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Abstract We consider a free boundary problem for a system of partial differential equa-
tions, which arises in a model of tumor growth with a necrotic core. For any positive num-
ber R and 0 < ρ < R, there exists a radially-symmetric stationary solution with tumor free
boundary r = R and necrotic free boundary r = ρ. The system depends on a positive param-
eter μ, which describes tumor aggressiveness, and for a sequence of values μ2 < μ3 < . . . ,
there exist branches of symmetry-breaking stationary solutions, which bifurcate from these
values. Upon discretizing this model, we obtain a family of polynomial systems parame-
terized by tumor aggressiveness factor μ. By continuously changing μ using a homotopy,
we are able to compute nonradial symmetric solutions. We additionally discuss linear and
nonlinear stability of such solutions.
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1 Introduction

Tumor growth models are challenging both from a theoretical and a numerical standpoint.
The tumor and its boundary change over time in a way that is unknown in advance; one
refers to the tumor boundary as a “free boundary.” Mathematical models of tumor growth,
which consider the tumor tissue as a density of proliferating cells, have been developed
and studied. Basic continuous models are based on diffusion of nutrient, proliferation from
growth and shrinkage from necroses due to lack of nutrient. Early models were produced
by Greenspan [42, 43], and McEwain and Morris [52] in the 1970’s. Since then a variety of
tumor models appeared in the literature, taking into account cell-to-cell adhesion, avascular
growth, angiogeneses, the formation of necrotic core, the presence of an inhibitor, etc., see
[2, 9–12, 14, 15, 17, 20, 48, 51] and the references therein. Some nice review articles on this
subject are [1, 13, 16, 18, 29, 30, 50]. In [7, 8, 10–12, 26–28, 31, 32, 39, 40, 42, 43], the
free boundary is explicitly included as one of the unknowns (probably the most important
unknown).

The focus for free boundary tumor models has been on the mathematical analysis. More
specifically, there are a series of papers [7, 8, 27, 28, 31–40] that deal with bifurcation
analysis and multiscale models for tumors with free boundary. A model with inhibitor was
studied in [22], and models with necrotic core were considered in [10, 23].

A special case of the model, when μ = 0, reduces to the Hele-Shaw problem with sur-
face tension. The Hele-Shaw model cannot be used to model a tumor since, in reality, the
tumor aggressiveness factor μ can never be 0. However, it is helpful for us to analyze the
models using mathematical theories. For the Hele-Shaw problem the following results are
well known: (i) for any smooth initial data there exists a unique solution with smooth bound-
ary for a small time interval, while global existence is in general not expected; (ii) the only
stationary solutions are spheres; (iii) spheres are asymptotically stable solutions, that is, for
any smooth initial data “close” to that of a sphere, there exists a global smooth solution and
solution that converges to a sphere as t → ∞. The above three theoretical results for the
Hele-Shaw model have been extended to the tumor model. Local existence and uniqueness
was proved in [7, 8, 19]. In [39] it was shown that for any 0 < σ̃ < σ there exists a unique
radially-symmetric stationary solution, and its radius depends on σ̃ /σ , but not on μ. Addi-
tionally, [40] shows for the 2-dimensional case that there exists a sequence of symmetric-
breaking of stationary solutions bifurcating from μn (n = 2,3,4, . . .). A general simplified
proof, which works also for the 3-dimensional case, was given in [27]. The asymptotic sta-
bility of the spherical solution for μ < μ2 and of the first bifurcation branch was studied
extensively in [33, 34, 37]; earlier results for small μ were established in [8]. Stability of the
problem was extensively studied in [33, 34, 37] for the radially-symmetric case as well as
for nonradially-symmetric solutions in a small neighborhood of the first bifurcation branch.
Stability results beyond this small neighborhood are nonexistent.

Bifurcation theory has been in applications of nonlinear PDEs. The existence of bifur-
cation points on given solution curves can be established by giving small perturbations of
source solutions. If the perturbation is “small,” the solution set of the perturbed problem
should be somehow “close” to the solution set of the original problem. What happens near
bifurcation points is much less obvious due to the singularity: will the bifurcations persist
or will they “unfold”? This question depends on different problems. Although Crandall-
Rabinowitz theorem can verify exactly the bifurcation points theoretically, it cannot be ap-
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plied to complicated system such as the tumor model we study to explicitly compute the
nonradially symmetric solution.

In the past several years, simulation of solid tumor models has increased dramatically.
Nonlinear modeling has been performed to study the effects of shape instabilities on avas-
cular [21], vascular and angiogenic [47, 55] solid tumor growth. The competition between
heterogeneous cell proliferation and cell-to-cell and cell-to-matrix adhesion was studied in
[20, 41]. In [49], a new adaptive boundary integral method to simulate the three dimensional
solid tumor growth was developed. Additionally, [3] provides a computational method to
deal with a high-dimension, multiscale models they developed. However, there is no efficient
method to directly solve steady state systems for a free boundary problem and numerically
study the bifurcation for the large scale system.

In this paper, we will consider a tumor model with necrotic core. Radial solutions of this
model are given explicitly by analytical formulas in [44]. A radial shape models the tumors
grown in vitro, but tumors in vivo may develop protrusions. It is therefore interesting to
explore the existence of nonradial solutions of tumor models. Analytically finding nonradial
solutions on a branch far from a radial solution is intractable. Another difficult question is
to determine the stability of each solution, which will tell us whether the tumor is likely to
spread. It is established in [44] that for a sequence of values μ2 < μ3 < . . . , the radially-
symmetric solutions bifurcate into nonradially-symmetric solutions. The values μ2 <

μ3 < . . . are given explicitly by analytical formulas. The nonradial solutions near the bi-
furcation point are known up to the first order.

Even though this article studies a tumor growth model with a necrotic core, we propose
a general numerical algorithmic approach to answer the following:

1. numerically compute values of the parameter where bifurcation occurs;
2. numerically compute nonspherical solutions on a branch far from the bifurcation; and
3. determine stability of these solutions.

The theoretical analysis of the bifurcation values μ = μl provided in [44] allows us to check
our numerical approach in this situation.

The contributions of this paper are:

• we introduce a numerical scheme to handle the tumor model with free boundaries;
• we develop a method to track the nonradial branch beyond the small neighborhood guar-

anteed by bifurcation theory and describe the solution behavior; and
• we implement a scheme for checking the stability of the nonradially-symmetric solutions

we obtain.

The numerical algorithm we propose is based on recent developments in numerical al-
gebraic geometry [5, 6, 54] and uses Bertini [4], a software package that implements nu-
merical algebraic geometric algorithms. Roughly speaking, tumor models lead to systems
of partial differential equations. We discretize these differential equations by incorporating
the shape of the tumor utilizing a floating mesh with grid points on the moving boundary
of the tumor. This leads to a system consisting of thousands of multivariate polynomials.
To find bifurcation points of the spherical solutions as the tumor-aggressiveness factor μ

changes, we track the spherical solution using μ as a continuous parameter monitoring the
condition number of the Jacobian of the general system for not-necessarily-spherical solu-
tions. Since the system must be degenerate at the bifurcation points, the condition number
must be infinite at such points. Due to this rank deficiency, the computation requires using
adaptive multiprecision path tracking [5, 6] (a feature currently only available with Bertini)
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to perform computations in small neighborhoods of the bifurcation. Using a numerical ap-
proximation of the bifurcation point, we approximate the tangent cone to the family of so-
lutions at the bifurcation point. Upon computing the tangent directions of the branch with
nonradially-symmetric solutions, we use continuation to numerically track along the branch
and compute the nonradially-symmetric solutions far along the branch. We also determine
the stability of these solutions.

2 The Model

Mathematical models of solid tumor growth, which consider the tumor tissue as a density
of proliferating cells, have been developed and studied in many papers, e.g., [1, 2, 8–10,
17, 23–25, 33, 39, 42, 43, 51, 52] and the references provided in them. Radially symmetric
solutions have been extensively discussed, but non-spherical solutions of tumor models are
also interesting.

If dead cells are not removed in an efficient manner from the tumor, they accumulate
inside to form a necrotic core [17, 23]. A necrotic tumor growth model consists of a core of
necrotic cells and a shell adjacent to this necrotic core of proliferating cells. In particular, let
�(t) denote the tumor domain at time t , and D(t) ⊂ �(t) be the necrotic core within the
tumor domain.

Let p be the pressure within the tumor resulting from proliferation of the tumor cells.
The density of the cells, c, depends on the concentration of nutrients, σ , and, assuming that
this dependence is linear, we simply identify c with σ . We also assume the proliferation rate,
S, depends linearly upon σ in the living tumor region. That is,

S = μ(σ − σ̃ ) in �(t) \ D(t),

where σ̃ > 0 is a threshold concentration and μ is a positive parameter measuring the ag-
gressiveness of the tumor. This equation represents the balance of the growth of the tumor
by cell division and the contraction of the tumor by necrosis. First order Taylor expansion
for the fully nonlinear model yields the linear approximation μ(σ − σ̃ ) used here.

We assume that there is no proliferation in the necrotic core, i.e, S = 0 in D(t). Com-
bining these two equations, we have

S = μ(σ − σ̃ )χ{�(t)\D(t)}(x) in �(t), (2.1)

where χ{�(t)\D(t)}(x) is the indicator function of the domain �(t) \ D(t), namely,

χ{�(t)\D(t)}(x) =
{

1 if x ∈ �(t) \ D(t),

0 otherwise.
(2.2)

If we assume that necrotic cells do not consume nutrients and the consumption rate of
nutrients by the living tumor cells is proportional to the concentration of the nutrients, then
after normalization, σ satisfies

σt − �σ = −σχ{�(t)\D(t)}(x) in �(t) and σ = 1 on ∂�(t). (2.3)

Additionally, if we assume that the density of cells in the necrotic core remains constant,
and since we have assumed that the dependence between nutrient and density of the cell is
linear, we have σ = σ in D(t).

Most tumor models assume that the tissue has the structure of a porous medium so that
Darcy’s law holds. In particular, �v = −∇p where �v is the velocity of the cells and p is
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the pressure. By conservation of mass, div �v = S = μ(σ − σ̃ )χ{�(t)\D(t)}(x) and thus �p =
−μ(σ − σ̃ )χ{�(t)\D(t)}(x) in �(t). As in [15], the cell-to-cell adhesiveness condition at the
tumor boundary is represented by p = κ on ∂�(t), where κ is the mean curvature of the
surface ∂�(t). See [53] for more details regarding the mean curvature. To simplify notation,
we denote χ(x, t) = χ{�(t)\D(t)}(x). The necrotic core system is

⎧

⎨

⎩

σt − �σ = −σχ(x, t) and − �p = μ(σ − σ̃ )χ(x, t) in �(t),

σ = σ on ∂D(t),

σ = 1; p = κ; and ∂p

∂n
= −Vn on ∂�(t),

(2.4)

where n denotes the exterior normal vector. Additionally, it is reasonable to assume σ <

σ̃ < 1. The steady-state system of the tumor model with a necrotic core is given as follows

�σ = σχ(x) in �, (2.5)

−�p = μ(σ − σ̃ )χ(x) in �, (2.6)

σ = σ on ∂D, (2.7)

σ = 1 on ∂�, (2.8)

p = κ on ∂�, (2.9)

∂p

∂n
= 0 on ∂�, (2.10)

where χ(x) is the indicator function of the domain � \ D.

3 Discretization

It is known [44] that, for the original problem (2.5)–(2.10), bifurcation occurs at values
μ = μ1, μ2, . . . . To demonstrate the applicability of numerical algebraic geometric methods
to study free boundary problems, we will first describe how we generated a polynomial
system by discretizing a 2-dimensional steady-state necrotic tumor model. Since this model
has two free boundaries, we developed a novel approach to allow the grid to change in
coordination with the two boundaries.

Let Nθ denote the number of fixed directions and θi = i · 2π
Nθ

for i = 0, . . . ,Nθ − 1. Let
ri and ρi be the distance from the origin to the boundary of the tumor and the boundary
of the necrotic core, respectively, in the θi direction. That is, ri and ρi model the two free
boundaries in the θi direction and can change independently.

We then discretize in each of these fixed directions both the necrotic region and the
tumor region. Let Nρ be the number of equally spaced grid points between the origin and
each ρi and Nr be the number of equally spaced grid points between each ρi and ri . Near
the boundary of the tumor, we added two additional grid points that improve the accuracy
of the discretization.

The location of all of the grid points change in accordance with the changing boundaries.
For example, Fig. 1 presents the grid for a radial solution using Nθ = 40, Nρ = 5, and
Nr = 12. Using the same setup, Fig. 2 presents a grid for a nonradial solution. The curve
inside the region is the location of the necrotic core boundary.

We discretized the model described by (2.5)–(2.10) based on this moving grid using a
third order finite difference scheme. The stencil of grid points consisted of the center point
together with 14 surrounding points, which is presented in Fig. 3.
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Fig. 1 Plot of a
radially-symmetric grid with
Nθ = 40, Nρ = 5, and Nr = 12

Fig. 2 Plot of a
nonradially-symmetric grid with
Nθ = 40, Nρ = 5, and Nr = 12

Using this stencil, we will now explicitly describe the discretization of σ with the dis-
cretization for p following similarly. To simplify, we will denote the location center grid
point of the stencil as the origin. Let di,j denote the distance from the j th grid point along
the ith angular direction to the origin. The Taylor series expansion using the surrounding
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grid points and values of σ yield a linear system

⎡
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⎢
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⎢

⎢
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⎣

dr(0,−2) 0
dr(0,−1) 0
dr(0,1) 0
dr(0,2) 0

dr(−2,0) dθ (−2,0)

dr(−1,0) dθ (−1,0)

dr(1,0) dθ (1,0)

dr(2,0) dθ (2,0)

dr(−2,−1) dθ (−2,−1)

dr(−1,−1) dθ (−1,−1)

dr(1,−1) dθ (1,−1)
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dr(−1,−2) dθ (−1,−2)

dr(1,−2) dθ (1,−2)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

∂
i,j
r σ

∂
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∂
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∂
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∂
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∂
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∂
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∂
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where

dr(i, j) =
[

di,j ,
d2

i,j

2
,
d3

i,j

3! ,
d4

i,j

4!

]

and

dθ (i, j) =
[

i�θ,
(i�θ)2

2
, i�θdi,j ,

d2
i,j i�θ

2
,
di,j (i�θ)2

2
,
(i�θ)3

3! ,
di,j (i�θ)3

3! ,
d2

i,j (i�θ)2

4
,

d3
i,j i�θ

3! ,
(i�θ)4

4!
]

.

We obtain the derivatives by solving a linear system. Higher derivatives are only part of
computation and are not used in discretization. Here we list the first and second derivatives
with respect to r , which are denoted by ∂

i,j
r and ∂

i,j
rr , respectively.

∂i,j
r σ

= di,j+1di,j+2di,j−1di,j−2

(di,j−1 − di,j−2)

2
∑

k=1

(−1)k σ0,−k

d2
i,j−k(di,j+1 − di,j−k)(di,j+2 − di,j−k)

+ di,j−1di,j−2di,j+1di,j+2

(di,j+1 − di,j+2)

2
∑

k=1

(−1)k σ0,k

d2
i,j+k(di,j+k − di,j−1)(di,j+k − di,j−2)

−
(

1

di,j+1
+ 1

di,j+2
+ 1

di,j−1
− 1

di,j−2

)

σ0,0,

∂i,j
rr σ

= 2

(

di,j+2 + di,j−2

di,j+2d
2
i,j−1 + d2

i,j−1di,j−2 − d3
i,j−1 − di,j−2di,j−1di,j+2
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+ di,j−1di,j+2 + di,j−2di,j+2 + di,j−1di,j−2

di,j−1(di,j+1 − di,j−1)(di,j+2 − di,j−1)(di,j−1 − di,j−2)

)

σ0,−1

− 2
di,j+2di,j+1 + di,j−1di,j+1 + di,j+2di,j−1

di,j−2(di,j+1 − di,j−2)(di,j+2 − di,j−2)(di,j−1 − di,j−2)
σ0,−2

− 2
−d3

i,j+2d
2
i,j−1+d3

i,j+2d
2
i,j−2+d2

i,j+2d
3
i,j−1−d2

i,j+2d
3
i,j−2−d3

i,j−1d
2
i,j−2+d3

i,j−2d
2
i,j−1

di,j+1(di,j+1−di,j+2)(di,j+1 − di,j−1)(di,j+1 − di,j−2)(di,j+2 − di,j−1)

× σ0,1

(di,j+2 − di,j−2)(di,j−1 − di,j−2)

− 2
di,j+1di,j−1 + di,j−2di,j+1 + di,j−2di,j−1

di,j+2(di,j+1 − di,j+2)(di,j+2 − di,j−1)(di,j+2 − di,j−2)
σ0,2

× 2

(

di,j+1 + di,j+2 + di,j−1

di,j+1di,j+2di,j−1
+ di,j+1di,j+2 + di,j+1di,j−1 + di,j+2di,j−1

di,j+1di,j+2di,j−1di,j−2

)

σ0,0.

We use a similar notation for partial derivatives with respect to θ . Since the discretiza-
tion of these derivatives are straightforward but complicated, we have provided them at
www.nd.edu/~sommese/preprints/scheme.m.

To avoid numerical difficulties with polar coordinates at the origin, we used Cartesian
coordinates together with a central difference scheme at the origin. The variables of the
resulting discretized system correspond to the location of the free boundaries in each di-
rection along with the concentration of nutrients and pressure at each grid point. In par-
ticular, the number of variables of discretized system is Nθ(2(Nρ + NR) + 1) + 2. To
be more specific, define σi,j = σ(θi, rj ) and pi,j = p(θi, rj ), for i = 0,1,2, . . . ,Nθ and
j = 0,1,2, . . . ,Nρ + NR . The discretized system is

F(σi,j ,pi,j , ri ,μ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂
i,j
rr σ + 1

ri,j
∂

i,j
r σ + 1

r2
i,j

∂
i,j

θθ σ = σi,jχ(j > Nρ),

−(∂
i,j
rr p + 1

ri,j
∂

i,j
r p + 1

r2
i,j

∂
i,j

θθ p) = μ(σi,j − σ̃ )χ(j > Nρ),

σi,Nρ = σ,

σi,NR
= 1,

p = κ,

∂
j
r p∂

j
r σ + ∂

i,j

θ p∂
i,j

θ σ 1
r2
i,j

= 0,

∂
i,Nρ
r p+ = ∂

i,Nρ
r p−,

(3.1)

where

κ|∂� =
(

R(∂i,NR
r σ )2(R∂i,NR

r σ + ∂
i,NR
θθ σ ) + (∂

i,NR
θ σ )2(R∂i,NR

rr σ + 2∂i,NR
r σ )

− 2R∂i,NR
r σ∂

i,NR
θ σ∂

i,NR
rθ σ

)

/
(
√

(R ∂
i,NR
r σ )2 + (∂

i,NR
θ σ )2

)3
.

In particular, all of the numerical derivatives are based on a third order finite difference
scheme with ∂

i,Nρ
r p+ and ∂

i,Nρ
r p− being the two sided derivatives. It should be emphasized

that derivatives from each side of the dead-core boundary are computed using only grid
points from one side and therefore the jump of second derivatives of σ and p does not
impact this numerical computation. Since the derivatives involve rj , these are described
by rational functions. Clearing the denominators yields a polynomial system parameterized
by μ.

http://www.nd.edu/~sommese/preprints/scheme.m
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Fig. 3 Stencil for third order scheme

4 The Bifurcation Problem

Using the discretized problem described in Sect. 3, we want to numerically compute
radially-symmetric and nonradially-symmetric solutions and, in particular, values of the pa-
rameter where bifurcations occur.

The first step is to compute radially-symmetric solutions for some fixed radius R and
given parameter σ . In this case, each ri = R and ρi = P for some radius 0 < P < R. In
the radially-symmetric case, σ and p are independent of θ meaning that the discretized
polynomial system simplifies extensively, namely,
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−σ0,2 + 8σ0,1 − 8σ0,−1 + σ0,−2

12�R
interior points

−σ0,2 + 20σ0,−1 + 16σ0,1 + 45σ0,0 − 80σ0,−2

30�R
boundary point

and
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12�R2
interior points

−σ0,2 + 10σ0,−1 + 56σ0,1 − 105σ0,0 + 40σ0,−2

15�R2
boundary point.
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Table 1 Comparing (discretized) bifurcation value of μ2 on a sequence of grids

Theoretical μ2 Nθ NR Nρ Numerical μ2 Abs. error Computing time

7.9772 40 10 5 7.9746 3e-3 30m29s

48 12 6 7.9764 8e-4 41m54s

64 16 8 7.9770 2e-4 70m23s

Table 2 Numerical error of
radial symmetrical solution for
μ = 8 on a sequence of grids

Nθ NR Nρ Numerical error

40 10 5 3.9876e-6

64 16 8 9.7339e-7

80 20 10 4.9838e-7

For a given value of Nρ and μ, we solved this polynomial system using Bertini [4].
It is similar for the derivatives of function p. Upon computing the radially-symmetric

solution for a given value of μ, the second step is to utilize the parameterization by μ of
the polynomial system to determine the values where bifurcations occur. These values are
located where the Jacobian of the discretized polynomial system is rank deficient. We uti-
lized parameter continuation implemented in Bertini to look for such values by monitoring
the condition number as μ varied. Figure 4 displays a graph of the condition number with
respect to μ for 3 ≤ μ ≤ 9 where R = 2.5 and σ = 0.5. In particular, we observe that
the condition number spikes near μ = 7.98 indicating the existence of a nearby singular
radially-symmetric solution. Since higher precision arithmetic is often needed near a sin-
gularity to maintain the integrity of the floating point computations, we used the adaptive
precision path tracking algorithms of [5, 6] implemented in Bertini to control the precision
utilized for this computation. All the computations discussed here were run on a 2.33 GHz
Intel Xeon 5410 processor running 64-bit Linux. Table 1 presents the time for the computa-
tion as well as the numerical error for computing μ2 compared with the theoretical values
provided explicitly in [44]. In Table 2, we consider three different grids and compare the er-
ror of the numerically computed radially-symmetric solution for μ = 8 with the theoretical
solution described in [44].

Given a numerical approximation of μ where the Jacobian is numerically rank deficient,
the third step is to approximate the local tangent cone. This describes the tangent directions
of the solution branches at the bifurcation. Due to the rank deficiency, this computation
utilized multiprecision arithmetic. To simplify the notation, rewrite (3.1) as F(x,μ), where
x = (σi,j , pi,j , ri) for i = 1,2, . . . ,Nθ and j = 0,1, . . . ,NR + Nρ are variables and μ is a
parameter.

Given a polynomial system

f =
⎡

⎢

⎣

f1
...

fm

⎤

⎥

⎦

in M + 1 variables and a solution x∗, the tangent cone is the set of common zeroes of the
lowest order terms of the Taylor expansions at x∗ of the elements of the ideal generated by
the polynomials f1, . . . , fm. This is at first sight a difficult computation. In the special case
when the Jacobian Jf of f evaluated at x∗ has rank M − 1, then we know that the tangent
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Fig. 4 Condition number with respect to μ for R = 2.5 and σ = 0.5

cone lies in the two-dimensional linear space

V := {

v ∈ C
M+1 | Jf · v = 0

}

.

If λ ∈ C
M is a nonzero row vector such that λ ·Jf = 0, it follows that all first order derivatives

of λ ·f vanish at x∗. We can compute the second order terms Q(x) of λ ·f using the Hessian
of λ · f at x∗. The tangent cone in question belongs to the solution set of Q on V , and if this
solution set is one-dimensional, it consists of either one or two lines. From this we conclude
the tangent cone consists of at most two lines. In our case, using [44], we compute two lines,
one in the direction of the radially-symmetric branch and the other in the direction of the
nonradially-symmetric branch. We can use this direction with continuation to move onto the
bifurcation branch.

The following algorithm computes these two tangent directions by reducing down to a
polynomial in two variables utilizing an intrinsic parameterization of V . The tangent direc-
tions then correspond to the two solutions of a polynomial system consisting of a homoge-
neous quadratic and a linear polynomial in two variables.

Procedure (�x1,�x2) = TangentCone(F,μ0, x0,�μ)]
Input A parameterized polynomial system F(x,μ), a parameter value μ0, a point x0 that

is a singular solution of F(x,μ0), and expected variation �μ.
Output Two tangent directions �x1 and �x2.
Begin

1. Compute the Jacobian matrix Jx with respect to the variables x and the derivative
Jμ with respect to the parameter μ for F at (x0,μ0). Set A := [Jx Jμ].

2. Compute a basis
[ q1 q2

u1 u2

]

for the two-dimensional null space of A and a nonzero
vector λ in the one-dimensional null space of AT .
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Fig. 5 Local behavior of the solution branches

3. Construct the polynomial g(α,β) = λT F (x0 + αq1 + βq2,μ0 + αu1 + βu2).
4. Construct the Hessian matrix H of g and compute the two solutions (α1, β1) and

(α2, β2) of the polynomial system

[α,β] · H(0,0) · [α,β]T = 0,

αu1 + βu2 = �μ.

Return �x1 := α1q1 + β1q2 and �x2 := α2q1 + β2q2.

After computing the tangent direction for the nonradially-symmetric solution branch, the
last step is to track along that solution branch using the tangent direction as a first order de-
scription of the solution branch locally. After successfully moving off of the singularity and
onto a smooth point on the solution branch, standard predictor-corrector methods were used
to track along the solution branch. Figure 5 pictorially demonstrates the local behavior of the
solution branches near the bifurcation at μ2 for the running example. Figures 6 and 7 show
the progression of the nonradial solution in each direction along the nonradially-symmetric
solution branches. Even though the figures indicate that the “upper” and “lower” solution
branches appear to differ only by a rotation, numerical values indicate that this is not the
case and the next section shows that they indeed behave very differently.

5 Linear Stability Study

For the system (2.4), an important question is to determine the stability of the solution
branches that we have computed. To that end, define Un = (σ1(nτ),p1(nτ),R1(nτ)),

ρ1(nτ)) where τ is the time step size. We solved the linearized system of (2.4) described
in [44] using a third order scheme in the spatial direction coupled with the backward Euler
scheme in time direction. Such a scheme is unconditional stable. At each time step, this
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Fig. 6 Nonradially-symmetric “upper” branch

required the solving of the linear system Un+1 = AUn, where the matrix A depends on the
steady-state solutions (σ0, p0, R0, ρ0, see [44] for the detail) and τ . In particular, this process
transfers the linear stability of the solution to the spectrum of the matrix A which depends
upon the solution.

Let |ρ(A)| denote the maximum absolute value of the eigenvalues of A. If |ρ(A)| < 1,
then ‖Un‖ → 0 yielding a stable system. Additionally, if |ρ(A)| > 1, then the system is
unstable. Since the stability of the radially-symmetric solutions has been determined [44],
we are interested in the stability of the nonradially-symmetric solution branches.

For the working example, namely R = 2.5 and σ = 0.5, we computed the eigenval-
ues of A for different values of μ along the “upper” and “lower” nonradially-symmetric
solution branches to determine the stability. Tables 3 and 4 list |ρ(A)| along the “upper”
and “lower” branches, respectively. In particular, when 7.86654 < μ < μ2 ≈ 7.97689, the
“upper” branch is stable and, for μ near μ2, the “lower” branch is unstable, as pictorially
presented in Fig. 5. This computation shows that the top two solutions in Fig. 6 are stable
while all the other solutions in Figs. 6 and 7 are unstable.

Since |ρ(A)| is close to 1 for some of these computations, we verified the accuracy
of the computations by doubling the number of grid points three times. The results of this
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Fig. 7 Nonradially-symmetric “lower” branch

computation are presented in Table 5. In particular, the results described in this table together
with Table 2 suggest that our numerical approximations have error on the order of 10−6

yielding that the linear stability is convincing and reasonable. Moreover, eigenvalue analysis
is matched by time marching in our numerical simulation.

6 Nonlinear Stability Verification

By time marching the system (2.4), we numerically verified the nonlinear stability of the
nonradially-symmetric solutions. This was accomplished by using a random perturbation of
a nonradially-symmetric solution as the initial conditions for computing the steady-state so-
lution. We used perturbations of the nonradially-symmetric solution of less than unit length
and we just take two nonradially-symmetric solutions for explanation. Figure 8 demonstrates
that the solution of μ = 7.882432 (|ρ(A)| = 0.99998) converges back to the unperturbed so-
lution, and that the solution of μ = 7.976203 (|ρ(A)| = 1.00002) does not converge back
to the unperturbed solution. Hence, we numerically verified that the nonlinear stability is
consistent with the linear stability.
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Fig. 8 Nonlinear stability

Table 3 Maximum eigenvalue for the “upper” branch

μ |ρ(A)| μ |ρ(A)| μ |ρ(A)|

7.976889 1.00000 7.926135 0.99994 7.707620 1.00823

7.975754 0.99999 7.918189 0.99994 7.691728 1.03423

7.973053 0.99996 7.910243 0.99995 7.675836 1.06282

7.970353 0.99995 7.898324 0.99996 7.659944 1.09445

7.967654 0.99994 7.882432 0.99998 7.644052 1.12956

7.964954 0.99994 7.866540 1.00001 7.628160 1.16867

7.962254 0.99993 7.850648 1.00003 7.612268 1.21240

7.959554 0.99993 7.834756 1.00006 7.596376 1.26151

7.956854 0.99993 7.818864 1.00010 7.580484 1.31690

7.954154 0.99993 7.802972 1.00013 7.564592 1.37974

7.951454 0.99993 7.787080 1.00017 7.548700 1.45148

7.948754 0.99993 7.771188 1.00022 7.532808 1.53399

7.946054 0.99993 7.755296 1.00027 7.516916 1.62972

7.934081 0.99993 7.739404 1.00032 7.501024 1.74191

7 Conclusion

In this paper, we developed a new, finite difference method with homotopy tracking to com-
pute steady states of tumor growth with a necrotic core. The tumor model we considered is
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Table 4 Maximum eigenvalue for the “lower” branch

μ |ρ(A)| μ |ρ(A)| μ |ρ(A)|

7.976889 1.00000 7.927133 1.00022 7.708590 1.08048

7.976203 1.00002 7.919186 1.00024 7.692696 1.10909

7.973553 1.00004 7.911239 1.00027 7.676802 1.14047

7.970903 1.00006 7.899318 1.00030 7.660908 1.17498

7.968253 1.00007 7.883424 1.00035 7.645014 1.21299

7.965603 1.00009 7.867530 1.00041 7.629120 1.25499

7.962953 1.00010 7.851636 1.00046 7.613226 1.30154

7.960303 1.00011 7.835742 1.00051 7.597332 1.35331

7.957653 1.00012 7.819848 1.00057 7.581438 1.41114

7.955003 1.00013 7.803954 1.00063 7.565544 1.47604

7.952353 1.00014 7.788060 1.00069 7.549650 1.54927

7.949703 1.00015 7.772166 1.00075 7.533756 1.63242

7.947053 1.00015 7.756272 1.00869 7.517862 1.72754

7.943027 1.00017 7.740378 1.03051 7.501968 1.83724

Table 5 Errors and orders
Formula Value

max |x10 − x20| 7.9414e−6

max |x10 − x40| 7.4104e−6

max |x20 − x40| 6.0829e−7

max |x10 − x80| 7.3657e−6

max |x20 − x80| 6.5529e−7

max |x40 − x80| 4.4882e−8

log2
( ‖x10−x80‖2‖x20−x80‖2

)

2.6507

log2
( ‖x20−x80‖2‖x40−x80‖2

)

2.7477

a free boundary model with bifurcation phenomenon. The difficulty level of this problem is
due to the free boundary and the singularity at bifurcation point. By using multi-precision
arithmetic with homotopy tracking in Bertini, one can compute the bifurcation point nu-
merically. Then tangent cone is used to compute the non-radially symmetric solution. This
method is a general numerical algorithmic approach that can be applied to other free bound-
ary problems, e.g., a three-dimensional tumor system [45] and a tumor system with a Stokes
equation [46] have also been studied by this method.

The model discussed in this article has incorporated important physical quantities such
as internal tumor pressure and cell-to-cell adhesion. The bifurcation diagram, Fig. 5, which
was drawn using homotopy tracking, shows the local behavior of the steady state solutions.
In particular, the stability analysis reveals that the stability of the tumor depends on how
aggressive the tumor is, as measured by the size of the tumor aggressiveness factor μ. For
the radially-symmetric branch, the tumor is stable for small μ and unstable for large μ. For
the nonradially-symmetric branches, the “upper” branch is stable while the “lower” branch
is unstable. The instability allows the tumor to increase its surface area, thereby allowing the
tumor to grow larger. Instability means that the tumor may change shape and, in particular,
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may grow into the surrounding tissue thereby becoming invasive [10, 11, 23]. In particular,
we interpret the stability results to mean that the tumor will remain benign when stable and
invasive when unstable.

Although the tumor model analyzed here is quite simple, this work provides a possible
way to study the behavior of the tumor as the parameter changes. Moreover, the numerical
approach provides a general method to study tumor growth systems with free boundaries
by enabling one to compute nonradially-symmetric solutions and study their stability, both
linear and nonlinear, beyond a small neighborhood of the bifurcation point. In early results,
bifurcation theory was used to analyze the bifurcation branch, but only in a small neighbor-
hood of the bifurcation point. In reality, tumor in vivo is unlikely to be of spherical shape.
Thus, our tracking along the nonradial bifurcation branch in this paper may provide signifi-
cant application.
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