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ABSTRACT
The weighted essentially nonoscillatory (WENO) schemes, based on the successful essen-

tially nonoscillatory (ENO) schemes with additional advantages, are a popular class of

high-order accurate numerical methods for hyperbolic partial differential equations

(PDEs) and other convection-dominated problems. The main advantage of such schemes

is their capability to achieve arbitrarily high-order formal accuracy in smooth regions

while maintaining stable, nonoscillatory and sharp discontinuity transitions. The schemes

are thus especially suitable for problems containing both strong discontinuities and com-

plex smooth solution structures. In this chapter, we review the basic formulation of ENO

and WENO schemes, outline the main ideas in constructing the schemes and discuss sev-

eral of recent developments in using the schemes to solve hyperbolic type PDE problems.
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1 INTRODUCTION

High-order accuracy numerical methods are especially efficient for solving

partial differential equations (PDEs) which contain complex solution struc-

tures. Here we refer to high-order accurate numerical methods by those with

an order of accuracy at least three, measured by local truncation errors when

the solution is smooth. High-order numerical schemes have been applied

extensively in computational fluid dynamics for solving convection-

dominated problems with both discontinuities/sharp gradient regions and

complicated smooth structures, for example, the Rayleigh–Taylor instability
simulations (Remacle et al., 2003; Shi et al., 2003; Zhang et al., 2003,

2006b), the shock vortex interactions (Grasso and Pirozzoli, 2001; Zhang

et al., 2005, 2006a, 2009) and direct simulation of compressible turbulence

(Taylor et al., 2007). Its resolution power over the lower-order schemes was

verified in these applications.

For hyperbolic PDEs or convection-dominated problems, their solutions

can develop singularities such as discontinuities, sharp gradients, discontinu-

ous derivatives, etc. For problems containing both singularities and comp-

licated smooth solution structures, schemes with uniform high order of

accuracy in smooth regions of the solution which can also resolve singulari-

ties in an accurate and essentially nonoscillatory (ENO) fashion are desirable,

since a straightforward high-order approximation for the nonsmooth region of

a solution will generate instability called Gibbs phenomena. A popular class

of such schemes is the class of weighted essentially nonoscillatory (WENO)

schemes. WENO schemes are designed based on the successful ENO schemes

(Harten et al., 1987; Shu and Osher, 1988, 1989) with additional advantages.

The first WENO scheme was constructed by Liu, Osher and Chan in their pio-

neering paper (Liu et al., 1994) for a third-order finite volume version. Jiang

and Shu (1996) constructed arbitrary-order accurate finite difference WENO

schemes for efficiently computing multidimensional problems, with a general

framework for the design of the smoothness indicators and nonlinear weights.

The fifth-order finite difference WENO scheme in Jiang and Shu (1996) has

been used in most applications.

The main idea of the WENO schemes is to form a weighted combination

of several local reconstructions based on different stencils (usually referred

to as small stencils) and use it as the final WENO reconstruction. The combi-

nation coefficients (also called nonlinear weights) depend on the linear

weights, often chosen to increase the order of accuracy over that on each

small stencil, and on the smoothness indicators which measure the smoothness

of the reconstructed function in the relevant small stencils. Hence an adaptive

approximation or reconstruction procedure is actually the essential part of the

WENO schemes.

In this article, we review the basic formulation of ENO andWENO schemes,

describe the main ideas in constructing the finite volume and finite difference

104 Handbook of Numerical Analysis



versions of the schemes and emphasize several of recent developments in using

the schemes to solve hyperbolic type PDE problems. The organization of this

paper is as follows. ENO and WENO approximation or reconstruction proce-

dure is explained in Section 2. In Section 3, we describe the finite volume and

finite difference ENO/WENO schemes for solving hyperbolic conservation

laws. Several recent developments are discussed in Section 4.

2 ENO AND WENO APPROXIMATIONS

The essential part of the ENO and WENO schemes is an adaptive approxima-

tion or reconstruction procedure. In this section, we describe the basic idea of

this procedure using the third-order ENO and the fifth-order WENO approx-

imations as examples.

2.1 Reconstruction

We first explain the reconstruction procedure which is the building block of all

ENO and WENO approximations. For simplicity of the explanation, a uniform

mesh ⋯ < x0 < x1 < x2 < ⋯ is used and the mesh size Dx ¼ xi+1 � xi is a

constant. The half-grid points xi+ 1=2¼
1

2
ðxi + xi+ 1Þ, and the domain is parti-

tioned into computational cells Ii ¼ (xi�1/2, xi+1/2), i ¼…, 0, 1, 2,…. We would

like to emphasize that the uniform mesh assumption is not necessary for the

reconstruction procedure here, although it may be needed for specific cases

(for example, a uniform mesh or a smoothly varying mesh should be used in

constructing a high-order conservative finite difference ENO or WENO

scheme). Given the cell average values

�ui¼ 1

Dx

Z xi+ 1=2

xi�1=2
uðxÞdx (1)

of a function u(x) over the cells Ii for all i, we would like to find an approxi-

mation of u(x) at a given point, for example, at the half-grid points xi+1/2.
Lagrange interpolation technique can be applied here. Define the primitive

function of u(x) by

UðxÞ¼
Z x

x�1=2
uðxÞdx, (2)

where the lower limit x�1/2 is irrelevant and can be replaced by any other half-

grid point, then the point values of the primitive function U(xi+1/2) at all half-
grid points can be obtained from the cell average values as the following

Uðxi+ 1=2Þ¼
Z xi+ 1=2

x�1=2
uðxÞdx¼

Xi

l¼0
Dx�ul: (3)
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Hence we can construct interpolation polynomials for U(x), and approximate

u(x) by directly taking the derivative of the interpolation polynomials. Differ-

ent stencils will lead to different approximations. For example, if we would

like to find a polynomial p1(x) of degree at most two which reconstructs

u(x) on the stencil S1 ¼ {Ii�2, Ii�1, Ii}, namely,

ð�p1Þj¼
1

Dx

Z xj+ 1=2

xj�1=2
p1ðxÞdx¼ �uj, j¼ i�2, i�1, i, (4)

a polynomial P1(x) of degree at most three will be constructed which interpolates

the function U(x) at the four half-grid points xj+1/2, j ¼ i � 3, i � 2, i � 1, i and
let p1ðxÞ¼P01ðxÞ. The condition (4) can be easily verified for such p1(x).
Hence u(xi+1/2) is approximated by p1(xi+1/2). Denoting the approximation by

u
ð1Þ
i+ 1=2≜p1ðxi+ 1=2Þ, we have an explicit formula for it:

u
ð1Þ
i+ 1=2¼

1

3
�ui�2�7

6
�ui�1 +

11

6
�ui: (5)

This is a third-order accuracy approximation

u
ð1Þ
i + 1=2�uðxi + 1=2Þ¼OðDx3Þ, (6)

if the function u(x) is smooth in the stencil S1. Similarly, if a different stencil

S2 ¼ {Ii�1, Ii, Ii+1} is chosen, we could find a different reconstruction polyno-

mial p2(x) of degree at most two to satisfy ð�p2Þj¼ �uj for j ¼ i � 1, i, i + 1.

Then a different third-order accuracy approximation u
ð2Þ
i+ 1=2≜p2ðxi+ 1=2Þ can

be obtained if u(x) is smooth in the stencil S2. The formula is

u
ð2Þ
i+ 1=2¼�

1

6
�ui�1 +

5

6
�ui +

1

3
�ui+ 1: (7)

The third choice of a approximation stencil to include the “target” cell Ii is
S3 ¼ {Ii, Ii+1, Ii+2}. The third reconstruction polynomial p3(x) of degree at

most two to satisfy ð�p3Þj¼ �uj for j ¼ i, i + 1, i + 2 is constructed and gives

another approximation u
ð3Þ
i+ 1=2≜p3ðxi+ 1=2Þ. Again the approximation has third-

order accuracy if u(x) is smooth in the stencil S3. The explicit formula of this

approximation is

u
ð3Þ
i + 1=2¼

1

3
�ui +

5

6
�ui+ 1�1

6
�ui+ 2: (8)

Remark 1. Another method of reconstruction is to directly find the polynomial

whose averages on the stencil’s cells agree with the given values by solving

the resulting linear system. This method is convenient to be applied in re-

constructions on unstructured meshes. Techniques such as using a closer

to orthogonal basis and least square methods were developed to improve
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the condition numbers of the linear system for reconstructions on high

dimensional unstructured meshes. These two approaches result in the same

reconstruction and hence the same error. For details, see Ciarlet and

Raviart (1972), Abgrall et al. (1999), Abgrall and Sonar (1997) and Zhang

and Shu (2003).

2.2 ENO Approximation

For hyperbolic PDEs or convection-dominated problems, solutions often have

discontinuities (or sharp gradients). For such solutions, a fixed stencil approx-

imation may not be adequate near discontinuities (or sharp gradient locations).

Oscillations happen when the stencils contain the discontinuities (or sharp

gradients).

The basic idea of ENO approximation is to adaptively avoid including the

discontinuous cell (i.e., the cell on which the solution is discontinuous) in the

stencil, if possible (Harten et al., 1987; Shu and Osher, 1988). For the recon-

structions in Section 2.1, the ENO approximation is to choose one of the three

approximations u
ð1Þ
i + 1=2, u

ð2Þ
i+ 1=2 and u

ð3Þ
i+ 1=2 given by (5), (7) and (8), respectively,

based on the three stencils S1, S2 and S3. The selection criterion is to compare

the local smoothness of the reconstruction polynomials, measured by divided

differences. Here we describe the procedure to construct a third-order ENO

approximation. The job is to find a stencil which must include xi�1/2 and

xi+1/2, such that the primitive function U(x) (hence the corresponding recon-

struction polynomial) is the “smoothest” in this stencil comparing with other

possible stencils. The divided differences of U(x) are used. We emphasize here

that in the implementation of the procedure, the divided differences of U(x) can
be expressed completely by the divided differences of the given cell averages

�u, without any need to reference U(x) (Harten et al., 1987; Shu and Osher,

1988, 1989). Thus in cell Ii we start with a two point stencil S
�
2ðiÞ¼

fxi�1=2,xi+ 1=2g for U(x), which is equivalent to a one cell stencil �S1ðiÞ¼ fIig
for �v. Next we have two choices to expand the stencil by adding either the left

neighbour xi�3/2 or the right neighbour xi+3/2. This is decided by comparing

the absolute values of two relevant divided differences U[xi�3/2, xi�1/2, xi+1/2]
and U[xi�1/2, xi+1/2, xi+3/2], and a smaller one implies that the function is

“smoother” in that stencil. So, if

jU½xi�3=2,xi�1=2,xi+ 1=2�j< jU½xi�1=2,xi + 1=2,xi + 3=2�j, (9)

the three-point stencil will be taken as

S
�
3
ðiÞ¼ fxi�3=2,xi�1=2,xi+ 1=2g; (10)

otherwise, we will take the stencil

S
�
3
ðiÞ¼ fxi�1=2,xi + 1=2,xi+ 3=2g: (11)
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This procedure can be repeated to add the next grid point to the stencil,

according to the smaller of the absolute values of two relevant divided differ-

ences. For a third-order approximation, with one more grid point we will obtain

the desired stencil, and one of the approximations u
ð1Þ
i+ 1=2, u

ð2Þ
i+ 1=2 or u

ð3Þ
i+ 1=2 will be

the final ENO approximation. Of course we can continue this procedure to add

more grid points to the stencil for a higher-order accuracy ENO approximation.

2.3 WENO Approximation

WENO approximation is based on ENO, with additional advantages. For

example, WENO approximation has higher-order accuracy than ENO approx-

imation on the same stencils used in forming the reconstructions. WENO

approximation results in more smooth numerical flux than ENO one when it

is applied in solving a hyperbolic PDE.

The basic idea of WENO approximation is the following: instead of using

only one of the candidate stencils to form the reconstruction, one uses a con-

vex combination of all of them. If all three stencils S1, S2 and S3 of a third-

order ENO approximation are combined to form a large stencil S ¼ {Ii�2,
Ii�1, Ii, Ii+1, Ii+2}, a reconstruction polynomial p(x) of degree at most four is

obtained. p(x) satisfies �pj¼ �uj, for j ¼ i � 2, i � 1, i, i + 1, i + 2 and gives

an approximation ui+ 1=2≜pðxi+ 1=2Þ. The explicit formula is

ui+ 1=2¼ 1

30
�ui�2�13

60
�ui�1 +

47

60
�ui +

9

20
�ui+ 1� 1

20
�ui + 2: (12)

Notice that this is a fifth-order accurate approximation if the function u(x) is
smooth in the large stencil S. Further investigation on the fifth-order approxi-

mation ui+1/2 in (12) and the three third-order approximations u
ð1Þ
i+ 1=2, u

ð2Þ
i+ 1=2

and u
ð3Þ
i+ 1=2, defined by (5), (7) and (8) reveals the following linear combina-

tion relationship:

ui+ 1=2¼ g1u
ð1Þ
i + 1=2 + g2u

ð2Þ
i+ 1=2 + g3u

ð3Þ
i+ 1=2, (13)

where the constants g1, g2 and g3, satisfying g1 + g2 + g3 ¼ 1, are called the

linear weights. In this case they take values

g1¼
1

10
, g2¼

3

5
, g3¼

3

10
: (14)

To deal with the situation that u(x) is not smooth, WENO approximation uses

the “nonlinear weights” technique to adaptively avoid including the discontinu-

ous cell in the stencil. It chooses the final approximation as a convex combina-

tion of the three third-order approximations u
ð1Þ
i+ 1=2, u

ð2Þ
i+ 1=2 and u

ð3Þ
i+ 1=2:

ui+ 1=2¼w1u
ð1Þ
i+ 1=2 +w2u

ð2Þ
i + 1=2 +w3u

ð3Þ
i + 1=2, (15)
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where wj � 0, and w1 + w2 + w3 ¼ 1. The nonlinear weight wj is determined

by the “smoothness indicator” bj, which measures the relative smoothness of

the function u(x) in the stencil Sj. A larger bj indicates that the function u(x) is
less smooth in the stencil Sj. In most of the WENO papers, the smoothness

indicator bj is chosen as in Jiang and Shu (1996),

bj¼
Xk
l¼1

Dx2l�1
Z xi + 1=2

xi�1=2

dl

dxl
pjðxÞ

� �2

dx, (16)

where k is the polynomial degree of pj(x) (here, k ¼ 2). This is a scaled sum of

the square L2 norms of all the derivatives of the relevant reconstruction poly-

nomial pj(x) in the relevant cell Ii, with the scaling factor Dx2l�1 to make the

final explicit formulas for the smoothness indicators independent on the grid

size Dx. In this example, the explicit formulas of the smoothness indicators

are the following quadratic functions of the cell average values of u(x) in

the relevant stencils:

b1 ¼
13

12
ð�ui�2�2�ui�1 + �uiÞ2 + 1

4
ð�ui�2�4�ui�1 + 3�uiÞ2,

b2 ¼
13

12
ð�ui�1�2�ui + �ui+ 1Þ2 + 1

4
ð�ui�1� �ui+ 1Þ2,

b3 ¼
13

12
ð�ui�2�ui+ 1 + �ui+ 2Þ2 + 1

4
ð3�ui�4�ui+ 1 + �ui + 2Þ2:

(17)

With these smoothness indicators, the nonlinear weights are defined as

wj¼ aj
a1 + a2 + a3

, aj¼
gj

ðE+ bjÞ2
, j¼ 1,2,3: (18)

Here E is a small positive number used to avoid the denominator becoming

zero and is typically chosen to be E ¼ 10�6 in computations. It is verified

in Jiang and Shu (1996) that with such nonlinear weights, the WENO approx-

imations (15) is fifth-order accurate if the function u(x) is smooth in the large

stencil S. If u(x) is not smooth in a stencil Sj but is smooth in at least one of

the other two stencils, the WENO approximations would guarantee a nonos-

cillatory result since the contribution from any stencil containing the discon-

tinuity of u(x) has an essentially zero weight.

Remark 2. There may be situations in which all small stencils contain the

discontinuity. For example, there may be a discontinuity point in the cell Ii.
It turns out that this seemingly difficult case is actually not problematic in

ENO or WENO approximations, because the reconstruction polynomials are

all essentially monotone in Ii (Harten et al., 1986).
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3 ENO AND WENO SCHEMES FOR HYPERBOLIC
CONSERVATION LAWS

In this section, we describe the finite volume and finite difference ENO and

WENO schemes for solving hyperbolic conservation laws. First the simple

one-dimensional scalar equation

ut + f ðuÞx¼ 0 (19)

is used to show the ideas of constructing the schemes.

3.1 Finite Volume Schemes

In finite volume schemes, the integral form of the conservation law (19)

d�uiðtÞ
dt

+
1

Dxi
f ðui+ 1=2Þ� f ðui�1=2Þ
� �¼ 0 (20)

is considered. Here �ui¼ 1

Dxi

Z
Ii

uðx, tÞdx is the spatial cell average of the solu-

tion u(x, t) in the cell Ii. For linear stability of the schemes, upwinding prop-

erty (i.e. numerical schemes should propagate solution information in the

same characteristic direction as that of a hyperbolic PDE) is required. We

replace f(ui+1/2) by f̂ ðu�i+ 1=2,u +
i+ 1=2Þ, where f̂ ða,bÞ is a monotone numerical

flux satisfying the following conditions: (1) f̂ ða,bÞ is nondecreasing in its first

argument and nonincreasing in its second argument; (2) f̂ ða,bÞ is consistent
with the physical flux f(u), i.e., f̂ ðu,uÞ¼ f ðuÞ; (3) f̂ ða,bÞ is Lipschitz continu-
ous with respect to both arguments. Some examples of monotone fluxes

include the Godunov flux

f̂ ða,bÞ¼ mina�x�b f ðuÞ if a� b,
maxb�x�a f ðuÞ if a> b;

�
(21)

the Engquist–Osher flux

f̂ ða,bÞ¼
Z a

0

maxð f 0 ðuÞ,0Þdu+
Z b

0

minð f 0 ðuÞ,0Þdu+ f ð0Þ; (22)

and the Lax–Friedrichs flux

f̂ ða,bÞ¼ 1

2
½ f ðaÞ+ f ðbÞ�aðb�aÞ�, (23)

where a¼ maxuj f 0 ðuÞj is a constant and the maximum is taken over the relevant

range of u. u�i+ 1=2 and u +
i+ 1=2 are ENO/WENO approximations based on cell

average values in stencils one cell biased to the left and one cell biased to the

right, respectively. For a third-order ENO or a fifth-order WENO scheme, the
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approximation u�i + 1=2 uses cell average values in cells {Ii�2, Ii�1, Ii, Ii+1, Ii+2},
while the approximation u+

i+ 1=2 uses those in cells {Ii�1, Ii, Ii+1, Ii+2, Ii+3}.
Section 2 gives the detailed procedure for these ENO/WENO reconstructions.

With a monotone numerical flux and ENO/WENO reconstructions, the

integral form (20) can be written as a method-of-lines ordinary differential

equation (ODE) system

d�uiðtÞ
dt

¼� 1

Dxi
f̂ ðu�i+ 1=2,u +

i+ 1=2Þ� f̂ ðu�i�1=2,u+
i�1=2Þ

h i
: (24)

The ODE system can be discretized by a high-order total variation diminish-

ing (TVD) Runge–Kutta time discretization method, also known as the

strong stability preserving (SSP) method (Gottlieb et al., 2001; Shu and

Osher, 1988). For example, the most popular TVD Runge–Kutta method is

the third-order accurate one given in Shu and Osher (1988). Other time dis-

cretization methods may also be applied. For example, the method which

uses a Lax–Wendroff procedure to convert all time derivatives into spatial

derivatives and discretizes all the spatial derivatives to the correct order of

accuracy, e.g., see Harten et al. (1987), Titarev and Toro (2005) and Qiu

and Shu (2003).

3.2 Finite Difference Schemes

Finite difference schemes use point values {ui} of the numerical solution to

approximate the PDE directly. A finite difference scheme for hyperbolic con-

servation laws is required to be in conservation form. For Eq. (19), it is

duiðtÞ
dt

+
1

Dx
f̂ i + 1=2� f̂ i�1=2

� �
¼ 0, (25)

where f̂ is the numerical flux. f̂ i+ 1=2¼ f̂ ðui�p,…,ui+ qÞ, and it is consistent

with the physical flux f̂ ðu,…,uÞ¼ f ðuÞ and is Lipschitz continuous with

respect to all its arguments. The scheme is r-th order accurate if

1

Dx
f̂ i + 1=2� f̂ i�1=2

� �
¼ f ðuÞxjx¼xi +OðDxrÞ, (26)

when u(x) is smooth in the stencil.

It was found in Shu and Osher (1989) that one can directly use the same

ENO/WENO reconstruction procedure in a finite volume scheme to compute

the numerical flux f̂ i+ 1=2. By defining the cell averages �hi of a function h(x) to
be �hi≜ f ðuiÞ, we apply the high-order accuracy ENO/WENO approximation

in Section 2 to compute the point values h(xi+1/2). Then the numerical flux

is obtained

f̂ i+ 1=2¼ hðxi+ 1=2Þ: (27)
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For the purpose of linear stability (upwinding), a flux splitting is per-

formed, i.e.

f ðuÞ¼ f +ðuÞ+ f�ðuÞ, (28)

where f +(u) and f�(u) satisfy
d

du
f +ðuÞ� 0,

d

du
f�ðuÞ� 0. Upwinding requires

that the approximation f̂
+

i + 1=2 for f +(ui+1/2) uses a biased stencil with one

more point to the left, and f̂
�
i+ 1=2 for f�(ui+1/2) uses a biased stencil with

one more point to the right. A very popular flux splitting is the Lax–Friedrichs
splitting

f +ðuÞ¼ 1

2
ðf ðuÞ+ auÞ, f�ðuÞ¼ 1

2
ðf ðuÞ�auÞ, (29)

where a¼ maxuj f 0 ðuÞj. Other flux splittings can also be used (Jiang and Shu,

1996). Using the high-order accuracy ENO/WENO approximation to obtain

f̂
+

i + 1=2 and f̂
�
i+ 1=2, we have the final numerical flux

f̂ i + 1=2¼ f̂
+

i+ 1=2 + f̂
�
i+ 1=2: (30)

The resulting ODE system (25) can again be evolved by a high-order time

discretization scheme, for example, the third-order accurate TVD Runge–
Kutta method.

3.3 Remarks on Multidimensional Problems and Systems

In this section, we make several remarks about using ENO/WENO schemes in

solving multidimensional problems and PDE systems. A high-order finite dif-

ference scheme for solving a multidimensional problem can be performed

dimension by dimension directly on a uniform Cartesian or a smooth curvilin-

ear mesh. Its computational cost is exactly the same as in the one-dimensional

case per point per direction. However, for nonuniform and unstructured

meshes, high-order finite difference scheme can not be applied and a finite vol-

ume scheme has to be used. A high-order finite volume scheme is generally

more expensive than a finite difference scheme of the same order of accuracy

if the same mesh and the same reconstruction procedure are used, since even

on a Cartesian mesh, the direct dimension by dimension ENO/WENO recon-

struction can not be performed for a nonlinear hyperbolic conservation law.

For example, in two dimensions, a finite volume scheme with accuracy order

higher than two is two to five times as expensive as a finite difference one,

depending on the specific coding and computer type. This discrepancy in cost

is even bigger for higher dimension problems. A detailed comparison of finite

volume and finite difference schemes for solving multidimensional problems

in the context of ENO approximations can be found in Casper et al. (1994).
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For systems of hyperbolic conservation laws, the ENO/WENO schemes

have the same structure as those for the scalar cases. A monotone flux is

replaced by an exact or approximate Riemann solver (Toro, 2009). The

ENO/WENO reconstruction can be performed either componentwise or in

local characteristic directions. Usually, componentwise reconstruction pro-

duces satisfactory results for schemes up to third-order accuracy, while char-

acteristic reconstruction produces better nonoscillatory results for higher-

order accuracy, albeit with an increased computational cost. Details about

the local characteristic decomposition procedure can be found in, e.g.,

Harten et al. (1987), Shu and Osher (1988) and Shu et al. (1992).

4 SELECTED TOPICS OF RECENT DEVELOPMENTS

In this section, we discuss a few selected topics of recent developments in using

ENO/WENO schemes to solve hyperbolic or convection–diffusion problems.

4.1 Unstructured Meshes

While ENO/WENO schemes on structured (either Cartesian or smooth

curvilinear) meshes are quite mature, the development of simple and robust

ENO/WENO schemes on unstructured meshes (e.g. arbitrary triangular or

tetrahedral meshes) for dealing with complex domain geometries is less

advanced. The finite volume approach must be used to design ENO/WENO

schemes on unstructured meshes for solving hyperbolic conservation laws.

We use the two-dimensional conservation law

@u

@t
+
@f ðuÞ
@x

+
@gðuÞ
@y

¼ 0 (31)

as an example, and the computational control volumes are triangles {△i}. The

semidiscrete finite volume scheme of (31) is formulated as

d�uiðtÞ
dt

+
1

j△ij
Z
@△i

F � ndS¼ 0 (32)

where the cell average �uiðtÞ¼ 1

j△ij
Z
△i

udxdy, F ¼ ( f, g)T, and n is the outward

unit normal of the triangle boundary @△i. In (32), the line integral is discre-

tized by a q-point Gaussian quadrature formula,

Z
@△i

F � nds�
X3
k¼1

Sk
Xq
j¼1

w
�
j F u G

ðkÞ
j , t

� �� �
� nk (33)

where Sk is the length of the k-th side of @△i, G
ðkÞ
j and w

�
j are the Gaussian

quadrature points and weights, respectively, and F u G
ðkÞ
j , t

� �� �
� nk is
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approximated by a numerical flux. For example, if the Lax–Friedrichs flux is

used, then we have

F u G
ðkÞ
j , t

� �� �
� nk� 1

2
F u� G

ðkÞ
j , t

� �� �
+F u+ G

ðkÞ
j , t

� �� �� �h

� nk�a u + G
ðkÞ
j , t

� �
�u� G

ðkÞ
j , t

� �� �i
,

(34)

where a is taken as an upper bound for the magnitude of the eigenvalues of

the Jacobian in the nk direction, and u� and u+ are the values of u inside

the triangle and outside the triangle (inside the neighbouring triangle) at the

Gaussian point. q is determined by the order of accuracy of the schemes.

For example, if a third-order finite volume scheme is designed, then the

two-point Gaussian quadrature q ¼ 2 is used. For the line with endpoints

P1 and P2, the Gaussian quadrature points are G1 ¼ cP1 + (1 � c)P2, G2 ¼
cP2 + (1 � c)P1, where c¼ 1

2
+

ffiffiffi
3

p

6
; and the Gaussian quadrature weights

are w
�
1¼w

�
2¼ 1

2
.

The next key step is to build a high-order ENO/WENO reconstruction

for the point values at the Gaussian quadrature points. About the development

of high-order ENO reconstructions on unstructured meshes, the reader is

referred to Abgrall (1994), Abgrall and Sonar (1997) and Augoula and

Abgrall (2000). For WENO reconstructions, the big stencil S consisting of

triangles is a union of small stencils {Sm : m ¼ 1, 2, …, N}. Cell average
values of u in S are used to construct a polynomial p(x, y), which will have

the same cell average as u on the target cell △0 (i.e., the control volume cell).

WENO reconstructions need to obtain a linear combination of reconstructions

on small stencils. The reconstruction values at the Gaussian points should

satisfy

p xG,yG
� �¼XN

m¼1
gmpm xG,yG

� �
, (35)

where (xG, yG) is a Gaussian point, pm is a reconstruction polynomial on a

small stencil Sm, and gm is the linear weight. Based on (35), nonlinear WENO

reconstruction values at the Gaussian points are

pweno xG,yG
� �¼XN

m¼1
ompm xG,yG

� �
, (36)

where om is a nonlinear WENO weight defined as

om¼ om
�

XN
m¼1

o�m

,
o�m¼ gm

ðE+ ISmÞ2
: (37)
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As that for the WENO reconstructions on structured meshes, ISm is the

smoothness indicator for the m-th reconstruction polynomial pm(x, y) asso-

ciated with the m-th small stencil Sm, and E is a small positive number to avoid

the denominator to become 0. The smoothness indicator measures how

smooth the function pm is on the target cell △0: the smaller the smoothness

indicator, the smoother the function pm is on △0. For two-dimensional pro-

blems, it is defined as

ISm¼
X

1�jaj�k

Z
△0

j△0jjaj�1ðDapmðx,yÞÞ2dxdy, (38)

where k is the degree of polynomial pm, a is a multiindex and D is the deriv-

ative operator. For the definition of the smoothness indicator for three-

dimensional problems, the reader is referred to Zhang and Shu (2009).

There are two types of WENO reconstructions on unstructured meshes in

the literature. The major difference between them is the different method to

construct small stencils and find linear weights. The first type (type I) recon-

struction has an order of accuracy not higher than that of the reconstruction on

each small stencil. This is similar as ENO schemes. For this type of WENO

reconstructions, the nonlinear weights do not contribute towards the increase

of the order of accuracy, and they are designed purely for the purpose of non-

linear stability, or to avoid spurious oscillations. Because type I WENO

schemes just need to choose the linear weights as arbitrary positive numbers

for better linear stability (e.g. the centred small stencil is assigned a larger lin-

ear weight than the others), they are easier to construct than the type II

WENO schemes discussed in the following paragraph. For Type I WENO

reconstructions, see e.g., Friedrichs (1998) and Titarev et al. (2010) for two-

dimensional triangulations and Dumbser and K€aser (2007) and Dumbser

et al. (2007) for three-dimensional triangulations.

The second type (type II) consists of WENO schemes whose order of

accuracy is higher than that of the reconstruction on each small stencil. For

example, the third-order WENO scheme on two-dimensional triangular

meshes in Hu and Shu (1999) is based on second-order accuracy linear poly-

nomial reconstructions on small stencils, and the fourth-order WENO scheme

in Hu and Shu (1999) is based on third-order accuracy quadratic polynomial

reconstructions on small stencils. For similar WENO schemes on two-

dimensional triangular meshes for solving Hamilton–Jacobi equations, we

refer to see Zhang and Shu (2003) and Levy et al. (2006) and for WENO

reconstructions on three-dimensional tetrahedral meshes, which belong to

type II as well, we refer to see Zhang and Shu (2009). Type II WENO

schemes are more difficult to construct, however they have a much more com-

pact stencil than type I WENO schemes of the same accuracy, which is an

advantage in applications, such as when the WENO methodology is used as

limiters for the discontinuous Galerkin methods, e.g., Qiu and Shu (2005)
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and Zhu et al. (2008). For example, see the big stencil S for a third-order

WENO reconstruction of type I and II in Fig. 1. The type I reconstruction

needs more layers of neighbouring triangles of the target cell △0 (i.e., the cell

“0” in Fig. 1) than that for the type II reconstruction. Actually the big stencil

of the type II reconstruction (the right picture in Fig. 1) is just the central

small stencil in the type I reconstruction.

A crucial step in building a type II WENO scheme on unstructured meshes

is to construct lower-order polynomials whose weighted average will give the

same result as the high-order reconstruction at each Gaussian quadrature point

for the flux integral on the element boundary. This step is actually the most

difficult step in designing a robust second type high-order WENO schemes

on unstructured meshes, since we can not guarantee the quality of the unstruc-

tured meshes when the domain geometry is very complicated. Especially,

when the spatial domain has higher dimensions (e.g. three-dimensional pro-

blems) and complex geometry, the quality of the unstructured meshes is hard

to control. Distorted local mesh geometries can be easily generated. The local

linear system for finding linear weights could have very large condition num-

ber or is even singular at the places where mesh quality is bad (e.g. there are

very obtuse triangles). This may lead to negative and very large linear weights

in type II WENO schemes, or even the linear weights do not exist. For mild

negative linear weights, the splitting technique developed in Shi et al.

(2002) can be applied effectively. For the degenerate cases in various mesh

geometries that linear weights are negative and very large or do not exist, a
more robust approach is needed. In a recent work (Liu and Zhang, 2013),

we hybrid the approaches of type II and type I WENO schemes, and avoid
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FIG. 1 A big stencil S for a third-order WENO reconstruction. Left: the type I; right: the type II.

Pictures are reproduced from Liu, Y., Zhang, Y.T., 2013. A robust reconstruction for unstructured
WENO schemes. J. Sci. Comput. 54, 603–621, with permission of Springer.
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the appearance of negative and very large linear weights no matter how bad

the quality of the unstructured meshes is. The idea is to switch to the approach

of assigning linear weights of type I WENO schemes at the places where the

linear weight system of type II WENO scheme is ill-posed or singular, i.e., the

linear weights are negative and very large (larger than a preset threshold

value) or do not exist. The trade-off is that the compactness of the type II

WENO scheme will be lost at these places. But we obtain a robust reconstruc-

tion with respect to the quality of unstructured meshes and the complexity of

the domain. Furthermore, since for a general triangulation distorted mesh geo-

metries only occur in minor parts of the whole domain, the overall percentage

of the places where the type I WENO approach is applied is quite small. We

refer to Liu and Zhang (2013) for more details.

4.2 Steady State Problems

Steady state problems for hyperbolic PDEs are common mathematical models

appearing in many applications, such as fluid mechanics, optimal control, dif-

ferential games, image processing and computer vision, geometric optics, etc.

Solution information of these boundary value problems propagates along

characteristics starting from the boundary. A large nonlinear system is

obtained after spatial discretization of a steady state hyperbolic PDE by a

high-order WENO scheme. It is still a challenging problem how to solve

the large nonlinear system resulting from WENO discretization.

There are at least two factors which may affect efficiency and robustness

of computation. One is that a high-order accurate shock capturing scheme

such as a WENO scheme often suffers from difficulties in its convergence

towards steady state solutions. In Zhang and Shu (2007), a systematic study

was carried out and discovered that slight postshock oscillations actually

cause this problem. A new smoothness indicator (Zhang and Shu, 2007) and

upwind-biased interpolation technique (Zhang et al., 2011) have been devel-

oped to improve the convergence of fifth-order WENO scheme for solving

steady state of Euler systems. The other factor affecting the performance of

computation is the iterative scheme designed for the nonlinear system.

For a highly nonlinear system derived from high-order WENO spatial dis-

cretization, one way is to solve it directly with Newton iterations (e.g. Hu

et al., 2011), or a more robust method such as the homotopy method (Hao

et al., 2013). A major advantage of solving the nonlinear system by Newton

iterations or the homotopy method is that the resulting methods are free of

the CFL condition, hence have linear computational complexity in solving

these boundary value problems. Another way is to solve the large WENO sys-

tem by fixed-point iterative schemes of Jacobi type or Gauss–Seidel type. The
popular time marching approach for solving steady state problems is essen-

tially a Jacobi type fixed-point iterative method. Starting from an initial con-

dition, the numerical solution evolves into a steady state by using a time
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stepping scheme (e.g. Abgrall and Mezine, 2004; Abgrall and Roe, 2003;

Chou and Shu, 2006; Jiang and Shu, 1996). A big advantage of the time

marching method is that the computed steady state is stable and usually car-

ries physical properties of the system and the initial condition. However, the

computational efficiency of time marching method for obtaining a steady state

solution is restricted by the CFL condition. This can be improved by the “fast

sweeping” technique. Fast sweeping methods utilize alternating sweeping

strategy to cover a family of characteristics in a certain direction simulta-

neously in each sweeping order. Coupled with the Gauss–Seidel iterations,
these methods can achieve a fast convergence speed for computations of

steady state solutions of hyperbolic PDEs by high-order WENO schemes

(Xiong et al., 2010; Zhang et al., 2006c,d).

Furthermore, to compute steady state of hyperbolic conservation laws, the

forward Euler time marching is preferred since only one stage and one step is

used, as time direction accuracy has no effects on the numerical accuracy of

steady state solutions. However, a high-order WENO scheme (e.g. the fifth-

order WENO scheme) coupled with the first-order forward Euler time discre-

tization is linearly unstable (Wang and Spiteri, 2007). Hence a high-order

time discretization needs to be coupled with a high-order WENO scheme

for steady state problems, which increases the number of iterations for the

Jacobi type fixed-point scheme to converge. In a recent work (Wu et al.,

2016), based on fifth-order WENO schemes which improve the convergence

of the classical WENO schemes by removing slight postshock oscillations

(Zhang and Shu, 2007; Zhang et al., 2011), we designed fifth-order fixed-

point sweeping WENO methods for steady state of hyperbolic conservation

laws. It is discovered that the fast sweeping technique can largely improve

the stability of high-order spatial scheme with the forward Euler time marching.

Extensive numerical experiments are performed in Wu et al. (2016) to compare

four different iterative schemes including the regular forward Euler and Runge–
Kutta time marching methods, and the ones coupled with fast sweeping tech-

nique. All numerical examples show that the forward Euler time discretization

with fast sweeping technique is the most efficient approach for fifth-order

WENO computations of steady state of hyperbolic conservation laws.

4.3 Time Discretizations for Convection–Diffusion Problems

High-order WENO schemes are often used to discretize nonlinear convection

terms for convection–diffusion PDEs, to deal with the convection-dominated

cases or a spatial mixture of convection-dominated and diffusion-dominated

cases. A general convection–diffusion problem may contain significant diffu-

sion in some regions and couple nonlinear stiff reaction terms, with dominated

convection in other regions. Computational efficiency by using high-order

WENO schemes to solve such problems depends heavily on robust time discre-

tizations which permit large time step sizes, since the regular explicit time
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schemes require very small time step sizes. A fully implicit discretization by

using implicit Runge–Kutta or backward difference formula (BDF) methods

(see, e.g. Hairer and Wanner, 1991) has large linear stability regions but typi-

cally requires the solution of large nonlinear coupled system of algebraic equa-

tions. Especially high-order WENO schemes have high level of nonlinearity in

the nonlinear weights. Certain iterative schemes such as Newton’s method do

not seem to be robust near strong shocks for a large time step, and special treat-

ment is required (Gottlieb et al., 2006). Another approach is to avoid solving

completely coupled nonlinear systems, for example, to use implicit–explicit
(IMEX) Runge–Kutta methods (see, e.g. Kennedy and Carpenter, 2003). To

deal with stiffness in a convection–diffusion–reaction problem, exponential

integrator is an efficient tool. Recently, implicit integration factor (IIF) WENO

methods were developed for solving stiff nonlinear convection–diffusion–
reaction equations (Jiang and Zhang, 2013). The methods can be designed for

arbitrary order of accuracy and no large nonlinear coupled algebraic system

needs to be solved. The stiffness of the system is resolved well and the methods

are stable by using time step sizes which are mainly determined by the nonstiff

hyperbolic part of the system. To efficiently calculate large matrix exponentials,

Krylov subspace approximation is applied in the methods. The time discretiza-

tions in Jiang and Zhang (2013) are multistep methods. In Jiang and Zhang

(2016), single-step IIF-WENO methods were developed for solving stiff con-

vection–diffusion–reaction equations. The methods are designed carefully to

avoid generating positive exponentials in the matrix exponentials, which is nec-

essary for the stability of the exponential integrator schemes.

4.4 Accuracy Enhancement

Efforts have been made to improve the accuracy in high-order WENO schemes.

Strategies include modifying the linear or nonlinear weights, modifying the

smoothness indicators, or improving the dissipation and/or dispersion properties

of WENO schemes. For example, in Henrick et al. (2005), a mapping function

was designed to modify the nonlinear weights in Jiang and Shu (1996). The

resulting nonlinear weights improve accuracy of the WENO schemes at smooth

extrema. In Borges et al. (2008) and Castro et al. (2011), the classical smooth-

ness indicators in Jiang and Shu (1996) were combined to form new smooth-

ness indicators, which also improve accuracy and resolution of the WENO

schemes without the mapping. For high frequency wave computations, the res-

olution can be enhanced via optimizing the dissipation and/or dispersion of the

WENO schemes (for example, see Hu et al., 2015; Martin et al., 2006; Ponziani

et al., 2003; Wang and Chen, 2001).
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