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Abstract. In [F. Li, C.-W. Shu, Y.-T. Zhang, H. Zhao, J. Comput. Phys., 227 (2008) pp. 8191—
8208], we developed a fast sweeping method based on a hybrid local solver which is a combination of a
discontinuous Galerkin (DG) finite element solver and a first order finite difference solver for Eikonal
equations. The method has second order accuracy in the L' norm and a very fast convergence
speed, but only first order accuracy in the L° norm for the general cases. This is an obstacle to
the design of higher order DG fast sweeping methods. In this paper, we overcome this problem
by developing uniformly accurate DG fast sweeping methods for solving Eikonal equations. We
design novel causality indicators which guide the information flow directions for the DG local solver.
The values of these indicators are initially provided by the first order finite difference fast sweeping
method, and they are updated during iterations along with the solution. We observe both a uniform
second order accuracy in the L°° norm (in smooth regions) and the fast convergence speed (linear
computational complexity) in the numerical examples.
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1. Introduction. In this paper, we consider numerical solutions of the Eikonal
equations

(1.1) IVo(x)| = f(x), xe€Q\T,
d(x)=g(x), xelcCQ,

where f(x) is a positive function and f(x) and g(x) are Lipschitz continuous, ) is
a computational domain in R?, and T is a subset of 2. The Eikonal equations (1.1)
form a very important class of static Hamilton—Jacobi equations

H(x,V¢(x)) =0, x € Q\T,

(12) o(x) = g(x), xel CQ,
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where the Hamiltonian H is Lipschitz continuous and is often nonlinear. The concept
of viscosity solutions for Hamilton—-Jacobi equations was introduced in [4]. The nu-
merical calculations of static Hamilton—Jacobi equations appear in many applications,
such as optimal control, differential games, image processing and computer vision, ge-
ometric optics, seismic waves, crystal growth, robotic navigation, level set methods,
etc.

A class of numerical methods for static Hamilton—Jacobi equations is to treat
the problem as a stationary boundary value problem: discretize the problem into a
system of nonlinear equations and design an efficient numerical algorithm to solve the
system. Among such methods are the fast marching method and the fast sweeping
method. The fast marching method [25, 19, 6, 20, 21] is based on the Dijkstra’s algo-
rithm [5]. The solution is updated by following the causality in a sequential way; i.e.,
the solution is updated pointwise in the order that the solution is strictly increasing
(decreasing). Two essential ingredients are needed in the fast marching algorithm:
an upwind difference scheme and a heap-sort algorithm. The resulting complexity
of the fast marching method is of order O(Nlog N) for N grid points, where the
log N factor comes from the heap-sort algorithm. Recently, an O(N) implementation
of the fast marching algorithm for solving Eikonal equations was developed in [27].
The improvement is achieved by introducing the untidy priority queue, obtained via
a quantization of the priorities in the marching computation. However, the numerical
solution obtained by this algorithm is not an exact solution to the discrete system
due to quantization. The extra error introduced must be controlled to be at the same
order as the numerical error of the discretization scheme. It is shown in [16] that the
complexity of this algorithm is O( fmax/fminfV) in order to achieve an accuracy that is
independent of the variation of f(x), where fiax and fmin are maximal and minimal
values of f(x) in the computation domain, respectively. In the fast sweeping method
[1, 32, 24, 10, 31, 12, 30, 29, 14, 15, 11], Gauss—Seidel iterations with alternating or-
derings are combined with upwind finite differences. In contrast to the fast marching
method, the fast sweeping method follows the causality along characteristics in a par-
allel way; i.e., all characteristics are divided into a finite number of groups according
to their directions, and each Gauss—Seidel iteration with a specific sweeping ordering
covers a group of characteristics simultaneously; no heap-sort is needed. The fast
sweeping method is optimal in the sense that the number of iterations for the conver-
gence is independent of the total number of grid points N [31] so that the complexity
of the algorithm is O(N), although the constant in the complexity depends on the
equation. The algorithm is extremely simple to implement. Moreover, the iterative
framework is more flexible for general equations and high order methods.

The high order finite difference ((FD)-type) type fast sweeping method devel-
oped in [30] is based on high order WENO approximations. It provides a quite
general framework, and it is easy to incorporate any order of accuracy and any type
of numerical Hamiltonian into the framework. For example, the fifth order version
was developed recently in [26, 18]. Much faster convergence speed than that of the
time-marching approach can be achieved. Due to the wide stencil of the high order
FD approximation to the derivatives, some downwind information is used and the
computational complexity of the high order FD-type fast sweeping method is slightly
more than linear.

Discontinuous Galerkin (DG) methods, on the other hand, can achieve high or-
der accuracy by using very compact stencil. The DG method is a class of finite
element methods, using discontinuous piecewise polynomials as approximations for
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the solution and test functions [3]. The first DG fast sweeping method was devel-
oped in [13] for solving the Eikonal equations. The local solver is based on the P!
(piecewise-linear) version of the DG method developed in [2] for directly solving the
time-dependent Hamilton—Jacobi equations. The causality property of the Eikonal
equations is incorporated into the flux of the DG solver according to a similar proce-
dure as the first order FD fast sweeping method [31], by identifying the cell averages
in the DG solutions as the point values in the FD scheme. The causality condition
enforced this way leads to fast convergence of this DG sweeping method, however,
the DG local solver cannot provide a solution for all cells. In [13], a hybrid DG local
solver is proposed to resolve this issue; i.e., in those cells where the second order DG
local solver cannot provide a solution, the first order FD-type Godunov scheme [31] is
used. As a result, the method in [13] has second order accuracy in the L! norm and a
very fast convergence speed, but in general the scheme only has first order accuracy
in the L* norm. This is an obstacle to the design of higher order DG fast sweeping
methods.

In this paper, we overcome this difficulty and develop uniformly accurate DG fast
sweeping methods on general Cartesian meshes. In order to achieve both high order
accuracy and fast convergence rate (i.e., linear computational complexity) in the DG
fast sweeping methods, the central question is how to enforce the causality property
of Eikonal equations in the compact DG local solver. We design novel causality in-
dicators which guide the information flow directions for the DG local solver. The
values of these indicators are initially provided by the first order FD fast sweeping
method, and they are updated during iterations along with the solution. The use of
causality indicators allows us to compute the solution more efficiently, i.e., to only
compute the solution at cells whose current causality information is consistent with
the current sweeping directions, and it is more robust than using the solution itself
to indicate the information flow direction near singularities, such as shocks. The re-
sulting algorithm can provide a solution of the DG local solver for all cells of the
computational mesh without switching back to the first order FD solver as in [13].
Hence the numerical values on all cells after the iterations converge are the solution
of the DG scheme. Both uniform second order accuracy in the L* norm (in smooth
regions of the solutions) and the linear computational complexity are obtained, and
they show the improvement of the proposed method over our previous work in [13].

The rest of the paper is organized as follows. The detailed algorithm is described
in section 2. In section 3 we provide numerical examples to show the uniform accuracy
and linear computational complexity of the proposed algorithm.

2. Uniformly accurate DG fast sweeping methods. In this section, we
design uniformly accurate DG fast sweeping methods for the Eikonal equations (1.1).
For simplicity we consider the two-dimensional problems. The extension to higher
dimensions is straightforward.

We first construct a Cartesian mesh €, = Ui<i<n,1<j<mIij covering the compu-
tational domain Q, where I;; = I; x J; and I; = [x;_1/2, %iy1/2], J5 = [Yj—1/2, Yj+1/2]-
The centers of I;, J; are denoted by z; = %(xi_l/g + Tiy1/2) and y; = %(yj_l/z +
yj+1/2)a and the sizes are denoted by hl =Tit1/2 — Tj—1/2; lj =Yj+1/2 —Yj-1/2- The
centers of the cells I;; form a grid O, = {(z;,y;), 1 <i < N, 1<j < M}. The grid
©), is called a dual mesh of €2,

We present the algorithm on a general Cartesian mesh. The important compo-
nents of the proposed algorithm are described separately below.
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2.1. Initial causality determination. To achieve fast convergence in the fast
sweeping methods, a key step is to reliably determine the causality for the nonlinear
Eikonal equation (1.1). We propose to determine the causality initially by the first
order FD fast sweeping method [31]. The algorithm will be formulated on a general
Cartesian mesh.

We identify the cell I;; of Qy, by its center (z;,y;), which is a grid point of ©,. ¢;;
is used to denote the numerical solution of the first order FD fast sweeping method
for (1.1) at (z;,y;), and f;; £ f(z;,y;). We assign two integer flags to each cell I;; of
), to indicate the information flow directions, denoted by caux;; and cauy;;, which
are called the causality indicators of the cell I;;. caux;;=0 indicates that in the
z-direction, the information is propagating from the left neighboring cell I;_; ; to
the cell I;;, while caux;;=1 indicates that the information is propagating from the
right neighboring cell I; 1, ; to the cell ;. Similarly, cauy;;=0 indicates that in the
y-direction, the information is propagating from the bottom neighboring cell I; ;_; to
the cell 1;;, while cauy;j=1 indicates that the information is propagating from the top
neighboring cell I; j11 to the cell I;;. If there is no information flowing into I;; from
the x- or y-direction, then we set the flag of that direction to be 10, i.e., caux;;=10
or cauy;j=10. We perform the first order FD fast sweeping method on the dual mesh
O}, to obtain the information flow pattern and record it in the arrays flagx(i, j) and
flagy(i, j), for 1 <i < N, 1< j < M.

On the grid O, the PDE (1.1) is discretized as

R GIGE

where (e)T is the operator taking the positive part, i.e.,

(2.2) (2)F = {x z>0;

0, xz <0.
a, b, r1, and 1o are determined by the causality as follows. At interior grid points
(xi,y;) 11=2,3,...,N—1,7=2,3,..., M — 1, denote the grid sizes around the grid
. A A A A
point (z;,y;) by di = x; — xi—1, dr = i1 — Ty, dy = Y5 — Yj—1, dt = Yjr1 — Yj-
If pi1,j +di- fij < Piy1,j +dr- fij, then
a= Qi-1, ri=di- fij:

caux;; = 0;

else
a=¢i+1,j, 1 Zdr'fij:
Cauxq; = 1.

Similarly,
If @i 51 +dp- fij < ¢ijy1+di- fij, then
=¢i,j—1. T2 :db'fij;
cauy;; = 0;
else
b= ¢ij+1, ro =dy - fij;
cauy;; = 1.
At the boundary of the computational domain, one-sided difference is used. Namely,
at the left boundary 7 = 1, we take a = ¢2 ;, 71 = d, - f1;, cauxy; = 1; at the right
boundary i = N, we take a = ¢n_1,5, "1 = d; - fnj, cauxy; = 0; at the top boundary
j =M, wetake b= ¢; pr—1, r2 = dp- finr, cauy;nr = 0; at the bottom boundary j =1,
we take b = ¢; 2, 12 = d¢ - fi1, cauy;; = 1.
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y= b+r,

-1 -
(a, b)

X

X=a+h

Fi1G. 2.1. About the solution of the quadratic equation (2.1).

To solve (2.1), we consider the solution of the equation as the intersection point
of the following two curves on the 2D plane:

(23) l(xr—la>+ ° (y;b>+r:1,

(2.4) Yy =x.

+

The curve represented by the (2.3) is composed of two lines y = b+re and . = a+ 1
connected by the top-right quarter of an ellipse, like the red curve shown in Figure
2.1. The location of the curve will be different for different values of the ellipse center
(a,b). But for any values of a,b,r1, and rs, the line y = x has a unique intersection
point with the red curve in Figure 2.1. To find the coordinates of the intersection
point, we first consider the case that the top-right quarter of the ellipse can intersect
the line y = x. If we fix an arbitrary value of a and let b vary, then the center of the
ellipse will move along the line z = a. If and only if a —ry < b < a4+ r1, the top-right
quarter of the ellipse can intersect y = x. Similarly, if we fix an arbitrary value of b
and let a vary, then the center of the ellipse will move along the line y = b. If and
only if b —ry < a < b+ 79, the top-right quarter of the ellipse can intersect y = x.
In summary, the top-right quarter of the ellipse and y = x will intersect if and only if
—re < b—a < ry. In this case, (2.1) is equivalent to the equation

(2.5) <x;a)2+ <x7;b>2=1.

Since the point should be in the top-right quarter of the ellipse, we choose the larger
solution of the quadratic equation (2.5),

_ard 4+ brf +rira/r3 +13 — (a—b)?

2.6
(2.6) r? +1r3

For the second case, if and only if b — a < —ry, namely a > b+ rs, the line y = x can
intersect y = b + 1o, and the solution for (2.1) is

(2.7) x=0b+ra.
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Finally, for the last case, if and only if b — a > 71, namely b > a + 71, the line y = =
can intersect © = a + r1 and the solution for (2.1) is

(2.8) T=a-+r].

In summary, if we denote s; = r1/fi; and sy = r2/f;;, then the unique solution for
the quadratic equation (2.1) is

as? + bs? + s180/17 + 12 — (a — b)?
$2 + s2

b+ry ifb—a < —ry,

a-+r iftb—a>r.

if —rg<b—a<rg,

The detailed procedure of using the first order FD fast sweeping method to de-
termine the initial causality for the DG solver is given below.
Procedure I. Determination of the initial causality for the DG solver.
1. Initialization:

(a) According to the boundary condition ¢(x) = g(x),x € T', assign exact
values or interpolated values at grid points in or near I'. These values
are fixed during iterations. Large positive values are used as the initial
guess at all other grid points, and these values should be larger than
the maximum of the true solution, and they will be updated in later
iterations.

(b) Initialize the causality arrays: flagx(i, j) = 10, flagy(i, j) = 10 for 1 < i <
N,1<j< M.

2. Tterations: solve the discretized nonlinear system (2.1) by Gauss—Seidel iter-
ations with four alternating direction sweepings:

(1)i=1:N, j=1:M,
(2)i=N:1,j=1:M;
B)i=N:1,j=M:1;
4 i=1:N, j=M:1

Equation (2.9) is used to solve (2.1), and the current values of the neighbors
of the grid point (7,j) are used due to the Gauss—Seidel philosophy. If the
solution ¢;; of (2.1) is smaller than the current value at the grid point (¢, j),
then we update its value ¢%€W = ¢;; and update the causality arrays:
If —ro <b—a <7y, then
flagx(i.j)=caux,;, flagy(i,j)=cauy,;
If b —a < —ry, then
flagx(i.j) = 10, flagy(i,j)=cauy,;;
If b—a > rq, then
flagx(i,j)=caux,;, flagy(i,j) = 10.
3. Convergence: if

7Y — ¢2M|| e <5,

where ¢ is a given convergence threshold value and || - ||« denotes the L™
norm, the iteration converges and stops.
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Remark. We take § = 10~ !! in step 3 for all numerical experiments of this paper.
In this subsection, the first order FD fast sweeping method is used to initialize the
causality arrays. Hence, only solution values ¢;; on the dual mesh ©), are iterated.
The DG local solver of the next subsection and slope values of the solution have
not been involved yet at this step. For realistic applications, if some part or the
whole of the inflow boundary I' is not on the grid lines, the Richardson extrapolation
or inverse Lax—Wendroff procedure developed in [8] can be used to obtain accurate
approximation to values at the grid points near the inflow boundary I'. We will
discuss more about the numerical boundary conditions in subsection 2.2.4. We update
the causality arrays in step 2 so that we can track the convergence history of the
information flow directions. The values of causality arrays can also be assigned after
the iteration converges if we do not need to track their convergence procedure. In step
2, the solution ¢;; is only updated if it is smaller than the current value. Theoretically,
this is due to the control or first arrival time interpretation of the viscosity solution.
The first order upwind scheme is monotone and keeps this property. This makes the
solution of the first order FD fast sweeping method nonincreasing with each Gauss—
Seidel iteration, and it converges monotonically to the solution of the discretized
system, which converges to the true viscosity solution of the PDE. See [31] for the
detailed proof.

2.2. DG local solver. In this subsection, we describe a piecewise-linear DG
local solver for the Eikonal equations (1.1) on a general Cartesian mesh. This local
solver is based on a DG method developed recently for directly solving the time-
dependent Hamilton—Jacobi equations [2]. The local solver has a similar form as the
one in our previous work [13]. We will emphasize their differences in the following.

On the Cartesian mesh €2, we define the piecewise-linear finite element space as

(2.10) Vil ={v:v

L, € P' (L), i=1,....N, j=1,...., M},

where P'(I;;) denotes all linear polynomials on I;;. As in [2, 13], the DG scheme for
the Eikonal equations (1.1) is defined as: find ¢, € V! such that

Yj+1/2
/ [V on(z, y)|vn(z, y)dedy + az,ij/ [6n)(@im g, y)vn(z 1 y)dy

ij Yj—1/2
LTit1/2
+ ab,ij/ [on)(@,y;— 1 )on (@, y,_, )da
Ti—1/2 2

Yj+1/2 _
+ g / [On)(@ip 1 y)vn(z 1 y)dy
Yj—1/2 2

LTit1/2 _
o [ o ey, o

Ti—1/2

(2.11) = flx,y)op(z,y)dedy, i=1,....N, j=1,...,M
17;]'

holds for any v, € V;!. Here [¢5] denotes the jump of ¢, across the cell interface,

+ 4 i
(% ($i7% ’ y) - r%r,i,l/l;rfrl>xi,1/2 Un (ZIJ, y)a

— A .
oY) = tm o)
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for y € [y;—1/2,Yj+1/2], and

A .
! = 1
’Uh(x7yj_%) y—>yj71/;I>2>yj71/2 ’Uh(ﬂ?,y),
_ A .
vp(T, Y. = lim vp(x
h( 7yj+%) Y=Yj+1/2,Y<Yj+1/2 h( 7y)

for z € [xi_l/g, 9Ci+1/2]~ Qi Qb i, Qrij, Q5 are local constants which depend on the
numerical solutions in the neighboring cells of I;; and the causality of the Eikonal
equation. They are called local causality constants and will be discussed in detail in
subsection 2.2.1.

Remark. The way to calculate local causality constants in this local solver (2.11)
is different from that in [13], and it will be described in the following subsection.
Mathematical proof of the existence of the solutions of the local solver (2.11) with
the new local causality constants in subsection 2.2.1 is still open. But our numerical
experiments in this paper show that the system does give a unique solution under
the causality conditions determined by the algorithm described in the current sec-
tion 2.

2.2.1. Calculations of local causality constants. The linear polynomial
¢n(x,y) on I;; can be represented by ¢n|r,, = bij + wi;& + vijn;, where & = r‘f
and 7; = y;—y] So the unknown degrees of freedom on I;; are ¢;j, usj, and vi;. @45,

wi;/hi, and v;; /1; are the cell average, the slope in the z-direction, and the slope in
the y-direction of the linear polynomial ¢, (x,y) on I;;, respectively.

Let us denote Hy £ 37}1 and Hy £ 8‘971. The local causality constants oy ;j, .45,
Qrij, O i are approximations of H1(V¢y,) and Ha(Vy,) in the four neighboring cells
of I;;. The construction of the causality indicators and the calculation of the local
causality constants are motivated by the idea of upwind schemes for solving hyper-
bolic conservation laws and the iterative framework of fast sweeping methods. The
local causality constants reflect the causality /upwind information of the Eikonal equa-
tions (1.1). However, due to the nonlinearity of the Eikonal equations, the causality
information is unknown beforehand. On the other hand, the iterative framework of
fast sweeping methods allows us to initially estimate the causality information by the
first order fast sweeping iterations (see subsection 2.1), and then iterate the causality
information along with the iteration of the solution itself of the DG scheme (2.11).

The calculation of the local causality constants needs the causality information
of the current iteration step. In [13], only the information of cell averages was used to
determine the causality information. This may not be accurate enough since the DG
local solver provides both cell averages and slopes information. By introducing the
causality indicators, we can use both cell averages and slopes information to determine
the causality information more accurately.

The values of causality indicators are determined initially by the first order fast
sweeping iterations (see subsection 2.1), and they are updated along with the solu-
tions. How to update causality indicators in the iterations will be discussed in detail
in subsection 2.2.3. Numerical experiments in section 3 show that faster convergence
rate can be obtained if the causality information is captured accurately. According
to the values of causality indicators in the current iteration step, the local causality
constants are calculated. First, let us consider the causality constant ag,;;. ;45 will
carry causality information from the left neighboring cell ;_; ; in the z-direction if
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there is causality information coming in from that direction. If the z-direction causal-
ity indicator flagx(i,j)=1, it indicates that the information comes in from the right
neighboring cell I;1; ; in the z-direction. If flagx(i,j)=10, then it indicates that there
is no information coming into the cell I;; in the z-direction. So for these two cases,
y,;; should not carry any causality information, and it will be set to 0. If flagx(i,j)=0,
it indicates that information may flow in from the cell I;_; ;. Because the values of
causality indicators are assigned initially by the first order fast sweeping iterations
and the initial values of slopes u;_1 ; and v;—; ; on the cell J;_; ; are assigned to be 0,
it is possible that the causality indicator flagx(i,j)=0 requires the slopes information
from the cell I;_1 j, which may not be available yet (only has initially assigned value
0). This often happens at the beginning iterations when the DG local solver has
not been executed on the cell I;_; ;. Another possible situation for which this could
happen is that the DG solution on the cell I;_; ; gives the slopes u;—1,; = v;—1; = 0.
This means that no information will flow out from the cell /;_; ;. So for the case
flagx(i,j)=0 and ui—1,; = vi—1,; = 0, we skip the current cell I;; in the current it-
eration and will update the values in this cell at the later iterations when there is
more information around this cell available. In addition, skipping the current cell due
to lack of proper updated information can save some computational cost. Finally,
if flagx(i,j)=0 and the slopes information on the cell I;,_; ; is available—i.e., at least
one of u; 1 ; and v;_1; is not 0, we can compute Hy(Vep)|r,_, ;. In summary, the
formula to calculate oy ;; is

(2.12)
max (0, Hy (Vor)|1,_, ;) = max (O, Uiz1,jl )
’ V(Wiz10)% + (vie1,7hi—1)?
Xl = if flagx(i,j)=0 and (u;—1 ;) + (vi—1,jhi—1)* # O;
skip current cell if flagx(i,j)=0 and u;—1; = v;_1; = 0;
0 if flagx(i,j)=1 or flagx(i,j)=10.

For the first case, if we have max(0, H;(V¢n)|7,_, ;) = 0, then we need to correct
the current causality indicator flagx(i,j) to be flagx(i,j)=10. By doing this, we shut
down this information flow direction of the cell I;; in the current iteration. This
could happen when the initial causality determined by the first order fast sweeping
method contradicts the slope information obtained by the second order DG local
solver. Namely, although flagx(i,j) = 0, we still have w;_; ; < 0. From our numerical
experiments, we found that this situation often happens near shock locations where
the characteristics from the left intersect with the characteristics from the right. Like-
wise,

(2.13)
. . Uit1,5l;
min(0, H1(Vép)|r,,, ,) = min | 0,
o V(Wir1,31)? + (vigrjhiz1)?
g = if flagx(i,j)=1 and (uit1,05)* + (Vig1,5hit1)? # 0;
skip current cell if flagx(i,j)=1 and w;41,; = vit1,; = 0;
0 if flagx(i,j)=0 or flagx(i,j)=10.
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For the first case, if we have min(0, Hy(V¢p)|r,., ;) = 0, then we need to correct the
current causality indicator flagx(i,j) to be flagx(i,j)=10. Similarly,

(2.14)

— max Vig—1h
max(0, H2(Von)|r, ;_,) = ma (0’ \/( + (vi,j-1hi)? )

wij-1lj-1)?
Ob,ij = if flagy(i,j)=0 and (u;j—1l;— 1)? + (vij— 1hi)? #0;
skip current cell if flagy(i,j)=0 and u; j_1 = v; j—1 = 0;
0 if flagy(i,j)=1 or flagy(i,j)=10.

For the first case, if we have max(0, H2(Vén)|r, ,_,) = 0, then we need to correct the
current causality indicator flagy(i,j) to be flagy(i,j)=10. Finally,

(2.15)
. . V1l
min(0, Ho(Von)|s, ,.,) = min | 0, -
o V(Wi jrils1)? + (041 hi)?
Atij = if flagy(ij)=1 and (u; jy1l541)% + (vij41hi)* # 0;
skip current cell if flagy(i,j)=1 and u; j4+1 = v j41 = 0;
0 if flagy(i,j)=0 or flagy(i,j)=10.

For the first case, if we have min(0, H2(Vén)|z, ,,,) = 0, then we need to correct
the current causality indicator flagy(i,j) to be flagy(i,j)=10. If both flagx(i,j)=10 and
flagy(i,j)=10, we will skip the current cell in the current iteration.

Remark. We use causality indicators as guiding conditions to define local causality
constants in the DG local solver (2.11). The local causality constants provide impor-
tant “upwind” information in the flux of the DG local solver. Hence, the DG local
solver defined in this paper has different flux from that in [13]. Moreover, the local
causality constants defined in this paper have the property < 1, which is consistent
with the property of H1(V¢p) and Ha(Vop,).

2.2.2. The quadratic system. On any given element [;;, by taking v, =
1, &, nj, the DG formulation (2.11) is converted from the integral form to a quadratic
system:

(216) \/ + Uz] 1] + el]¢1j + Bzgum + )\UUU - Rl KYE)

(2.17) 12855045 + dijui; = Ra iy,
(2.18) 12Xi¢i5 + gijvij = Rs.ij,
where
h;
Tij = 77,
J lj

1
Bij = —5(quuj + arij), Aij = —5rij(awag + oij),
2 2

€ij = g + bijTij — (Qraj + QrijTis),
dij = 3ouj + Qb,ijTij — 30rij — QijTij,

9i7 = (quij — arij) + 3rij (i — i),

S
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and

1 1 1
Ry i =7 [z, y)dzdy — o5 <¢i+1,j - §ui+1,j> + auij <¢z’—17j + §ui—1,j)
g J1ij

1 1
— QT <¢i7j+1 — QigH1 ) Wi | Gig-1 + Svig-1 ),

12 1
Rogj=— | flz,y)&dady — 6arij | Giv1,j — SUit1,
L )i, 2
1
—6aqi5 | Pim1,j + 5%‘71,]' — Qi 5T Wi 41 Qi Tij Ui 5—1,
12 1
Rs.ij =7~ : f(x,y)njdedy — 6 ijrij | dij+1 — Qi+l
J ij

1
— b, ij7ij (¢i7j1 + 5%‘7]‘71 — Qi Vit1,5 + QLijVi—1,5-

To solve this quadratic system (2.16)—(2.18), we adopt the Gauss—Seidel philoso-
phy, namely, we use the current numerical values of neighboring cells of the cell ;.
Based on the values of causality indicators, we could have the following two scenarios.

1. flagx(i,j) # 10
In this case, f;; # 0 and g¢;; # 0. From (2.17) and (2.18), we have

®ij = aij + bijuij,

(2.19) Vij = Cij + LijUij,
where
g = Boig o diy Rs,ijBij — NijRajij b Nigdi
1) T 9 1) T ) 1) T y Y1y T .
o120 Y 128, Bij9ij T Bijgi

Substituting (2.19) into (2.16), we obtain a quadratic equation
(220) aﬁu?j + A7l +ag = 0,

where

2 2
ae = a1 — ay, ar = az — 2a4a5, ag = az — as,

a1 =1+ (tiyri;)?, a2 = 2Cijtij7'i2ja as = (cijriz)?,
as = —(eizbij + Bij + Aijtij), as = Ruij — eijai; — Xijcij.
If the quadratic equation (2.20) gives only one real solution @, then we update

the current value u;; = u; if it gives two real solutions #; and s, then we
update the solution according to the following rule:

if flagx(i,j) = 0, then u;; = max(t1, 2);

if flagx(i,j) then w;; = min(u1, u2).

The updated values for v;; and ¢;; can be obtained by (2.19). If the quadratic
equation (2.20) has no real solution, we do not update the current values of
Uiz, Vij, and ¢;;, and we skip the current cell.
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2. flagx(i,j) = 10
In this case, we only use the information in the y-direction. a;;; = ay;; = 0,
so from (2.17)—(2.18), we have

Ry ;5
U5 = - )
J dl]
(2.21) Gij = aij + bijvij,
where
0 = Bsii i
I 12)\” ’ * 12/\” '

Substituting (2.21) into (2.16), we obtain a quadratic equation for v;;,

(2.22) aﬁv?j + arv;j +ag =0,
where
a6 = Tz‘Qj - a?’,v a7 = —2azas, ag = a% — a%,
1= ]:;2;]’ az = R ij — eijaij, az = —(Aij + eijbij).

If the quadratic equation (2.22) gives only one real solution o, then we update
the current value v;; = v; if it gives two real solutions v; and 72, then we
update the solution according to the following rule:

if flagy(i,j) = 0, then v;; = max(v1, U2);
= 17

if flagy(i,j) then v;; = min(vy, v2).

The updated values for u;; and ¢;; can be obtained by (2.21). If the quadratic
equation (2.22) has no real solution, we do not update the current values of
U5, Vij, and ¢;;, and we skip the current cell.
Remark. As described in this subsection, when there are two solutions for u;; (or
v;5) in the quadratic equation, we choose the one which is consistent with the current
causality indicator values and is “more upwind.” This way to pick up values gives
correct numerical results in the numerical examples.

2.2.3. Update of causality arrays. If the values of u;;, vi;, and ¢;; have been
updated by the DG local solver, then we need to make the current values of causality
indicators in the neighboring cells of I;; consistent with the current information flow
directions determined by the DG local solver. Through numerical experiments, we
found that we must consider the causality information on both sides of each direction
of the cells whose causality arrays may be updated. The detailed algorithm is given
as follows.

In the z-direction, if (u;; > 0 .and. @ < N): this indicates that the information in
the cell (i, j) is propagating to the right cell (i+1, j), and it is possible that we need to
update flagx(i+1,j). If the cell (i+1, j) is a boundary cell (i.e., a cell around I" which
has preassigned values and these values are fixed during iterations), then we do not
need to update flagx(i+1,j). Otherwise, we need to look at the causality information
at the right-hand side of the cell (i+1, j). If the cell (i+1, j) happens to be at the
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boundary of the computational domain, then there is no causality information at the
right-hand side of the cell (i+1, j), and we just update flagx(i+1,j) = 0. If the cell
(i+1, j) is an interior cell, then there is causality information at its right neighboring
cell (i42, j) which we need to consider. Our numerical experiments indicate that we
should update flagx(i+1,j) if and only if the current numerical values on cell (i42, j)
have been provided by the DG local solver (i.e., not the initial iteration values), and
the “global” causality between the cell (i, j) and the cell (i+2, j) is consistent with the
current “local” causality for the cell (i+1, j). Here the current “local” causality is just
the information propagation direction indicated by the DG solution in the current
iteration step and current cell. In this case, it is indicated by u;; > 0. The “global”
causality between the cell (i, j) and the cell (i+2, j) is motivated by the “first arrival
time” used in the first order fast sweeping method, which is defined as follows. Denote
d = Ti+1 — Ty, dy = Ti4+2 — Ti+1;

if ((the values on cell (i+2, j) are from DG solver)
and.¢ij +di - fir1,5 < diya,j +dr - fig1), then
flagx(i+1,j) = 0;

otherwise, we do not update flagx(i+1,j). We would like to point out the reason that
we need the current numerical values on cell (i+2, j) to be provided by the DG local
solver. This is because the initial iteration values are provided by the first order FD
fast sweeping iterations, but the numerical values on the cell (i,j) have been provided
by the DG local solver in the current iteration. So we need the numerical values on
the cell (i4-2,j) to be also provided by the DG local solver in order to have consistent
information for computing the “global” causality.

Similarly if (u;; < 0 .and. 4 > 1): this indicates that the information in the
cell (i, j) is propagating to the left cell (i-1, j), and it is possible that we need to
update flagx(i-1,j). If the cell (i-1, j) is a boundary cell, then we do not need to
update flagx(i-1,j). Otherwise, if the cell (i-1, j) happens to be at the boundary of the
computational domain, we will update flagx(i-1,j) = 1. If the cell (i-1, j) is an interior
cell, then there is causality information at its left neighboring cell (i-2, j) which we
need to consider. Denote d; £ z;_1 — x;j_9, dy = x; — Ti_1;

if ((the values on cell (i-2, j) are from DG solver)

and.gij +d - fii1; < iz +di - fi—1;), then
flagx(i-1,j) = 1;

otherwise, we do not update flagx(i-1,j).
Cases in the y-direction are similar, and the detailed description is in the Ap-
pendix.

2.2.4. Initialization of the DG local solver and boundary conditions.
To initialize the DG solver, we need to specify the values of ¢;j, ui;, and v;; on
the cells which are around the boundary I' (these cells are called “boundary cells,”
and the values on boundary cells will be fixed during iterations). We use the least
squares approximation of the exact or approximating boundary values to preassign
the values of ¢;;, u;j, and v;; on the boundary cells [13]. For example, if the values
&(wit1/2,Yj+1/2) are given at the four grid points of the boundary cell I;;, then we
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can preassign the values of ¢;;, u;j,vi; as

1
bij = Z((b(xi—l/Zayj—l/Z) + O(@it1/2,Yj-1/2)
(2.23) + d(@io1/2:Yjr1/2
¢($i71/27yj71/2)

(2.24) + A(Tip1/2,Yjr1/2)

1

)
1
Uij = §(¢($i+1/2ayj71/2)
Vij = §(¢(xi—1/27yj+1/2)

+ A(@it1/2, Yjr1/2))
— d(wi_1/2,Yj-1/2)

¢($i—1/2, yj+1/2)),

(2.25) + O(@ir1/2, Yj1/2) — A Tig1/2,Yj-1/2))

For the other nonboundary cells, the initial iteration values of ¢;; are the values
from the first order fast sweeping iterations on the dual mesh O, and the initial
iteration values of u;; and v;; are zeros.

Remark on boundary treatment strategies. The least squares method is used to
specify the values of ¢;;, u;j, and v;; on the boundary cells around the inflow boundary
I', as shown in (2.23)-(2.25). Hence, the values ¢(z;11/2,¥;+1/2) are needed at four
corner grid points of the boundary cell I;; in order to perform the least squares approx-
imation (2.23)—(2.25). If grid points of the boundary cells are not on the boundary
I" and the values on these grid points are not available, the Richardson extrapolation
or inverse Lax—Wendroff procedure developed in [8] can be used to obtain accurate
approximation to these values. The Richardson extrapolation procedure uses first
order accurate solutions on several locally successively refined meshes to obtain high
order approximations to numerical values at grid points of the boundary cell. The
Richardson extrapolation procedure is suitable for different types of inflow boundaries,
including the source boundary consisting of a single point. The inverse Lax—Wendroff
procedure repeatedly uses the PDE itself and the given boundary condition to obtain
high order approximations to the numerical values for the grid points near the bound-
ary. This procedure can be applied to complex domains and other hyperbolic PDEs,
as shown in [22]. Here we will briefly describe the inverse Lax—Wendroff procedure
in [8]. More details can be found in [8, 22] and in its application to fifth order fast
sweeping WENO scheme [26].

We will use the following example to describe the inverse Lax—Wendroff pro-
cedure. Assume that the computational domain is [—1,1]?, and the left boundary
I ={(x,y)|lxr = —1,—1 < y < 1} is the inflow boundary. The solution on I is given
as

(2.26) o(-Ly)=gy), -1<y<L

For our second order method, we would like to obtain a second order approximation
to ¢(wi41/2,Yj41/2) which is a corner grid point of the boundary cell I;;. By Taylor
expansion,

(227)  G(@it1/2,Yjr1/2) = (=L, yj11/2) + (Tiv12 + D)da(—1,yj41/2) + O(R?),

where h = max;{h;}. Hence, our desired approximation for the second order DG
scheme is

(2.28) A(Tit1/2,Yj41/2) = (=1, yj4172) + (Tig172 + 1)z (—=1,yj41/2)-
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TABLE 2.1
Specific cells to be updated in different direction sweepings.

sweeping direction | causality arrays of cells to be updated
i=1:N, j=1: M flagx(i,j) # 1 and flagy(i,j) # 1
i=N:1, j=1: M flagx(i,j) = 1 and flagy(i,j) # 1
1=N:1, j=M:1 flagx(i,j) # 0 and flagy(i,j) = 1
i=1:N, j=M:1 flagx(i,j) = 0 and flagy(i,j) = 1

We already have ¢(—1,y;41/2) = g(yj41/2) from the boundary condition (2.26). We
evaluate the Eikonal equation (1.1) and obtain

(2.29) \/¢r(_1ayj+1/2)2 + &y (=1, yi41/2)% = [(=1,941/2)

in which ¢, (=1,%;41/2) = 9'(y;41/2) and the only unknown quantity is ¢ (—1, 3,41 /2)-
Solving this equation should give us ¢,(—1,y;41/2). There are two roots with differ-
ent signs for this quadratic equation. For this example, the positive one should be
chosen to guarantee that the boundary I' is an inflow boundary.

We would like to emphasize that we are using this simple example to fix the
idea of the inverse Lax—Wendroff procedure. As shown in [8, 22, 26], this procedure
can be carried out to any desired order of accuracy. Also, it can be applied to the
inflow boundary I'" with very complicated curved geometries by changing the = and y
partial derivatives to normal and tangential derivatives with respect to I'. Recently,
the inverse Lax—Wendroff procedure has been applied to moving boundaries in [23].
We will use the inverse Lax—Wendroff procedure in the boundary condition treatment
of Example 7 in the next section to demonstrate its performance.

2.3. Algorithm summary. Now we summarize uniformly accurate DG fast
sweeping methods in the following;:

1. Determine the initial causality arrays by Procedure I in subsection 2.1.

2. Initialize the DG local solver as described in subsection 2.2.4.

3. Perform iterations on nonboundary cells with four alternating direction sweep-
ings. In each sweeping, use the procedure described in subsections 2.2.1, 2.2.2,
and 2.2.3 to update values ¢;;,u;;, and v;; on specific cells whose causality
values are consistent with current sweeping direction (shown in Table 2.1),
and update the causality arrays of their neighboring cells when it is needed.

4. Convergence: if

197 — ¢! L <6,

where ¢§ is a given convergence threshold value, the iteration converges and
stops. H
Remark. The procedure of step 3 indicates that in each sweeping, only the cells
whose causality indicator values are consistent with the current sweeping direction
are candidate cells for which the DG local solver will be applied. By doing this, we
can save a lot of computational costs since we exclude the cells where the correct
characteristic information has not reached in the current sweeping. In step 4 of our
algorithm, we take § = 107! as the threshold value to stop the iterations in all
numerical experiments of this paper. When the convergence is achieved, we actually
observe that the algorithm stops with ¢ = ¢°!4 for all the cases in our numerical
examples, except for the nonuniform mesh case of Example 6.
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3. Numerical examples. In this section, a set of numerical examples will be
presented for solving the Eikonal equations (1.1). Examples include solutions which
have discontinuities in their derivatives, and difficult test cases such as the examples of
shape-from-shading arising in the application area of computer vision. Numerical re-
sults demonstrate a uniform second order accuracy of the proposed method in smooth
regions of the solutions, as well as the linear computational complexity. Numerical
errors are calculated for nonboundary cells in all examples.

From the description of the algorithm in subsection 2.3, we can see that in each
sweeping, only the cells whose causality indicator values are consistent with the cur-
rent sweeping direction are candidate cells for which the DG local solver will be
applied. Hence to measure the computational complexity accurately, we define the
effective sweeping number:

effective sweeping ber 2 the total # of times the DG local solver is executed
1V weepling num r —

the total # of cells excluding the boundary cells

where “the DG local solver is executed” means that the subroutine for solving the
quadratic system in subsection 2.2.2 has been executed no matter whether the current
local system has solutions or not. The effective sweeping number can take noninte-
ger values because many cells are not updated in specific sweeps and hence are not
counted towards the computation of this number. When this number is n, it means
n sweepings, not n x 4 sweepings.

Ezample 1. Q= [-1,1]2, T = {(0,0)}, and

flz,y) = E\/sin2 (zx) + sin? (zy), g(0,0) = —2.
2 2 2
The exact solution is
¢(x,y) = — cos (ga:) — cos (gy) .

To initialize the DG solver, we preassign the values of ¢;;, u;;, and v;; on the
cells in the fixed region [—0.1,0.1]? around I'. The results are listed in Table 3.1. We
can see that only 2 effective sweepings are needed for convergence regardless of the
mesh size, and the error is uniformly second order both in L' and in L> norms. If
we preassign the values of ¢;;, u;;, and v;; on the cells in the region [—h, h)? (h is
the uniform grid size in this example) around I', we observe slightly lower accuracy
orders as shown in Table 3.2. This is due to the degeneracy of the Eikonal equation
for this example (f(0,0) = 0). Similar phenomena were observed in our previous work
[31, 30, 15, 13] when there is singularity at the source point.

TABLE 3.1
Example 1. The values of ¢;j, uij, and vyj are preassigned on the cells in the fived region
[~0.1,0.1]2.

mesh | L' error | order | L™ error | order | eff. swp. number

20 x 20 8.03E-3 - 7.18E-2 - 2.00

40 x 40 1.17E-3 2.78 1.35E-2 2.41 2.00

80 x 80 2.48E-4 2.24 3.22E-3 2.07 2.00

160 x 160 5.62E-5 2.14 7.91E-4 2.02 2.00
320 x 320 1.32E-5 2.09 1.96E-4 2.01 2.00
640 x 640 3.20E-6 2.05 4.89E-5 2.01 2.00
1280 x 1280 7.83E-7 2.03 1.22E-5 2.00 2.00
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TABLE 3.2
Ezample 1. The values of ¢ij, uij, and v;j are preassigned on the cells in the region [—h, h)2.

mesh | L' error | order | L error | order | eff. swp. number

20 x 20 8.03E-3 - 7.18E-2 - 2.00

40 x 40 2.92E-3 1.46 2.80E-2 1.36 2.00

80 x 80 9.62E-4 1.60 1.03E-2 1.44 2.00

160 x 160 2.95E-4 1.71 3.66E-3 1.50 2.00

320 x 320 8.62E-5 1.77 1.25E-3 1.55 2.00

640 x 640 2.44E-5 1.82 4.17E-4 1.59 2.00

1280 x 1280 6.76E-6 1.85 1.35E-4 1.62 2.00
TABLE 3.3

Ezample 2. The point source distance function problem.

mesh | L' error | order | L* error | order | eff. swp. number

20 x 20 5.08E-2 - 2.78E-1 - 2.00

40 x 40 4.22E-3 3.59 5.11E-2 2.44 2.00

80 x 80 3.94E-4 3.42 9.45E-3 2.44 2.00

160 x 160 5.35E-5 2.88 2.03E-3 2.22 2.00

320 x 320 8.91E-6 2.59 4.72E-4 2.11 2.00

640 x 640 1.71E-6 2.38 1.14E-4 2.05 2.00

1280 x 1280 3.65E-7 2.23 2.79E-5 2.03 2.00
TABLE 3.4

Ezxample 3. The distance function from the circle problem. Errors are measured in the smooth
region, which is outside of [—0.1,0.1]2.

mesh | L' error | order | L error | order | eff. swp. number

20 x 20 8.65E-4 - 8.15E-3 - 2.00

40 x 40 2.34E-4 1.89 2.61E-3 1.64 2.00

80 x 80 5.96E-5 1.97 7.16E-4 1.86 2.00

160 x 160 1.50E-5 1.99 1.84E-4 1.96 2.00
320 x 320 3.76E-6 2.00 4.61E-5 1.99 2.00
640 x 640 9.42E-7 2.00 1.15E-5 2.00 2.00
1280 x 1280 2.36E-7 2.00 2.88E-6 2.00 2.00

Ezample 2 (point source distance function problem). Q = [~1,1]%, ' = {(0,0)},
and f(z,y) = 1, g = 0. We preassign values for the boundary cells in the domain
[—0.1,0.1]? based on the exact solution. The results are listed in Table 3.3. We can
again observe that only 2 effective sweepings are needed for convergence regardless of
the mesh size, and the error is settling down to second order both in L' and in L™
norms for refined meshes.

Ezample 3. Q = [-1,1]%, T is a circle with center (0,0) and radius 0.5, and
flz,y)=1,9=0.

To initialize the DG solver, we preassign the values of ¢;;, u;;, and v;; on the
cells whose centers are within the 2h distance from I' (h is the uniform grid size in
this example). The results are listed in Tables 3.4 and 3.5. We observe as before
that only 2 effective sweepings are needed for convergence regardless of the mesh size.
The error is uniformly second order both in L' and in L> norms if we measure it in
smooth regions outside the circle center (see Table 3.4); or we have second order in
L' and first order in L™ if we measure the error in the whole computational domain
(the error in the boundary cells do not need to be included); see Table 3.5.

Ezample 4. Consider Eikonal equation (1.1) with f(z,y) = 1, g = 0. The
computational domain is Q = [—1,1] x [—1,1], and T consists of two circles of equal
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TABLE 3.5
Ezxzample 3. The distance function from the circle problem. FErrors are measured in the whole
TEGION.

mesh | L' error | order | L error | order | eff. swp. number

20 x 20 1.12E-3 - 1.82E-2 - 2.00

40 x 40 2.98E-4 1.90 9.15E-3 0.99 2.00

80 x 80 7.71E-5 1.95 4.57E-3 1.00 2.00

160 x 160 1.97E-5 1.96 2.28E-3 1.00 2.00

320 x 320 5.02E-6 1.97 1.14E-3 1.00 2.00

640 x 640 1.27E-6 1.98 5.70E-4 1.00 2.00

1280 x 1280 3.21E-7 1.99 2.85E-4 1.00 2.00
TABLE 3.6

Ezxample 4. T' consists of two circles. FErrors are measured in the smooth region, which is
outside of [—0.6,—0.4]2, [0.4,0.6]%, and = +y < 0.1.

mesh | L' error | order | L error | order | eff. swp. number

20 x 20 1.35E-3 - 2.17E-2 - 2.79

40 x 40 3.48E-4 1.96 2.53E-3 3.10 3.88

80 x 80 9.21E-5 1.92 7.74E-4 1.71 3.91

160 x 160 2.38E-5 1.95 2.10E-4 1.88 3.92

320 x 320 6.05E-6 1.98 5.63E-5 1.90 3.93

640 x 640 1.52E-6 1.99 1.45E-5 1.95 3.93

1280 x 1280 3.83E-7 1.99 3.70E-6 1.97 3.94
TABLE 3.7

Ezample 4. T' consists of two circles. Errors are measured in the whole region.

mesh | L' error | order | L error | order | eff. swp. number

20 x 20 2.87E-3 - 7.91E-2 - 2.79

40 x 40 6.69E-4 2.10 4.00E-2 0.98 3.88

80 x 80 1.64E-4 2.03 2.01E-2 0.99 3.91

160 x 160 4.12E-5 2.00 1.01E-2 1.00 3.92
320 x 320 1.03E-5 1.99 5.04E-3 1.00 3.93
640 x 640 2.60E-6 1.99 2.52E-3 1.00 3.93
1280 x 1280 6.52E-7 1.99 1.26E-3 1.00 3.94

radius 0.3 with centers located at (—0.5, —0.5) and (0.5,0.5), respectively. The exact
solution is the distance function to T, i.e.,

é(z,y) = min(|\/(z — 0.5)2 + (y — 0.5)2 — 0.3, [\/(z + 0.5)2 + (y + 0.5)2 — 0.3|).

To initialize the DG solver, we preassign the values of ¢;;, u;;, and v;; on the cells
whose centers are within the 2h distance from I' (h is the uniform grid size in this
example). The singular set for the solution is composed of the center of each circle
and the line that is of equal distance to the two circles. All of these singularities
correspond to the intersection of characteristics. This is an interesting test case and
our proposed algorithm converges well; see Tables 3.6 and 3.7. We observe that only
about 4 effective sweepings are needed for convergence regardless of the mesh size.
The error is uniformly second order both in L' and in L> norms if we measure it in
smooth regions excluding the derivative singularities (see Table 3.6); or we have second
order in L' and first order in L> if the error is measured in the whole computational
domain (see Table 3.7).

In Table 3.8, we report the CPU time for computing causality indicators and
arrays, the global CPU time, and their ratios. The regular sweeping numbers are
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TABLE 3.8

Ezample 4. CPU time (unit: seconds) and iteration numbers.

1891

mesh | CPU for causal. info. | Global CPU | percentage | swp. # | eff. swp. #

80 x 80 0.01 0.17 5.88% 16 3.91

160 x 160 0.06 0.67 8.96% 16 3.92
320 x 320 0.31 2.77 11.19% 16 3.93
640 x 640 1.13 11.24 10.05% 16 3.93
1280 x 1280 5.21 45.23 11.52% 16 3.94

Iyd

0.5

y he R

Fic. 3.1. Ezample 4. The pictures of the numerical solution of ¢ on the 160 x 160 mesh. Left:
the three-dimensional plot for ¢; right: the contour plot for ¢.

also listed in Table 3.8. We can see that the computations of causality indicators and
arrays only take about 6% ~ 12% of the global CPU time. The regular sweeping
numbers are 16 for all mesh sizes; hence they are independent of the mesh sizes. The
pictures of the numerical solution on the 160 x 160 mesh are presented in Figure 3.1.
Remark. For the same example in our previous work [13], the DG local solver
cannot provide a solution for all cells, and the first order FD fast sweeping method
is used to provide a solution for some cells near the shocks. By using the uniformly
accurate DG fast sweeping methods proposed in this paper, we can see that the DG
local solver can provide a solution for all cells in this example. This example shows
that our methods in this paper are more robust than the previous version in [13].
Ezample 5 (shape-from-shading I). Consider Eikonal equation (1.1) with

fly) =2/p2(1 — 22)? + 22(1 — y?)2.

The computational domain = [—1,1] x [-1,1]. ¢(x,y) = 0 is prescribed at the
boundary of the square with the additional boundary condition ¢(0,0) = 1. In [7],
high order time-marching DG schemes are used to calculate the solution for this
problem. The exact solution is

p(z,y) = (1 —2*)(1—9?).

To initialize the DG solver, we preassign the values of ¢;j, u;;, and v;; on the cells
whose centers are within 0.1 distance from the boundary of the square and the cells

(3.1)

(3.2)
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TABLE 3.9
Ezxzample 5. Shape-from-shading problem 1, uniform mesh.

mesh | L' error | order | L™ error | order | eff. swp. number

20 x 20 1.22E-3 - 8.29E-3 - 2.00

40 x 40 3.07E-4 1.99 2.12E-3 1.97 2.00

80 x 80 7.74E-5 1.99 5.31E-4 2.00 2.00

160 x 160 1.95E-5 1.99 1.33E-4 2.00 2.00

320 x 320 4.90E-6 1.99 3.32E-5 2.00 2.00

640 x 640 1.23E-6 1.99 8.28E-6 2.00 2.00

1280 x 1280 3.08E-7 2.00 2.07E-6 2.00 2.00
TABLE 3.10

Ezxample 5. Shape-from-shading problem 1, nonuniform mesh. The mesh is obtained by ran-
domly perturbing grid points of the uniform mesh in the range [—0.1h,0.1h] X [—0.1h, 0.1h].

mesh | L! error | order | L™ error | order | eff. swp. number

20 x 20 1.23E-3 - 8.01E-3 - 2.00

40 x 40 3.09E-4 1.99 2.04E-3 1.97 2.00

80 x 80 7.79E-5 1.99 5.11E-4 2.00 2.00
160 x 160 1.96E-5 1.99 1.27E-4 2.01 2.00
320 x 320 4.95E-6 1.99 3.68E-5 1.79 2.95
640 x 640 1.24E-6 1.99 9.26E-6 1.99 2.95
1280 x 1280 3.11E-7 2.00 2.31E-6 2.01 2.95

whose centers are in the domain [~0.1,0.1]2. We perform the computation on both
the uniform meshes and nonuniform meshes. The nonuniform meshes are obtained by
randomly perturbing grid points of the uniform meshes in the range [—0.1h,0.1h] x
[-0.1h,0.1R], where h is the mesh size of a uniform mesh. The results are reported
in Tables 3.9 and 3.10. We can observe that only 2 effective sweepings are needed
for the convergence for uniform meshes regardless of the mesh size. For nonuniform
meshes, the effective sweeping number is settling down to 3 when the mesh is refined.
Uniform second order errors are obtained both in L' and in L° norms.
Ezample 6 (shape-from-shading IT). Consider Eikonal equation (1.1) with

(3.3) f(x,y) = 2m\/[cos(2mx) sin(27y)]2 + [sin(27x) cos(27y)]2.
The computational domain Q = [0,1]x[0,1]. T' = {(1, 1), (3,2), (3, 2), (3, 7), (3%, Hu
99, consisting of five isolated points and the domain boundary. g(, i) =g(3,9) =1,

9(%,3) = g(3,%1) = -1, and g(3,%) = 0. In addition, ¢(z,y) = 0 is prescribed on
09). The solution for thls problem is the shape function, which has the brightness
I(z,y) =1/4/1+ f(x,y)? under vertical lighting. See [17] for details. In [9], high or-
der time-marching WENO schemes are used to calculate the solution for this problem.
The exact solution is

¢(x,y) = sin(2rz) sin(27y).

To initialize the DG solver, we preassign the values of ¢;;, u;;, and v;; on the
cells whose centers are within 0.05 distance from the boundary of the unit square
and the cells which are in the five square boxes with length 0.05 and the centers
{(3,9),2,2),(5,2),3,H),(3,1)}. As for Example 5, we perform the computation
on both the uniform meshes and nonuniform meshes. The nonuniform meshes are
obtained by randomly perturbing grid points of the uniform meshes in the range

[<0.1h,0.1h] x [=0.1h, 0.1h], where h is the mesh size of a uniform mesh. The results
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TABLE 3.11
Ezample 6. Shape-from-shading problem 11, uniform mesh.

mesh | L' error | order | L™ error | order | eff. swp. number

20 x 20 7.60E-3 - 5.35E-2 - 2.81

40 x 40 1.25E-3 2.61 9.73E-3 2.46 3.82

80 x 80 2.86E-4 2.13 2.40E-3 2.02 3.81

160 x 160 6.78E-5 2.08 6.03E-4 2.00 3.81

320 x 320 1.64E-5 2.05 1.51E-4 2.00 3.80

640 x 640 4.02E-6 2.03 3.77E-5 2.00 3.80

1280 x 1280 9.95E-7 2.02 9.44E-6 2.00 3.80
TABLE 3.12

Shape-from-shading problem 11, Example 6, non-uniform mesh. The mesh is obtained by ran-
domly perturbing grid points of the uniform mesh in the range [—0.1h,0.1h] X [—0.1h, 0.1h].

mesh | L' error | order | L error | order | eff. swp. number

20 x 20 8.81E-3 - 1.22E-1 - 2.82

40 x 40 1.37E-3 2.68 2.31E-2 2.39 5.82

80 x 80 3.46E-4 1.99 9.76E-3 1.25 3.81

160 x 160 8.17E-5 2.08 2.26E-3 2.11 6.81

320 x 320 1.75E-5 2.22 5.39E-4 2.07 3.77

640 x 640 4.38E-6 2.00 1.82E-4 1.57 4.79

1280 x 1280 1.01E-6 2.12 2.28E-5 2.99 4.81
TABLE 3.13

Ezample 6, uniform mesh. CPU time (Unit: seconds) and iteration numbers.

mesh | CPU for causal. info. | Global CPU | percentage | swp. # | eff. swp. #

40 x 40 0.01 0.22 4.55% 16 3.82

80 x 80 0.07 0.87 8.05% 16 3.81
160 x 160 0.18 3.40 5.29% 16 3.81
320 x 320 0.79 13.62 5.80% 16 3.80
640 x 640 3.01 54.46 5.53% 16 3.80
1280 x 1280 11.74 217.59 5.40% 16 3.80

are reported in Tables 3.11 and 3.12. We can observe that only about 3.8 effective
sweepings are needed for the convergence for uniform meshes regardless of the mesh
size. For nonuniform meshes, the effective sweeping number is settling down to 4.8
when the mesh is refined. We observe a uniform second order accuracy for both the
L' and the L* norms.

In Table 3.13, we report the CPU time for computing causality indicators and
arrays, the global CPU time, and their ratios. The regular sweeping numbers are
also listed in Table 3.13. We can see that the computations of causality indicators
and arrays only take about 5% ~ 8% of the global CPU time. The regular sweeping
numbers are 16 for all mesh sizes; hence they are independent of the mesh sizes. The
pictures of the numerical solution on the 160 x 160 mesh are presented in Figure 3.2.

Remark. For the same example, the DG local solver in [13] cannot provide a
solution for all cells, and the first order FD fast sweeping method is used to provide
a solution for some cells; hence even if this problem has a smooth solution, only
first order accuracy is obtained in L® norm. By using the uniformly accurate DG
fast sweeping methods proposed in this paper, we show that the DG local solver can
provide a solution for all cells, and a second order accuracy is obtained in L° norm in
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Fia. 3.2. Ezample 6. The pictures of the numerical solution of ¢ on the 160 x 160 mesh. Left:
the three-dimensional plot for ¢; right: the contour plot for ¢.

TABLE 3.14
Ezample 7. Shape-from-shading problem III. A test for the inverse Lax—Wendroff boundary
treatment.

mesh | L' error | order | L error | order | swp. # | eff. swp. #

20 x 20 5.40E-4 - 2.97E-3 - 8 2.00

40 x 40 1.54E-4 1.81 7.95E-4 1.90 8 2.00

80 x 80 4.11E-5 1.90 2.10E-4 1.92 8 2.00

160 x 160 1.07E-5 1.95 5.51E-5 1.93 8 2.00
320 x 320 2.72E-6 1.97 1.43E-5 1.94 8 2.00
640 x 640 6.86E-7 1.99 3.71E-6 1.95 8 2.00
1280 x 1280 1.72E-7 1.99 9.57E-7 1.95 8 2.00

this example. Again, this example shows the improvement of the proposed algorithm
over our previous work in [13].
Ezample 7 (shape-from-shading IIT). Consider Eikonal equation (1.1) with

(3.4) Fla,y) = V(1= [2)? + (1 - Jy])>.

The computational domain = [—1,1] x [-1,1]. ¢(x,y) = 0 is prescribed at the
boundary of the square. Like the last two examples, this is also a typical shape-
from-shading problem [17] to test the high order numerical methods for Hamilton—
Jacobi equations (e.g., [7, 28, 30, 13, 26]). We use this example to test the inverse
Lax—Wendroff procedure for the boundary cells. Although the exact solution ¢ =
(I —1z|)(1 = |y|) is known, we do not use it to provide boundary values. The values
of ¢ij, wij, and v;; on the boundary cells whose centers are within the A distance
from I' are generated by the inverse Lax—Wendroff procedure. The numerical results
of convergence study are reported in Table 3.14. We can see that the second order
accuracy is obtained, and 8 regular sweepings and 2 effective sweepings are needed
for the convergence regardless of the mesh sizes.
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Appendix. Description for y-direction cases in subsection 2.2.3. In
the y-direction, if (v;; > 0 .and. j < M): this indicates that the information in the
cell (i, j) is propagating to the top cell (i, j+1), and it is possible that we need to
update flagy(i,j+1). If the cell (i, j4+1) is a boundary cell, then we do not need to
update flagy(i,j+1). Otherwise, if the cell (i, j+1) happens to be at the boundary of
the computational domain, we will update flagy(i,j+1) = 0. If the cell (i, j+1) is an
interior cell, then there is causality information at its top neighboring cell (i, j+2)
which we need to consider. Denote dj, £ Yi+1 — Y, di £ Yit2 = Yjt+1s

if ((the values on cell (i, j+2) are from DG solver)
and.gij +dy - fij41 < Gijr2 +di - fij41), then
flagy(i,j+1) = 0;

otherwise, we do not update flagy(i,j+1).

If (v;;j; < 0 .and. j > 1): this indicates that the information in the cell (i, j) is
propagating to the bottom cell (i, j-1), and it is possible that we need to update
flagy(i,j-1). If the cell (i, j-1) is a boundary cell, then we do not need to update
flagy(i,j-1). Otherwise, if the cell (i, j-1) happens to be at the boundary of the com-
putational domain, we will update flagy(i,j-1) = 1. If the cell (i, j-1) is an interior
cell, then there is causality information at its bottom neighboring cell (i, j-2) which
we need to consider. Denote dy, = yj_1 — yj_2, dt = y; — Yj—1;

if ((the values on cell (i, j-2) are from DG solver)
and.¢ij +di - fij—1 < ¢ij—2 +dp- fij—1), then
flagy(i.j-1) = L;

otherwise, we do not update flagy(i,j-1).
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