + eCΔt(�F (�Un) + �R(�Un))

]
. (18)

Again, the implicit term �R(�Un+1) is free of matrix exponential operation.
A third order single-step IIF (SIIF3) scheme can be constructed in a similar way.

As the procedure that the third order Runge-Kutta ETD method was derived in [7]
analogous to the classical third-order Runge-Kutta method, first explicit methods are
used to approximate the numerical values of �U(t) at the points tn +Δt/2 and tn +Δt:

�An = eCΔt/2�Un +
1

2
ΔteCΔt/2

(
�F (�Un) + �R(�Un)

)
, (19)

�Bn = eCΔt�Un + 2ΔteCΔt/2(�F ( �An) + �R( �An))−ΔteCΔt
(
�F (�Un) + �R(�Un)

)
. (20)
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Then the SIIF2 scheme (18) is used to calculate a middle stage value �Anr, an approxi-

mation to numerical value of �U(t) at tn +Δt/2,

�Anr = eCΔt/2�Un +
Δt

4

[
�F ( �An) + �R( �Anr) + eCΔt/2

(
�F (�Un) + �R(�Un)

)]
. (21)

Finally a quadratic interpolation is constructed to approximate the integrand in (13).
�Un, �An and �Bn are used as interpolation values of �U(t) at the points tn, tn +Δt/2 and

tn +Δt for �G1(τ) which involves the advection term, while �Un, �Anr and �Un+1 are used

as interpolation values of �U(t) at the points tn, tn +Δt/2 and tn +Δt for �G2(τ) which
involves the stiff reaction term. Then we obtain the following SIIF3 scheme

�Un+1 = eCΔt�Un +
Δt

6

[
eCΔt(�F (�Un) + �R(�Un)) + 4eCΔt/2(�F ( �An) + �R( �Anr))

+(�F ( �Bn) + �R(�Un+1))
]
. (22)

The implicit terms in (22) and (21) are free of matrix exponential operations. Hence the
local implicit property of the original multistep IIF schemes have been preserved here.
Again in order to perform the computation for high spatial dimensional problems, we
use Krylov subspace method described in the next section to approximate the product
of a matrix exponential and a vector.

Remark. It is interesting to observe that if the reaction term �R is set to be 0 in the
single-step IIF schemes SIIF2 and SIIF3, the schemes reduce to the explicit IF schemes
SEIF2 and SEIF3.

Remark. By taking the advection term �F (�U) = 0 in the SIIF2 and SIIF3 schemes,
we obtain the single-step IIF schemes for solving stiff reaction-diffusion equations. The
SIIF2 scheme for reaction-diffusion equations is

Un+1 = eCΔtUn +Δt[
1

2
R(Un+1) +

1

2
eCΔtR(Un)]. (23)

This scheme is exactly the second order IIF scheme for stiff reaction-diffusion equations
derived in [30]. We would like to emphasize that the general IIF schemes in our previous
work including [30] are multistep schemes, except that the second order one happens
to be a single-step scheme for reaction-diffusion equations without advection terms.
The approach to derive the multistep schemes in our previous work is totally different
from that in this paper for the single-step schemes. As that we can see, the single-step
methods and multistep methods are different for advection-diffusion-reaction equations
(even for the second order schemes), and they are also different in the third order scheme
case even for relatively simple reaction-diffusion equations. The third order single-step
IIF scheme SIIF3 for stiff reaction-diffusion equations is as following:

Anr = eCΔt/2Un +Δt[
1

4
R(Anr) +

1

4
eCΔt/2R(Un)],

Un+1 = eCΔtUn +
Δt

6
eCΔtR(Un) +

2

3
ΔteCΔt/2R(Anr) +

Δt

6
R(Un+1). (24)

The scheme is a single-step method and it is different from the third order multistep
IIF scheme for stiff reaction diffusion equations derived in [30].
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2.2.3 Krylov subspace approximations for matrix exponentials

Notice that we do not need the full exponential matrices such as eCΔt itself, but only
the products of the exponential matrices and some vectors in the developed integration
facor schemes. The Krylov subspace approximations to the matrix exponential operator
is an excellent choice in terms of both accuracy and efficiency. Follow the literature (e.g.
[10, 29]), we describe the Krylov subspace methods to approximate eCΔtv as following.

The large sparse matrix C is projected to the Krylov subspace

KM = span{v, Cv, C2v, · · · , CM−1v}. (25)

The dimension M of the Krylov subspace is much smaller than the dimension N of
the large sparse matrix C. For most of numerical computations in this paper, we
take M = 25 for different N , and accurate results are obtained in the numerical
experiments. The well-known Arnoldi algorithm [36] generates an orthonormal basis
VM = [v1, v2, v3, · · · , vM ] of the Krylov subspace KM , and an M×M upper Hessenberg
matrix HM . And this the very small Hessenberg matrix HM represents the projection
of the large sparse matrix C to the Krylov subspace KM , with respect to the basis VM .
Since the columns of VM are orthonormal, we have the approximation

eCΔtv � βVMeHMΔte1, (26)

where β = ‖v‖2, and e1 denotes the first column of the M × M identity matrix IM .
Thus the large eCΔt matrix exponential problem is replaced with a much smaller eHMΔt

problem. The small matrix exponential eHMΔt will be computed using a scaling and
squaring algorithm with a Padé approximation with only a small computational cost,
see [15, 29, 10]. Then the Krylov approximations are directly applied in computations
of the products of matrix exponentials and vectors in the single-step integration factor
schemes here.

Remark. We would like to emphasize that in the implementation of the methods, we
do not store matrices C, because only multiplications of matrices C with a vector are
needed in the methods, and they correspond to certain finite difference operations. This
implementation technique has been done for the multistep schemes in [19].

Remark. We would like to emphasize that in our Krylov single-step IIF-WENO
schemes for ADR systems, the “local implicit” property of the original IIF schemes
in [30] is preserved well. Namely, the implicit terms are free of matrix exponential oper-
ations. As a result, the implicit nonlinear system is decoupled for each spatial grid point.
The size of the implicit nonlinear system at every spatial grid point only depends on the
number of the original PDEs. This “local implicit” property provides a key factor for
the computational efficiency of our Krylov single-step IIF-WENO schemes. The small
size implicit nonlinear systems can be efficiently solved by either a fixed-point iteration
method or a Newton iteration method. Also the “local implicit” property reduces the
amount of information exchange of different regions of the domain, hence offers some
advantages when the methods are parallelized.

Remark. For a one dimensional linear diffusion equation with constant diffusion coeffi-
cient and periodic boundary condition, a second order central difference approximation
to the diffusion term duxx leads to a differential matrix C with three nonzero elements
d/h2,−2d/h2, d/h2 in each row. Eigenvalues of the matrix C are

λk = −4d

h2
sin2

(
(k − 1)π

N

)
, k = 1, 2, · · · , N.

8



Here N is the number of grid points. By the analysis theorems provided in [10, 16], an
error estimation of the Krylov subspace approximation (26) for this case is

||eCΔtv − βVMeHMΔte1||2 ≤ 10βe−M2/(5ρΔt), (27)

where M = 25 is the dimension of the Krylov subspace, and eigenvalues of the matrix
C are in the interval [−4ρ, 0]. Hence ρ = d/h2 for this case. We can see that with a
fixed Courant number ρΔt and M = 25, the negative power in the exponential term of
the error (27) leads to small approximation errors.

Remark. As that discussed in [16], the convergence to eCΔtv by Krylov subspace
approximation is more efficient than that of corresponding Krylov methods for the
solution of linear system (I − ΔtA)x = v, which arises in the implicit schemes for
diffusion equations or other PDEs with high order derivatives. Since there are many
fast linear system solvers which can be used to accelerate computations of implicit
schemes, it will be one of our future work to perform systematical comparisons of
different methods.

3 Linear analysis

Similar as that in [30, 19] for multistep methods, we perform linear analysis for the
single-step integration factor methods derived in the last section.

3.1 Linear analysis of SEIF schemes

3.1.1 Truncation error

We focus on analyzing the truncation errors of the SEIF2 scheme (10) and the SEIF3
scheme (11), i.e., the local temporal truncation errors. Consider the following linear
semi-discretization system

du

dt
= Cu+ Fu, (28)

where C and F are matrices derived from linear spatial discretizations of a linear ADR
system, and u is the vector of unknown numerical values. First, we apply the SEIF2
scheme (10) to the system (28) to obtain un+1 in terms of un :

un+1 = eCΔt(I +
F

2
Δt)un +

F

2
ΔteCΔt(I +ΔtF )un. (29)

To derive the local truncation error, we substitute the exact solution of (28) into the
right hand side of the equation (29) and use Taylor expansion. Denoting the exact
solution of (28) by u(t), we replace un by the exact solution value u(tn) in (29) and
obtain

un+1 = (I + (C + F )Δt+ (
C2

2
+

F 2

2
+

CF

2
+

FC

2
)Δt2 + . . . )u(tn). (30)

Hence, the local truncation error of the SEIF2 method (10) is(
I + (C + F )Δt+

(C + F )2

2
Δt2 + . . .

)
u(tn)− e(C+F )Δtu(tn) = O(Δt3)u(tn). (31)
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Similarly for the third order scheme SEIF3 (11) , we apply it to the system (28) and
obtain

un+1 = eCΔt(I +
Δt

6
F )un +

Δt

6
FeCΔt(I −ΔtF )un

+
Δt

3
eCΔt/2FeCΔt/2(2I +ΔtF )un +

F

3
Δt2eCΔt/2FeCΔt/2(I +

Δt

2
F )un. (32)

Using Taylor expansion and replacing un by the exact solution value u(tn), we have

un+1 =

(
I + (C + F )Δt+

(C + F )2

2
Δt2 +

(C + F )3

6
Δt3 + . . .

)
u(tn). (33)

Hence, the local truncation error of the SEIF3 method (11) is(
I + (C + F )Δt+

(C + F )2

2
Δt2 +

(C + F )3

6
Δt3 + . . .

)
u(tn)

−e(C+F )Δtu(tn) = O(Δt4)u(tn). (34)

3.1.2 Linear stability

To analyze the linear stability of the SEIF methods, we consider the following scalar
linear test equation

ut = −du+ au, with d > 0. (35)

Similar to the stability analysis approaches in [30, 19], we will show boundaries of the
stability regions in the complex plane for aΔt, a family of curves for different values of
dΔt, for the second and third order methods. In the context of solving ADR equations
with nonstiff reaction terms, a and d actually represent spatial discretizations for the
nonstiff advection-reaction terms and the stiff diffusion term respectively.

Applying the second order SEIF2 scheme (10) to the equation (35), then substituting
un = einθ into the resulting equation, we obtain

eiθ = e−dΔt(1 + λ+
λ2

2
), (36)

where λ = aΔt has a real part λr and imaginary part λi. (36) is solved for λr and λi,
and then the boundaries of the stability regions are obtained by varying θ from 0 to 2π.
Stability regions are shown in the complex plane of aΔt for different values of dΔt. We
choose four different values of dΔt, dΔt = 1.0, dΔt = 2.0, dΔt = 10.0 and dΔt = 20.0
as examples. Analysis of the amplification factors of the scheme shows that the special
point λ = (0, 0) is always included in the stable regions for the SEIF2 scheme. See
Figure 1 for the stability regions. The stable regions are inside the stability boundaries.
From Figure 1 we see that the stable regions become bigger with the increase of the
value of dΔt. This shows that the diffusion term tends to stabilize the SEIF2 scheme.

Next, we analyze the third order scheme SEIF3 (11). Using the same approach, we
apply the SEIF3 scheme (11) to the equation (35), then substitute un = einθ into the
resulting equation and obtain the equation for λ (i.e., aΔt):

eiθ = e−dΔt(1 + λ+
λ2

2
+

λ3

6
). (37)

The equation (37) is solved numerically for λr and λi with specific values of θ and dΔt,
and then the boundaries of the stability regions are obtained by varying θ from 0 to

10



-4 -2 0 2 4

×104

-4

-2

0

2

4
×104

-4 0
-4
-2
0
2
4

-200 0 200

-200

0

200

unstable

dΔ t=1.0

dΔ t=2.0

dΔ t=10.0

dΔ t=20.0

stable

stable

stable

Figure 1: Linear stability regions of the SEIF2 scheme (10) for different values of dΔt.
Range of dΔt : 1.0 ∼ 20.0. Due to significant differences of stability regions for different
dΔt, ”zoomed in” pictures (the ones in boxes) are presented.
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Figure 2: Linear stability regions of the SEIF3 scheme (11) for different values of dΔt.
Range of dΔt : 1.0 ∼ 10.0. Due to significant differences of stability regions for different
dΔt, ”zoomed in” pictures (the ones in the box) are presented.

2π. Stability regions are plotted in the complex plane of aΔt for different values of
dΔt, dΔt = 1.0, dΔt = 2.0, dΔt = 5.0 and dΔt = 10.0. Since the point λ = (0, 0) is
always in the stable regions for the SEIF3 scheme, the interior of the regions bounded
by the curves in Figure 2 are stable regions. From Figure 2 we see that the stable
regions become larger with the increase of the value of dΔt. Again, this shows that the
diffusion term tends to stabilize the scheme.

3.2 Linear analysis of SIIF schemes

3.2.1 Truncation Error

In this section we verify the truncation errors of implicit schemes SIIF2 and SIIF3.
Consider the following linear semi-discretization system

du

dt
= Cu+ Fu+Ru, (38)

where C, F and R are matrices derived from linear spatial discretizations of diffusion,
advection and reaction terms of a linear ADR system respectively, and u is the vector
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of unknown numerical values. First, we apply the SIIF2 scheme (18) to the system (38)
to obtain un+1 in terms of un:

un+1 = eCΔt(I +
F

2
Δt+

R

2
Δt)un +

Δt

2
FeCΔt(I + FΔt+RΔt)un +

Δt

2
Run+1. (39)

Substituting the exact solution of (38) into the right hand side of the equation (39) and
using Taylor expansion, we obtain

un+1 =

(
I − R

2
Δt

)−1 [
eCΔt

(
I +

F

2
Δt+

R

2
Δt

)
+

F

2
ΔteCΔt(I + FΔt+RΔt)

]
u(tn)

=

[
I + (C + F +R)Δt+

(C + F +R)2

2
Δt2 + . . .

]
u(tn). (40)

Hence the local truncation error of the SIIF2 method (18) is

un+1 − e(C+F+R)Δtu(tn) = (O(Δt3))u(tn). (41)

Similarly for the third order scheme SIIF3 (22), we apply it to the system (38) to obtain

an = eCΔt/2

(
I +

Δt

2
(F +R)

)
un, (42)

bn = eCΔt (I −Δt(F +R))un + 2ΔteCΔt/2(F +R)(an), (43)

anr =

(
I − R

4
Δt

)−1 [
eCΔt/2

(
un +

Δt

4
(F +R)un

)
+

Δt

4
F (an)

]
. (44)

Then we substitute an, bn and anr into (22) and obtain un+1:

un+1 =

(
I − R

6
Δt

)−1 [
eCΔt(I +

Δt

6
(F +R))un +

2

3
ΔteCΔt/2(F (an) +R(anr)) +

Δt

6
F (bn)

]
.

(45)
Again, substituting the exact solution of (38) into the right hand side of the equation
(45) and using Taylor expansion, we find that the local truncation error of the SIIF3
scheme (22) is

un+1 − e(C+F+R)Δtu(tn)

=

(
F 4Δt4

24
+

5F 3RΔt4

36
+

7F 2R2Δt4

48
+

FR3Δt4

24
− R4Δt4

144
+O(Δt5)

)
u(tn)

= O(Δt4)u(tn). (46)

3.2.2 Linear stability

In order to analyze the linear stability of the SIIF methods for ADR equations, we
consider the following scalar linear test equation

ut = au− du+ ru, with r ∈ C, and a, d ∈ R, d > 0. (47)

We will show boundaries of the stability regions in the complex plane for rΔt, a family of
curves for different values of dΔt and aΔt. In the context of solving advection-diffusion-
reaction equation, a and d actually represent spatial discretizations for the advection
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Figure 3: Linear stability regions of SIIF2 (18) for different values of dΔt under a fixed
value of aΔt = 1.0. Range of dΔt : 1.0 ∼ 10.0. Due to significant differences of stability
regions for different dΔt, ”zoomed in” pictures (the ones in the box) are presented.

term and the diffusion term respectively. We first analyze the second order scheme.
Applying the SIIF2 scheme (18) to the equation (47) and substituting un = einθ into
the resulting equation, we obtain

(1− λ

2
)eiθ = e−dΔt(1 + aΔt+ 0.5a2Δt2 + 0.5aλΔt+ 0.5λ) (48)

where λ = rΔt has a real part λr and an imaginary part λi. λr and λi are calculated
numerically from the equation (48) for certain aΔt and dΔt. Stability regions in the
complex plane of rΔt for different values of dΔt under a fixed value of aΔt = 1.0 are
shown in Figure 3. Based on analyzing the amplification factors of the scheme, it is
found that the stable regions always include the special point λ = (−1, 0) for the cases
shown in Figure 3. As a result, regions inside the stability boundary curves shown in
Figure 3 are unstable regions. In Figure 3, we observe that when aΔt is fixed, with the
increase of the value of dΔt, the stable regions become larger. Again, the diffusion term
tends to stabilize the scheme. Next, we fix the value dΔt = 1.0 and choose different
values for aΔt: aΔt = −5.0, aΔt = −1.0, aΔt = 1.0 and aΔt = 5.0 as examples to
show the stability regions in Figure 4. Based on analysis of the amplification factors of
the scheme for the specific cases of aΔt = −5.0 and 5.0, we find that the special point
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Figure 4: Linear stability regions of SIIF2 scheme (18) for different values of aΔt under a
fixed value of dΔt = 1.0. Range of aΔt : −5.0 ∼ 5.0. Left: aΔt = −5.0 and 5.0. Regions
inside the stability boundary curves are stable regions for such cases. Right: aΔt = −1.0
and 1.0. Regions outside the stability boundary curves are stable regions for such cases.

λ = (0, 0) is in the unstable regions. So regions inside the stability boundary curves are
stable regions for such cases. When aΔt = −1.0 and 1.0, the point λ = (0, 0) is in the
stable regions. So regions inside the stability boundary curves are unstable regions for
these cases. In conclusion, for a fixed dΔt with the decrease of |aΔt| which corresponds
to advection terms, the stability regions become larger.

Similar analysis has been done for the third order scheme. Applying the SIIF3
scheme (22) to the equation (47) and substituting un = einθ into the resulting equation,
we obtain

(1− λ

6
)eiθ = e−dΔt[1 + aΔt+

1

2
(aΔt)2 +

1

6
(aΔt)3 +

1

6
λ+

1

2
λaΔt+

1

3
λ(aΔt)2

+
1

6
λ2aΔt+

2
3λ+ 1

3aΔtλ+ 1
12 (aΔt)2λ+ 1

12aΔtλ2 + 1
6λ

2

1− 0.25λ
], (49)

where λ = rΔt has a real part λr and an imaginary part λi. λr and λi are calculated
numerically from the equation (49) for certain aΔt and dΔt using MATLAB. Stability
regions in the complex plane of rΔt for different values of dΔt under a fixed value of
aΔt = 1.0 are shown in Figure 5. Based on analyzing the amplification factors of the
scheme for special values of λ, it is found that the stable regions always include the point
λ = (−6, 0) for the cases shown in Figure 5. As a result, stable and unstable regions are
identified as shown in Figure 5. It is interesting to see there exist some isolated and very
small unstable or stable regions in the complex plane. When aΔt is fixed, we observe
that with the increase of the value of dΔt, the stable regions become larger. Similar to
SIIF2, the diffusion term tends to stabilize the scheme. Next, we fix the value dΔt = 1.0
and choose different values for aΔt: aΔt = −5.0, aΔt = −1.0, aΔt = 1.0 and aΔt = 5.0
as examples to show the stability regions in Figure 6. Since the special point λ = (4, 0)
is in the unstable regions for these cases by analysis of the amplification factors of the
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scheme, stable and unstable regions are determined by including λ = (4, 0) or not in
regions separated by stability boundary curves in Figure 6. In Figure 6, we find that
for a fixed dΔt, with the decrease of |aΔt|, the stability regions become larger. Stable
regions shrink significantly when advection becomes strong and dominates. When we
compare the stability regions of SIIF2 and SIIF3, we observe that in general, SIIF2 is
more stable than SIIF3.

Remark. We present the special cases, i.e., the linear stability analysis of the SIIF
methods (23) and (24) for reaction-diffusion equations here. Consider the following
scalar linear test equation

ut = −du+ ru, with r ∈ C, and d ∈ R, d > 0. (50)

We will show boundaries of the stability regions in the complex plane for rΔt, a family of
curves for different values of dΔt. In the context of solving reaction-diffusion equation, d
actually represents spatial discretizations for the diffusion. We first analyze the second
order scheme. Applying the SIIF2 scheme (23) to the equation (50) and substituting
un = einθ into the resulting equation, we obtain

(1− λ

2
)eiθ = e−dΔt(1 + 0.5λ), (51)

where λ = rΔt has a real part λr and an imaginary part λi. λr and λi are calculated
numerically from the equation (51) for certain dΔt. Stability regions in the complex
plane of rΔt for different values of dΔt are shown in Figure 7. Based on analyzing
the amplification factors of the scheme, the stable regions always include the special
point λ = (0, 0) for the cases shown in Figure 7. As a result, regions inside the stability
boundary curves shown in Figure 7 are unstable regions. In Figure 7, we observe that
with the increase of the value of dΔt, the stable regions become larger. Hence the
diffusion term tends to stabilize the scheme as that in the previous schemes discussed
in this section. Similar analysis has been done for the third order scheme. Applying the
SIIF3 scheme (24) to the equation (50) and substituting un = einθ into the resulting
equation, we obtain

(1− λ

6
)eiθ = e−dΔt

(
1 +

1

6
λ+

2
3λ+ 1

6λ
2

1− 0.25λ

)
, (52)

where λ = rΔt has a real part λr and an imaginary part λi. λr and λi are calculated
numerically from the equation (52) for certain dΔt using MATLAB. Stability regions
in the complex plane of rΔt for different values of dΔt are shown in Figure 8. Based
on analyzing the amplification factors of the scheme for special values of λ, the stable
regions always include the point λ = (0, 0) for the cases shown in Figure 8. Stable and
unstable regions are identified as shown in Figure 8. When dΔt = 10.0, the unstable
regions which look like two segments are actually two very thin enclosed regions. We
observe that with the increase of the value of dΔt, the stable regions become larger.
Similar to SIIF2, the diffusion term tends to stabilize the scheme. When we compare
the stability regions of SIIF2 and SIIF3, we observe that in general, SIIF2 is more stable
than SIIF3.

4 Numerical Experiments

In this section, we present numerical examples to show the stability, accuracy and effi-
ciency of the Krylov single-step integration factor WENOmethods for solving advection-
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Figure 5: Linear stability regions of SIIF3 (22) for different values of dΔt under a fixed
value of aΔt = 1.0. Range of dΔt : 1.0 ∼ 10.0.

17



Figure 6: Linear stability regions of SIIF3 scheme (22) for different values of aΔt under a
fixed value of dΔt = 1.0. Range of aΔt : −5.0 ∼ 5.0.
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Figure 7: Linear stability regions of the SIIF2 scheme (23) for different values of dΔt. Range
of dΔt : 1.0 ∼ 10.0.
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Figure 8: Linear stability regions of the SIIF3 scheme (24) for different values of dΔt. Range
of dΔt : 1.0 ∼ 10.0.
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diffusion-reaction PDEs. Different aspects of the methods are tested using various ex-
amples to show the ability of the methods in dealing with high spatial dimensions, stiff
reactions, and convection-dominated cases. Comparisons of single-step and multistep
methods are performed. The Krylov subspace dimension M is taken to be M = 25
in all examples unless otherwise indicated for some tests. From numerical experiments
we can observe that large time step sizes are achieved in numerical computations of
these advection-diffusion-reaction equations. Here large time step size means that the
time step size is mainly restricted by the CFL condition constraint of the nonstiff ad-
vection term (the hyperbolic part), which is treated explicitly. Hence the time step
size Δt = O(Δx) as that in solving a pure hyperbolic PDE. The second order central
scheme is used for the diffusion terms when second order integration factor methods
are applied, and the fourth order central scheme for the diffusion terms is coupled with
third order integration factor schemes. All of the numerical simulations in this paper
are performed on a 2.3 GHz, 2GB RAM Linux workstation.

Example 1. Tests on high spatial dimensions. A major challenge in using inte-
gration factor type methods is how to efficiently compute large matrix exponentials for
problems with high spatial dimensions. Krylov subspace approximations are applied in
the schemes developed in this paper, following early work on this issue [5, 19]. We test
the performance of our schemes in dealing with problems with two and three spatial
dimensions in the first example.

The two spatial dimension equation is{
ut + ( 12u

2)x + ( 12u
2)y = uxx + uyy + 2u+ cos(x+ y + t)(1 + 2 sin(x+ y + t)),

u(x, y, 0) = sin(x+ y), 0 ≤ x, y ≤ 2π,

(53)
with periodic boundary conditions, and the exact solution is u(x, y, t) = sin(x+ y + t).
We first test the single step implicit integration factor methods. The computation is
carried up to T = 1.0 at which the L1 and L∞ errors are measured. We study the
performance of the new single-step IIF methods by comparing it with Krylov multistep
IIF (MIIF) methods developed in [19] and other single-step methods such as Runge-
Kutta (RK) methods. CPU times, numerical errors, and orders of accuracy of the second
order schemes including the Krylov SIIF2, the Krylov MIIF2 and RK2 methods with
the third order WENO spatial discretization for the advection terms are reported in
Table 1. Table 2 reports the results for the same equation using the third order schemes
including the Krylov SIIF3, the Krylov MIIF3 and RK3 methods. Desired accuracy
orders for the new Krylov SIIF2 and Krylov SIIF3 schemes, and other existing methods
are obtained as shown in Table 1 and Table 2. For our new schemes Krylov SIIF2 and
SIIF3, and the existing multistep methods Krylov MIIF2 and MIIF3, the time step sizes
can reach Δt = O(Δx) due to large stability regions of these methods. This is consistent
with our goal of achieving a large time step size proportional to the spatial grid size for
a stable and accurate computation of a parabolic PDE. However, for the regular Runge-
Kutta methods, Δt = O(Δx)2 is needed for the stability of the computations. We use
the largest time step sizes which can result in stable computations by Runge-Kutta
methods for examples in this paper. From the data in the tables, we can observe that
in this example the Krylov SIIF methods need more CPU time than the Krylov MIIF
methods on a same spatial mesh. This is due to the fact that single-step integration
factor methods perform more matrix vector operations than multistep ones. However,
the Krylov SIIF methods have smaller numerical errors than the Krylov MIIF methods
on a same spatial mesh. So at the end, in general the Krylov SIIF methods spend less
CPU time than the Krylov MIIF methods to reach similar level numerical errors in this
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example. And both methods are much more efficient than Runge-Kutta methods.
The reaction term in this example is not stiff. We also use this example to test Krylov

explicit IF methods including Krylov SEIF methods and classical multistep explicit IF
(MEIF) methods. MEIF schemes are commonly used in the literature (e.g. see [7] and
its references). Here we apply Krylov approach to compute the matrix exponentials
in the classical MEIF schemes. CPU time, error, and order of accuracy of the SEIF2,
MEIF2 and RK2 methods with the third order WENO spatial discretization for the
advection terms are reported in Table 3 for Equation (53). Table 4 includes the results
for the same equation using third order schemes including SEIF3, MEIF3 and RK3
methods. We observe that the desired accuracy orders are obtained for all schemes.
Again, similar conclusions as the implicit schemes on efficiency of different methods
can be drawn. In this example the Krylov SEIF methods generally spend less CPU
time than the Krylov MEIF methods to reach similar level numerical errors. And both
methods are much more efficient than Runge-Kutta methods.

Next we test the single-step integration factor methods for the three spatial dimen-
sion equation⎧⎪⎨

⎪⎩
ut + ( 12u

2)x + ( 12u
2)y + ( 12u

2)z = uxx + uyy + uzz + 3u

+cos(x+ y + z + t)(1 + 3 sin(x+ y + z + t)),

u(x, y, z, 0) = sin(x+ y + z), 0 ≤ x, y, z ≤ 2π,

(54)

with periodic boundary conditions, and the exact solution is u(x, y, z, t) = sin(x+ y +
z+ t). First explicit methods are tested. The computation results are reported in Table
5 and Table 6. We observe that the desired accuracy orders are obtained for all schemes.
Again, in general the Krylov SEIF methods spend less CPU time than the Krylov MEIF
methods to reach similar level numerical errors. However, in this case, we can also see
that although Runge-Kutta methods needs much smaller time step sizes and more CPU
times than Krylov integration factor methods on a same spatial mesh, their errors are
smaller than Krylov integration factor methods. This is due to the computational costs
of matrix-vector operations in Krylov integration factor methods, and also relatively
large errors in integration factor type schemes [7]. Implicit schemes are tested and
results are reported in Table 7 and Table 8. We obtain similar observations as the
explicit methods except that the third order Krylov single-step IIF method shows very
accurate results. The Krylov multistep IIF methods show larger numerical errors in
this example than that in [19]. This is because the time step size we use here is much
larger than that used in [19], for the purpose of comparing multistep and single-step
schemes’ performance under a same time step size.

This example shows that the Krylov approach can effciently deal with the large ma-
trix exponential challenge in single-step IIF schemes for high spatial dimension prob-
lems, similar as what we observe in multistep schemes [5, 19].

Example 2. Stiff system I. We consider an advection-diffusion-reaction system with
stiff reaction terms on two-dimensional domain Ω = (0, 2π)2. The system was used to
test different IIF schemes in [30, 31, 38, 19]. It has the following form{

ut + (a/2)(ux + uy) = (d/2)(uxx + uyy)− bu+ v,

vt + (a/2)(vx + vy) = (d/2)(vxx + vyy)− cv,
(55)

with periodic boundary conditions. For the initial condition

u|t=0 = 2 cos(x+ y), v|t=0 = (b− c) cos(x+ y),
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Table 1: Example 1, the two-dimensional equation (53). CPU time, error, and order of
accuracy of Krylov SIIF2, Krylov MIIF2 and RK2 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 2.58E-2 - 1.61E-2 - 1.10
40 7.00E-3 1.88 4.00E-3 2.01 4.38
80 2.10E-3 1.74 1.20E-3 1.74 20.87
160 5.73E-4 1.87 3.23E-4 1.89 177.87
320 1.47E-4 1.96 8.22E-5 1.97 1370.01

Krylov MIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 5.22E-2 - 2.39E-2 - 1.19
40 2.05E-2 1.35 9.80E-3 1.29 3.12
80 6.10E-3 1.75 3.00E-3 1.71 12.71
160 1.80E-3 1.76 8.84E-4 1.76 74.46
320 4.55E-4 1.98 2.31E-4 1.94 616.64

RK2 Δt = 0.1Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 6.75E-3 - 3.22E-3 - 1.60
40 4.33E-3 0.64 1.89E-3 0.77 20.91
80 1.27E-3 1.77 5.65E-4 1.74 334.64
160 3.32E-4 1.94 1.49E-4 1.92 5302.80
320 8.50E-5 1.97 3.80E-5 1.97 85627.05

the system has the following exact solution{
u(x, y, t) = (e−(b+d)t + e−(c+d)t) cos(x+ y − at),

v(x, y, t) = (b− c)e−(c+d)t cos(x+ y − at).
(56)

The parameters are chosen as a = c = d = 1 and b = 100 to give stiff reaction terms.
The final time T = 1.0. We compare the performance of Krylov SIIF, Krylov MIIF
and Runge-Kutta methods with the third order WENO spatial discretization for the
advection terms in Table 9 and 10. From the computation results, we can see that
the designed second or third order accuracy is obtained for second order or third order
methods. Both Krylov MIIF and Krylov SIIF methods can have large time step sizes
for this stiff problem, due to their implicit treatment for the stiff reaction terms. They
take the time step size Δt = O(Δx) as that for a pure hyperbolic PDE. For the regular
Runge-Kutta methods, Δt = O(Δx)2 is needed for the stability of the computations.
And due to the stiff reaction terms, RK methods need very small time step sizes such as
Δt = 0.05(Δx)2. From the results, we can observe that much less CPU time is needed
by using Krylov SIIF or Krylov MIIF methods than RK methods to reach a similar
level numerical error.

A nice property of IIF methods is that solving large coupled systems is avoided.
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Table 2: Example 1, the two-dimensional equation (53). CPU time, error, and order of
accuracy of Krylov SIIF3, Krylov MIIF3 and RK3 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SIIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 1.09E-2 - 5.88E-3 - 7.61
40 8.89E-4 3.62 4.75E-4 3.63 27.37
80 8.80E-5 3.34 4.80E-5 3.31 130.48
160 1.02E-5 3.11 5.60E-6 3.10 1143.38
320 1.26E-6 3.02 6.91E-7 3.02 7140.60

Krylov MIIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 4.13E-2 - 2.25E-2 - 0.94
40 1.11E-2 1.90 5.40E-3 2.06 3.68
80 2.10E-3 2.40 9.66E-4 2.48 18.91
160 3.23E-4 2.70 1.49E-4 2.70 130.29
320 4.43E-5 2.87 2.03E-5 2.88 1047.70

RK3 Δt = 0.2Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 2.11E-2 - 1.17E-2 - 2.24
40 1.63E-3 3.69 9.00E-4 3.70 31.91
80 1.21E-4 3.75 6.70E-5 3.75 497.20
160 1.10E-5 3.46 6.00E-6 3.48 8055.46
320 1.30E-6 3.08 7.20E-7 3.06 127839.7

This is different from a fully implicit scheme. For stiff nonlinear PDE problems (or
the spatial discretization scheme is nonlinear such as WENO schemes), fully implicit
methods have very large stability regions but typically require the solution of large
nonlinear coupled system of equations, so advanced, efficient and robust methods for
solving large nonlinear algebraic systems need to be used. To study the efficiency of
IIF methods, we implement the fifth order Runge-Kutta method based ’Radau IIA’
method [14, 2, 9]. Here we focus on testing the stiff part by taking a = 0 in the
system. Hence the system has no advection part and the nonlinear WENO scheme is
not applied. When the fully implicit Radau IIA time discretization is applied, we obtain
coupled N2 × N2 linear systems at every time step. A fourth order central difference
approximation is applied for discretizing the diffusion terms with the fifth order Radau
IIA time discretization. The Gauss-Seidel iterative method is used to solve the coupled
sparse N2 × N2 linear systems. We report the numerical results of Krylov MIIF2,
Krylov SIIF2, Krylov MIIF3, Krylov SIIF3 and the 5th order Radau IIA in Table 11
and Table 12. Table 11 is for the reaction dominated case (c = 1, b = 100, d = 1),
and Table 12 is for the diffusion dominated case (c = 0.01, b = 0.1, d = 1). We can
see that IIF methods can achieve smaller numerical errors in the diffusion dominated
case than that in the reaction dominated case. Both IIF methods and the 5th order
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Table 3: Example 1, the two-dimensional equation (53). CPU time, error, and order of
accuracy of Krylov SEIF2, Krylov MEIF2, and RK2 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SEIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 5.04E-2 - 2.43E-2 - 0.24
40 8.80E-3 2.52 4.20E-3 2.53 1.40
80 2.20E-3 2.00 9.06E-4 2.22 10.70
160 5.54E-4 1.99 2.26E-4 2.00 82.33
320 1.39E-4 1.99 5.65E-5 2.00 669.37

Krylov MEIF2 Δt = 0.4Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 7.05E-2 - 3.96E-2 - 0.97
40 1.87E-2 1.91 9.80E-3 2.01 6.09
80 4.90E-3 1.93 2.50E-3 1.97 41.54
160 1.30E-3 1.91 6.21E-4 2.01 196.04
320 3.17E-4 2.04 1.57E-4 1.98 1573.4

RK2 Δt = 0.1Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 6.75E-3 - 3.22E-3 - 1.60
40 4.33E-3 0.64 1.89E-3 0.77 20.91
80 1.27E-3 1.77 5.65E-4 1.74 334.64
160 3.32E-4 1.94 1.49E-4 1.92 5302.80
320 8.50E-5 1.97 3.80E-5 1.97 85627.05

Radau IIA achieve large time step sizes Δt = O(Δx). The fourth order of convergence
order reported in the tables for the Radau IIA method is due to the fourth order central
difference approximation to the diffusion terms. We compare the numerical errors of
third order IIF methods (Kryov MIIF3 and Kryov SIIF3) and the Radau IIA scheme
since both the third order IIF methods and the 5th order Radau IIA use the same
spatial discretization schemes (the fourth order central difference). For the reaction
dominated case, we can see that on the same mesh, the Radau IIA scheme is more
accurate than the Krylov MIIF3 scheme, and it has comparable numerical errors as the
Krylov SIIF3 scheme. However for the diffusion dominated case, the Krylov MIIF3 and
Kryov SIIF3 schemes have smaller errors than the Radau IIA. This shows that different
numerical methods have their own advantages for different problems. In terms of CPU
times, different from IIF methods, fully implicit schemes such as Radau IIA depend on
the methods used for solving the large linear systems at every time step. Here the CPU
times for Radau IIA are due to the Gauss-Seidel iterative linear solver. Certainly more
advanced methods for solving large sparse linear systems can significantly accelerate
the computations of fully implicit schemes.
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Table 4: Example 1, the two-dimensional equation (53). CPU time, error, and order of
accuracy of Krylov SEIF3, Krylov MEIF3, and RK3 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SEIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 1.26E-2 - 6.70E-3 - 0.55
40 1.00E-3 3.66 5.80E-4 3.53 2.72
80 1.08E-4 3.21 6.13E-5 3.24 17.93
160 1.26E-5 3.10 7.32E-6 3.07 130.99
320 1.56E-6 3.01 9.05E-7 3.02 1087.13

Krylov MEIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 2.70E-2 - 1.58E-2 - 1.12
40 4.20E-3 2.68 2.40E-3 2.72 7.52
80 5.39E-4 2.96 2.85E-4 3.07 25.88
160 7.15E-5 2.91 3.58E-5 2.99 148.40
320 9.32E-6 2.94 4.61E-6 2.96 1113.10

RK3 Δt = 0.2Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 2.11E-2 - 1.17E-2 - 2.24
40 1.63E-3 3.69 9.00E-4 3.70 31.91
80 1.21E-4 3.75 6.70E-5 3.75 497.20
160 1.10E-5 3.46 6.00E-6 3.48 8055.46
320 1.30E-6 3.08 7.20E-7 3.06 127839.7

Example 3. Stiff system II - Schnakenberg model. The Schnakenberg system
[32] has been used to model the spatial distribution of a morphogen, e.g., the distribution
of calcium in the hairs of the whorl in Acetabularia [11]. It is also a classical example for
the testing of numerical methods for solving reaction-diffusion models in mathematical
biology. The Schnakenberg system with an advection term has the form⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂Ca

∂t
+

∂Ca

∂x
+

∂Ca

∂y
= D1∇2Ca + κ(a− Ca + C2

aCi),

∂Ci

∂t
+

∂Ci

∂x
+

∂Ci

∂y
= D2∇2Ci + κ(b− C2

aCi),

(57)

where Ca and Ci denote concentrations of activator and inhibitor respectively, D1 and
D2 are diffusion coefficients, κ, a and b are rate constants of the biochemical reactions.
We take the initial conditions as⎧⎨

⎩
Ca(x, y, 0) = a+ b+ 10−3e−100((x− 1

3 )
2+(y− 1

2 )
2),

Ci(x, y, 0) =
b

(a+ b)2
,

(58)
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Table 5: Example 1, the three-dimensional equation (54). CPU time, error, and order of
accuracy of Krylov SEIF2, Krylov MEIF2, and RK2 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SEIF2 Δt = 0.4Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 2.49E-1 - 1.23E-1 - 2.18
20 5.84E-2 2.09 2.86E-2 2.10 22.77
40 1.26E-2 2.21 5.61E-3 2.35 135.40
80 3.14E-3 2.00 1.36E-3 2.04 1281.54
160 7.99E-4 1.97 3.45E-4 1.98 27534.16

Krylov MEIF2 Δt = 0.4Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 3.80E-1 - 2.30E-1 - 2.96
20 1.50E-1 1.34 8.85E-2 1.38 12.17
40 4.51E-2 1.73 2.40E-2 1.88 91.51
80 1.18E-2 1.93 6.10E-3 1.98 1255.70
160 3.00E-3 1.98 1.50E-3 2.02 20955.00

RK2 Δt = 0.15Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 8.59E-2 - 4.77E-2 - 0.95
20 9.00E-3 3.25 4.37E-3 3.45 21.19
40 5.76E-3 0.64 2.58E-3 0.76 646.58
80 1.70E-3 1.76 7.71E-4 1.74 20478.39
160 4.46E-4 1.93 2.04E-4 1.92 672881.48

and the boundary conditions are taken as periodic boundary conditions. The parameter
values are κ = 100, a = 0.1305, b = 0.7695, D1 = 0.05, D2 = 1. This is a stiff Turing
system [40]. We simulate the system on the unit square domain Ω = (0, 1)2 using both
the new Krylov single-step and Krylov multistep implicit integration factor WENO
methods. Following the discussions in [19] for this problem, we use a smaller Krylov
subspace dimension M = 10 and the following results show that correct convergence
orders can be obtained. To study the performance and convergence of the methods
for this system, we list in Table 13 the CPU time, error, and order of accuracy for
simulations of the Schnakenberg model, on a fixed spatial resolution of 32 × 32 mesh.
Since there is no explicit form for the exact solution of this problem, the errors listed
here are convergence errors. Namely, the error at Δt is measured as a difference between
this solution, Ca,Δt, and the solution Ca,2Δt for time step size 2Δt at time T = 1.0, i.e.,

EΔt = ||Ca,Δt − Ca,2Δt||.
The new Krylov SIIF2/SIIF3 scheme clearly shows a second order/third order of ac-
curacy in time as expected. Krylov multistep methods (MIIF2 and MIIF3) also show
correct convergence orders. It is interesting to see that for this example, the MIIF2
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Table 6: Example 1, the three-dimensional equation (54). CPU time, error, and order of
accuracy of Krylov SEIF3, Krylov MEIF3, and RK3 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SEIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 2.00E-1 - 1.30E-1 - 6.46
20 3.62E-2 2.47 2.03E-2 2.68 25.74
40 3.20E-3 3.50 1.80E-3 3.50 155.80
80 2.81E-4 3.51 1.64E-4 3.46 2322.20
160 3.00E-5 3.23 1.80E-5 3.19 50275.00

Krylov MEIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 1.40E-1 - 8.61E-2 - 2.41
20 6.61E-2 1.08 3.78E-2 1.19 7.52
40 1.31E-2 2.34 6.90E-3 2.45 71.85
80 2.00E-3 2.71 1.01E-3 2.77 1064.60
160 2.73E-4 2.87 1.37E-4 2.88 18834.00

RK3 Δt = 0.1Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 1.90E-1 - 1.00E-1 - 1.62
20 2.89E-2 2.72 1.61E-2 2.63 44.45
40 2.30E-3 3.65 1.25E-3 3.69 1449.13
80 1.71E-4 3.75 9.30E-5 3.75 45681.23
160 1.60E-5 3.42 9.00E-6 3.37 1456538.89

scheme converges faster than the SIIF2 scheme while the SIIF3 scheme converges faster
than the MIIF3 scheme. The time evolutions of the concentration of activator Ca by
single-step methods are shown in Figure 9 and Figure 10. Comparing two figures, we no-
tice that with the same N and Δt, the third order scheme (SIIF3) has a better resolution
than the second order one (SIIF2). We can also observe that the initial perturbation in
(58) is amplified and spreads, leading to a formation of spot-like patterns.

Example 4. Nonlinear viscous Burgers’ equation. We consider the two-dimensional
nonlinear viscous Burgers’ equation⎧⎨

⎩ut + (
u2

2
)x + (

u2

2
)y = dΔu, −2 ≤ x ≤ 2, − 2 ≤ y ≤ 2,

u(x, y, 0) = 0.3 + 0.7 sin(
π

2
(x+ y)),

(59)

with periodic boundary condition. d is the viscous coefficient. The Krylov SEIF2
WENO scheme is used to solve the PDE to T = 5/π2. In this example, we test the per-
formance of the scheme with our Krylov single-step integration factor time discretization
technique for convection-diffusion equations without / with the convection dominated
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Figure 9: Numerical solution of the Schnakenberg system by the Krylov SIIF2 WENO
method on a 80 × 80 mesh. Contour plots of time evolution of the concentration of the
activator Ca.
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Figure 10: Numerical solution of the Schnakenberg system by the Krylov SIIF3 WENO
method on a 80 × 80 mesh. Contour plots of time evolution of the concentration of the
activator Ca.
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Table 7: Example 1, the three-dimensional equation (54). CPU time, error, and order of
accuracy of Krylov SIIF2, Krylov MIIF2, and RK2 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 3.23E-1 - 1.59E-1 - 1.71
20 7.31E-2 2.14 4.44E-2 1.84 9.84
40 2.18E-2 1.75 1.28E-2 1.79 107.55
80 5.77E-3 1.92 3.35E-3 1.93 1218.37
160 1.47E-3 1.97 8.51E-4 1.98 18215.77

Krylov MIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 5.96E-1 - 1.88E-1 - 2.74
20 2.63E-1 1.18 1.05E-1 0.84 8.44
40 1.26E-1 1.06 4.45E-2 1.24 59.88
80 5.31E-2 1.25 1.55E-2 1.52 551.77
160 2.03E-2 1.39 4.32E-3 1.84 8456.35

RK2 Δt = 0.15Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 8.59E-2 - 4.77E-2 - 0.95
20 9.00E-3 3.25 4.37E-3 3.45 21.19
40 5.76E-3 0.64 2.58E-3 0.76 646.58
80 1.70E-3 1.76 7.71E-4 1.74 20478.39
160 4.46E-4 1.93 2.04E-4 1.92 672881.48

property, by taking d = 1.0 and d = 0.01. The simulation results are reported in Figure
11. We can see that while the solution is very smooth for d = 1.0 (the left pictures),
a sharp gradient is developed for the convection dominated case d = 0.01 (the right
pictures). We can observe that the non-oscillatory property of the WENO scheme is
preserved well for the convection dominated problem, under this Krylov single-step
integration factor time discretization technique.

5 Conclusions

In [19], multistep Krylov implicit integration factor methods were developed for effi-
ciently solving stiff advection-diffusion-reaction systems. In this paper, we extended
the previous work and developed Krylov single-step integration factor WENO methods.
For the concern of stability, the new single-step IIF methods are carefully designed to
avoid positive exponentials. They also preserve the local implicit property of the orig-
inal multistep IIF schemes. Via numerical experiments and linear stability analysis,
we verified that similar to the multistep schemes, large time step size computations
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Figure 11: Example 4, nonlinear viscous Burgers’ equation. Simulation on a 80× 80 mesh
by the Krylov SEIF2 WENO scheme. Time T = 5/π2. Left pictures: the viscous coefficient
d = 1.0; right pictures: the viscous coefficient d = 0.01. Top: contour plots; middle: 1D
cutting-plot along x = y; bottom: 3D surface plots of the solutions.
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Table 8: Example 1, the three-dimensional equation (54). CPU time, error, and order of
accuracy of Krylov SIIF3, Krylov MIIF3, and RK3 methods with the third order WENO
spatial discretization for the advection term. Final time T = 1.0. N is the number of grid
points in each spatial direction.

Krylov SIIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 1.78E-1 - 1.04E-1 - 2.28
20 2.67E-2 2.74 1.54E-2 2.76 11.27
40 1.96E-3 3.77 1.06E-3 3.86 215.80
80 1.38E-4 3.83 6.65E-5 3.99 3119.01
160 1.38E-5 3.32 6.24E-6 3.41 41095.87

Krylov MIIF3 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 3.42E-1 - 1.68E-1 - 2.25
20 9.52E-2 1.85 4.48E-2 1.91 8.32
40 3.57E-2 1.42 1.57E-2 1.51 82.66
80 7.14E-3 2.32 3.21E-3 2.29 1279.88
160 1.19E-3 2.59 5.30E-4 2.60 28864.92

RK3 Δt = 0.1Δx2

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

10 1.90E-1 - 1.00E-1 - 1.62
20 2.89E-2 2.72 1.61E-2 2.63 44.45
40 2.30E-3 3.65 1.25E-3 3.69 1449.13
80 1.71E-4 3.75 9.30E-5 3.75 45681.23
160 1.60E-5 3.42 9.00E-6 3.37 1456538.89

are achieved, and the new schemes have large stability regions and are efficient and
accurate for simulating nonlinear advection-diffusion-reaction systems. The second and
third order single-step IIF schemes are developed for ADR systems in this paper. It
will be interesting to consider extending the methodology here to construct and test
higher order single-step IIF schemes, which is one of our next projects. Another inter-
esting future work is to theoretically analyze the interaction of different errors in the
method, e.g., the Krylov subspace approximation errors in the matrix exponentials and
the truncation errors of the schemes.
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Table 10: Example 2. CPU time, error, and order of accuracy of Krylov MIIF3, Krylov
SIIF3, and RK3 methods with the third order WENO spatial discretization for the advection
term. Final time T = 1.0. N is the number of grid points in each spatial direction.

Krylov MIIF3 Δt = 0.6Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)
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Table 11: Example 2. CPU time, error, and order of accuracy of Krylov MIIF2, Krylov
SIIF2, Krylov MIIF3, Krylov SIIF3, and the 5th order Radau IIA method for this problem
with a = 0, c = 1, b = 100, d = 1 (Reaction dominated). Final time T = 1.0. N is the
number of grid points in each spatial direction.

Krylov MIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 7.08E-2 - 4.47E-2 - 0.08
40 1.92E-2 1.88 1.22E-2 1.87 0.33
80 5.01E-3 1.94 3.23E-3 1.92 3.38
160 1.31E-3 1.94 8.07E-4 2.00 16.5

Krylov SIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 8.38E-2 - 3.84E-2 - 0.39
40 2.08E-2 2.01 6.66E-3 2.53 1.14
80 5.19E-3 2.00 1.67E-3 2.00 10.03
160 1.29E-3 2.01 4.15E-4 2.01 62.77

Krylov MIIF3 Δt = 0.6Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 1.38E-2 - 8.71E-3 - 0.11
40 2.35E-3 2.55 1.49E-3 2.55 0.31
80 3.79E-4 2.63 2.41E-4 2.63 2.34
160 5.36E-5 2.82 3.41E-5 2.82 13.44

Krylov SIIF3 Δt = 0.3Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 9.50E-3 - 3.48E-3 - 1.94
40 1.00E-4 6.57 3.22E-5 6.76 8.55
80 6.88E-6 3.86 2.21E-6 3.86 65.20
160 5.06E-7 3.77 1.63E-7 3.76 461.69

5th order Radau IIA (Gauss-Seidel linear solver) Δt = 0.25Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 1.44E-3 - 1.00E-3 - 12.94
40 9.04E-5 3.99 6.04E-5 4.05 130.92
80 5.66E-6 4.00 3.69E-6 4.03 2149.34
160 3.54E-7 4.00 2.28E-7 4.02 34603.50
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Table 12: Example 2. CPU time, error, and order of accuracy of Krylov MIIF2, Krylov
SIIF2, Krylov MIIF3, Krylov SIIF3, and the 5th order Radau IIA method for this problem
with a = 0, c = 0.01, b = 0.1, d = 1 (Diffusion dominated). Final time T = 1.0. N is the
number of grid points in each spatial direction.

Krylov MIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 2.27E-4 - 1.44E-4 - 0.14
40 6.21E-5 1.87 3.95E-5 1.87 0.36
80 1.62E-5 1.94 1.03E-5 1.94 2.83
160 4.13E-6 1.97 2.63E-6 1.97 16.06

Krylov SIIF2 Δt = 0.5Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 5.74E-3 - 1.90E-3 - 0.34
40 1.43E-3 2.01 4.77E-4 1.99 1.39
80 3.58E-4 2.00 1.19E-4 2.00 9.75
160 8.96E-5 2.00 2.98E-5 2.00 63.02

Krylov MIIF3 Δt = 0.6Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 1.85E-5 - 1.17E-5 - 0.16
40 2.94E-6 2.65 1.87E-6 2.65 0.25
80 2.40E-7 3.61 1.53E-7 3.61 2.28
160 1.68E-8 3.84 1.07E-8 3.84 13.45

Krylov SIIF3 Δt = 0.3Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 7.48E-5 - 2.47E-5 - 2.58
40 4.71E-6 3.99 1.56E-6 3.98 12.05
80 2.95E-7 4.00 9.81E-8 3.99 97.38
160 1.84E-8 4.00 6.14E-9 4.00 691.97

5th order Radau IIA (Gauss-Seidel linear solver) Δt = 0.25Δx

N L∞ error L∞ order L1 error L1 order CPU time (seconds)

20 7.48E-5 - 5.21E-5 - 10.50
40 4.71E-6 3.99 3.14E-6 4.05 112.53
80 2.95E-7 4.00 1.92E-7 4.03 1596.52
160 1.85E-8 4.00 1.19E-8 4.01 20538.91
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Table 13: Example 3, Schnakenberg model. CPU time, error, and order of accuracy of
Krylov single-step and multistep IIF methods with the third order WENO spatial dis-
cretization for the advection term. The Krylov subspace dimension M = 10. T = 1.0.

Krylov SIIF2

Δt L∞ error L∞ order L1 error L1 order CPU time (seconds)

5.00E-4 1.79E-0 - 2.17E-1 - 1784.49
2.50E-4 7.20E-1 1.31 7.31E-2 1.57 3649.67
1.25E-4 2.37E-1 1.60 1.95E-2 1.91 6062.35
6.25E-5 6.26E-2 1.92 5.00E-3 1.96 14612.74

Krylov MIIF2

Δt L∞ error L∞ order L1 error L1 order CPU time (seconds)

5.00E-4 4.00E-1 - 4.25E-2 - 1302.64
2.50E-4 1.20E-1 1.78 1.34E-2 1.67 2693.62
1.25E-4 3.07E-2 1.93 3.70E-3 1.87 5843.02
6.25E-5 7.80E-3 1.97 9.66E-4 1.94 12616.27

Krylov SIIF3

Δt L∞ error L∞ order L1 error L1 order CPU time (seconds)

5.00E-4 8.59E-2 - 1.10E-2 - 3975.50
2.50E-4 1.31E-2 2.71 1.60E-3 2.78 8199.55
1.25E-4 1.80E-3 2.86 2.13E-4 2.91 16238.12
6.25E-5 2.34E-4 2.94 2.72E-5 2.97 27377.87

Krylov MIIF3

Δt L∞ error L∞ order L1 error L1 order CPU time (seconds)

5.00E-4 2.40E-1 - 2.68E-2 - 1489.30
2.50E-4 4.95E-2 2.31 5.50E-3 2.28 2993.84
1.25E-4 7.80E-3 2.67 8.45E-4 2.70 6420.82
6.25E-5 1.10E-3 2.87 1.13E-4 2.90 12680.21
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