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Abstract. We extend the weighted essentially non-oscillatory (WENO) schemes on
two dimensional triangular meshes developed in [7] to three dimensions, and con-
struct a third order finite volume WENO scheme on three dimensional tetrahedral
meshes. We use the Lax-Friedrichs monotone flux as building blocks, third order re-
constructions made from combinations of linear polynomials which are constructed on
diversified small stencils of a tetrahedral mesh, and non-linear weights using smooth-
ness indicators based on the derivatives of these linear polynomials. Numerical exam-
ples are given to demonstrate stability and accuracy of the scheme.
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1 Introduction

The weighted essentially non-oscillatory (WENO) methodology adopted in this paper,
for solving hyperbolic conservation laws with discontinuous solutions, was first devel-
oped in [9] for a third order finite volume version in one space dimension and in [8]
for third and fifth order finite difference version in multi space dimensions with a gen-
eral framework for the design of the smoothness indicators and non-linear weights. The
main idea of the WENO scheme is to form a weighted combination of several local re-
constructions based on different stencils (usually referred to as small stencils) and use it
as the final WENO reconstruction. The combination coefficients (also called non-linear
weights) depend on the linear weights, often chosen to increase the order of accuracy over
that on each small stencil, and on the smoothness indicators which measure the smooth-
ness of the reconstructed function in the relevant small stencils. WENO schemes have
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the advantage of attaining uniform high order accuracy in smooth regions of the solution
while maintaining sharp and essentially monotone shock transitions. It is more difficult
to design WENO schemes for unstructured meshes. First of all, the finite difference ap-
proach [8] requires mesh smoothness and cannot be used on unstructured meshes while
maintaining local conservation, and we must use the more complicated and more costly
finite volume approach [9, 12]. There are two types of WENO schemes designed in the
literature on unstructured meshes. The first type consists of WENO schemes whose or-
der of accuracy is not higher than that of the reconstruction on each small stencil. That is,
for this type of WENO schemes, the non-linear weights are designed purely for the pur-
pose of stability, or to avoid spurious oscillations, and they do not contribute towards the
increase of the order of accuracy. Such WENO schemes are easier to construct, since the
linear weights can be chosen as arbitrary positive numbers for better stability, for exam-
ple the centered small stencil can be assigned a larger linear weight than the others. The
WENO schemes in [4] for two dimensional triangulations and in [2, 3] for three dimen-
sional triangulations belong to this class. The second type consists of WENO schemes
whose order of accuracy is higher than that of the reconstruction on each small stencil.
For example, the third order WENO scheme in [7] is based on second order linear polyno-
mial reconstructions on small stencils, and the fourth order WENO scheme in [7] is based
on third order quadratic polynomial reconstructions on small stencils. See also [15] for
similar WENO schemes for solving Hamilton-Jacobi equations, which belong to the sec-
ond type as well. This second type of WENO schemes are more difficult to construct,
however they have a more compact stencil than the first type WENO schemes of the
same accuracy, which is an advantage in some applications, such as when the WENO
methodology is used as limiters for the discontinuous Galerkin methods [10, 11]. In this
paper, we generalize the second type WENO schemes in [7] to three dimensions, and
construct a third order finite volume WENO scheme on three dimensional tetrahedral
meshes. We use the Lax-Friedrichs monotone flux as building blocks, third order recon-
structions made from combinations of second order linear polynomials which are con-
structed on diversified small stencils of a tetrahedral mesh, and non-linear weights using
smoothness indicators based on the derivatives of these linear polynomials. Numerical
examples are given to demonstrate the stability and accuracy of the scheme.

The organization of this paper is as follows. The algorithm is developed in Sections 2
and 3. Section 4 contains numerical examples verifying stability, convergence and accu-
racy of the algorithm. Concluding remarks are given in Section 5.

2 The finite volume formulation on 3D tetrahedral meshes

In this paper we solve the three-dimensional conservation law

∂u

∂t
+

∂ f (u)

∂x
+

∂g(u)

∂y
+

∂h(u)

∂z
=0 (2.1)

using the finite volume formulation. Computational control volumes are tetrahedrons.
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Taking the tetrahedron △i as our control volume, we formulate the semi-discrete fi-
nite volume scheme of (2.1) as

dūi(t)

dt
+

1

|△i|
∫

∂△i

F ·ndS=0, (2.2)

where the cell average

ūi(t)=
1

|△i|
∫

△i

udxdydz, F =( f ,g,h)T ,

and n is the outward unit normal of the tetrahedron boundary ∂△i.
In (2.2), the integral on the four triangular surfaces of ∂△i is discretized by a q-point

Gaussian quadrature formula,

∫

∂△i

F ·nds=
4

∑
k=1

Sk

q

∑
j=1

wjF(u(G
(k)
j ,t))·nk, (2.3)

where Sk is the area of the k-th triangle of ∂△i, G
(k)
j and wj are the Gaussian quadrature

points and weights respectively, and F(u(G
(k)
j ,t))·nk is approximated by a numerical flux.

We use the simple Lax-Friedrichs flux in this paper, which is given by

F(u(G
(k)
j ,t))·nk ≈

1

2

[(
F(u−(G

(k)
j ,t))+F(u+(G

(k)
j ,t))

)
·nk

−α
(

u+(G
(k)
j ,t)−u−(G

(k)
j ,t)

)]
, (2.4)

where α is taken as an upper bound for the magnitude of the eigenvalues of the Jacobian
in the n direction, and u− and u+ are the values of u inside the tetrahedron and outside
the tetrahedron (inside the neighboring tetrahedron) at the Gaussian point.

In this paper we only discuss the construction of a third order finite volume scheme,
so the four-point Gaussian quadrature q =4 is used. We adopt the Gaussian quadrature
in [6]. For the triangle with vertexes P1, P2 and P3, the Gaussian quadrature points are

G1 =λ1P1+λ2P2+λ3P3, G2 =λ2P1+λ1P2+λ3P3,

G3 = β1P1+β2P2+β3P3, G4 = β2P1+β1P2+β3P3,

where

λ1 =
6−

√
6

10

(
1

2
−
√

3

6

)
, λ2 =

6−
√

6

10

(
1

2
+

√
3

6

)
, λ3 =

4+
√

6

10
,

β1 =
6+

√
6

10

(
1

2
−
√

3

6

)
, β2 =

6+
√

6

10

(
1

2
+

√
3

6

)
, β3 =

4−
√

6

10
;

and the Gaussian quadrature weights are

w1 =w2 =
9−

√
6

36
, w3 =w4 =

9+
√

6

36
.
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3 Third order WENO reconstruction and WENO finite volume

scheme

In this section we describe the third order WENO algorithm on three dimensional tetra-
hedral meshes.

3.1 The big stencil

To build a third-order reconstruction for the point values at the Gaussian quadrature
points, we would like to construct a quadratic polynomial p(x,y,z) that has the same cell
average as u on the target tetrahedron △0:

ū0≡
1

|△0|
∫

|△0|
u(x,y,z)dxdydz. (3.1)

Here we have suppressed the time variable t as the reconstruction is performed at a fixed
time level. Assuming that △0 has the barycenter (x0,y0,z0), we define the local variables
ξ =(x−x0)/h, η =(y−y0)/h and ζ =(z−z0)/h, where h= |△0|1/3. The quadratic recon-
struction polynomial is presented as

p(x,y,z)= a0 +a1ξ+a2η+a3ζ+a4ξ2+a5η2+a6ζ2+a7ξη+a8ξζ+a9ηζ.

A typical big stencil S includes △0, its four neighbors △1,△2,△3,△4 and the neighbors
of these four neighbors (two layers of neighbors):

S={△0;△1,△2,△3,△4;△11,△12,△13;△21,△22,△23;△31,△32,△33;△41,△42,△43},

where the subscripts are self-evident, for example, △11,△12,△13 are the three neighbor-
ing tetrahedrons of △1 other than △0.

We determine the quadratic polynomial p(x,y,z) by requiring that it has the same cell
average as u on △0, and also it matches the cell averages of u on the tetrahedrons of the
big stencil S except △0 in a least-square sense [1]. Notice that some of the neighbors of
the four neighbors may coincide, but this does not affect the least-square procedure to
determine p(x,y,z). Let m denote the total number of cells in the big stencil S. If m <10,
we must go to the next neighboring layer and include more cells into the big stencil S to
provide enough information for constructing a quadratic polynomial.

For every quadrature point (xG,yG,zG), we compute a series of constants {cl}m
l=1

which depend on the local geometry only, such that

p(xG,yG,zG)=
m

∑
l=1

cl ūl, (3.2)

where every constant cl corresponds to one cell in the big stencil S, and ūl is the cell
average of u on that cell.
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Table 1: Small stencil candidates.

polynomial stencil members polynomial stencil members

p1 △0,△1,△2,△3 p2 △0,△1,△2,△4

p3 △0,△1,△3,△4 p4 △0,△2,△3,△4

p5 △0,△1,△11,△12 p6 △0,△1,△11,△13

p7 △0,△1,△12,△13 p8 △0,△2,△21,△22

p9 △0,△2,△21,△23 p10 △0,△2,△22,△23

p11 △0,△3,△31,△32 p12 △0,△3,△31,△33

p13 △0,△3,△32,△33 p14 △0,△4,△41,△42

p15 △0,△4,△41,△43 p16 △0,△4,△42,△43

3.2 The small stencils

The key step in building a high order WENO scheme (the second type as explained in
section 1) is to construct lower order polynomials whose weighted average will give the
same result as the high order reconstruction at each quadrature point (the weights are
different for different quadrature points). We will build several linear polynomials

ps(x,y,z)= a
(s)
0 +a

(s)
1 ξ+a

(s)
2 η+a

(s)
3 ζ

to give the lower order reconstructions.
Using the big stencil S, we have 16 small stencil candidates and the corresponding 16

linear polynomials by agreeing with the cell averages of u on these small stencils. They
are listed in Table 1.

Notice that some candidates may coincide, so we check the small stencil candidates
and merge the same ones. Let q denote the total number of small stencils for the target
cell △0, and {S(i)}q

i=1 the small stencils.

For every quadrature point (xG,yG,zG), on every small stencil S(i) we compute four

constants {c
(i)
l }4

l=1 which depend on the local geometry only, such that

pi(xG,yG,zG)=
4

∑
l=1

c
(i)
l ūl, (3.3)

where every constant c
(i)
l corresponds to one cell in the small stencil S(i), and ūl is the cell

average of u on that cell.
The quadratic polynomial p(x,y,z) has six more degrees of freedom than each lin-

ear polynomial ps(x,y,z), namely ξ2,η2,ζ2,ξη,ξζ,ηζ. For the degrees of freedom 1,ξ,η,ζ,
both the quadratic polynomial reconstruction and linear polynomial reconstruction can
reproduce them exactly. According to the argument in [7], we need the number of small
stencils q≥7. This can be easily achieved for most triangulations by just including the first
two layers of neighbors of △0. For the triangulations in our computation, we have not
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met the situation that q <7. We will assume that q≥7 in the following discussion. Even
if q<7, for example for a very distorted mesh, we can always go to the next neighboring
layer and include more candidates of small stencils.

To obtain the linear weights {γi}q
i=1, we form the linear system at every Gaussian

quadrature point (xG,yG,zG): take u= ξ2,η2,ζ2,ξη,ξζ,ηζ respectively, the equalities are:

q

∑
i=1

γi pi(xG,yG,zG)=u(xG,yG,zG), (3.4)

where pi is the linear reconstruction polynomial for u, using the small stencil S(i). To-
gether with the requirement

q

∑
i=1

γi =1, (3.5)

we obtain a 7×q linear system

Aγ=b, (3.6)

where A∈ R7×q, and b∈ R7. For q > 7, this is a under-determined system and there are
infinitely many solutions. We define the optimal linear weights {γi}q

i=1 as following. The
third order reconstruction by the linear combination of the second order reconstructions
using the optimal linear weights {γi}q

i=1 is the ”closest” one from the third order recon-
struction by the big stencil S, in the least square sense. We form the linear system

Mγ
l
= c, (3.7)

where
l
= means that the equality holds in the least square sense, and M∈Rm×q, c∈Rm.

The vector c=(c1,c2,··· ,cm)T, and {cl}m
l=1 are the approximation constants in (3.2) for the

big stencil. Each column of the matrix M corresponds to the approximation constants in
(3.3) for one of the small stencils. The systems (3.6) and (3.7) are solved together to give
the optimal linear weights {γi}q

i=1.

3.3 Non-linear weights and the WENO scheme

In this section, we construct the WENO scheme based on non-linear weights. In order to
compute the non-linear weights, we need to compute the smoothness indicators first.

For every reconstruction polynomial pi(x,y,z) defined on the target cell △0 with de-
gree up to k, we take the smoothness indicator βi as:

βi = ∑
1≤|α|≤k

∫

△0

|△0|
2
3 |α|−1(Dα pi(x,y,z))2 dxdydz, (3.8)

where α is a multi-index and D is the derivative operator. The smoothness indicator
measures how smooth the function pi is on the triangle △0: the smaller the smoothness
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indicator, the smoother the function pi is on △0. The scaling factor in front of the deriva-
tives renders the smoothness indicator self-similar and invariant under uniform scaling
of the mesh in all directions. Since we are constructing third order WENO schemes and
{pi}q

i=1 are linear polynomials, k=1 in our scheme.
Now we define the non-linear weights as:

ωi =
ω̃i

∑j ω̃j
, ω̃i =

γi

(ε+βi)2
, (3.9)

where γi is the i-th linear weight determined in section 3.2, βi is the smoothness indicator
for the i-th reconstruction polynomial pi(x,y,z) associated with the i-th small stencil, and
ε is a small positive number to avoid the denominator to become 0. We take ε=10−3 for
all the computations in this paper.

Finally, we form the finite volume WENO schemes using the WENO reconstructions
of the numerical values at quadrature points in (2.4):

u(xG,yG,zG)=
q

∑
i=1

wi pi(xG,yG,zG). (3.10)

If we use the linear weights in the reconstruction,

u(xG,yG,zG)=
q

∑
i=1

γipi(xG,yG,zG), (3.11)

we would obtain the linear scheme.
The linear weights {γi}q

i=1 depend on the local geometry of the mesh and can be
negative. If min(γ1,··· ,γq) < 0, we adopt the splitting technique of treating negative
weights in WENO schemes developed by Shi, Hu and Shu [12] as following. First we
split the linear weights into two groups:

γ̃+
i =

1

2
(γi+3|γi|), γ̃−

i = γ̃+
i −γi, i=1,··· ,q, (3.12)

then we scale them by

σ±=
q

∑
l=1

γ̃±
l ; γ±

i = γ̃±
i /σ±, i=1,··· ,q. (3.13)

Now we compute the nonlinear weights (3.9) for the positive and negative groups γ±
i

separately, denoted by ω±
i , based on the same smoothness indicator βi. Then we compute

the WENO reconstructions u±(xG,yG,zG) separately by (3.10), using ω±
i , and form the

final WENO reconstruction by

u(xG,yG,zG)=σ+u+(xG,yG,zG)−σ−u−(xG,yG,zG). (3.14)



Y.-T. Zhang and C.-W. Shu / Commun. Comput. Phys., 5 (2009), pp. 836-848 843

Figure 1: Construction of a uniform tetrahedron mesh.

The key idea of this decomposition is to make sure that every stencil has a significant
representation in both the positive and the negative weight groups. Within each group,
the WENO idea of redistributing the weights subject to a fixed sum according to the
smoothness of the approximation is still followed as before. See [12] for more details.

To improve the accuracy of the WENO scheme, we adopt a mapped weights tech-
nique introduced by Henrick, Aslam and Powers [5], see also its application for solving
steady state problems in [14]. For every linear weight γi, i=1,··· ,q, the mapping function
is defined as

gi(ω;γi)=
ω(γi+γ2

i −3γiω+ω2)

γ2
i +(1−2γi)ω

, (3.15)

where ω∈[0,1]. The non-linear weights ωi computed by (3.9) are replaced by the mapped
weights

ωM
i = gi(ωi;γi). (3.16)

Likewise, the non-linear weights ω±
i are replaced by the mapped weights

ω±,M
i = gi(ω±

i ;γ±
i ). (3.17)
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Table 2: Accuracy for 3D linear equation. Third order linear and WENO schemes. Uniform tetrahedron mesh.
T =1.

Linear scheme WENO scheme

# of cells L1 error order L∞ error order L1 error order L∞ error order

6000 2.27E-02 — 4.36E-02 — 1.03E-01 — 2.73E-01 —

48000 2.84E-03 2.99 5.28E-03 3.05 1.50E-02 2.78 4.74E-02 2.53

384000 3.54E-04 3.01 6.40E-04 3.04 4.68E-04 5.00 2.35E-03 4.34

Table 3: Accuracy for 3D linear equation. Third order linear and WENO schemes. Computational mesh is
obtained by randomly perturbing the uniform tetrahedron mesh within 4% in the 3D space. T =1.

Linear scheme WENO scheme

# of cells L1 error order L∞ error order L1 error order L∞ error order

6000 2.29E-02 — 4.63E-02 — 1.03E-01 — 2.80E-01 —

48000 2.87E-03 3.00 5.52E-03 3.07 1.48E-02 2.80 4.78E-02 2.55

384000 3.59E-04 3.00 6.81E-04 3.02 5.03E-04 4.88 2.63E-03 4.19

4 Numerical examples

In this section, we apply the WENO scheme developed in the previous section to both
linear and non-linear three dimensional problems. The CFL number is taken as 0.6 in
all the cases. For the temporal discretization, we use the third-order TVD Runge-Kutta
scheme of Shu and Osher in [13].

We use the uniform tetrahedral meshes and random perturbations of the uniform
meshes in the computations of this paper. The uniform meshes are generated by cutting
each cube of a rectangular mesh into six tetrahedrons, as shown in Fig. 1.

Example 4.1. Linear equation:

{
ut+ux+uy+uz =0, −2≤ x≤2,−2≤y≤2,−2≤ z≤2;

u(x,y,z,0)=sin( π
2 (x+y+z)),

(4.1)

with periodic boundary condition. We use both the third order linear and WENO schemes
to solve the PDE (4.1) to T = 1, on both the uniform meshes and the perturbed meshes.
From Table 2 and Table 3, we can observe third order accuracy in L1 and L∞ errors for
both the linear and WENO schemes. Notice that the numerical order of accuracy for the
WENO scheme has not settled down to the expected order yet for the finest meshes in Ta-
ble 2 and Table 3. It is typical for WENO schemes to “catch up” with the error magnitude
of linear schemes with refined meshes. In this process the numerical order of accuracy
for the WENO schemes can be higher than expected, due to the larger gap in the magni-
tude of the errors between the WENO schemes and the corresponding linear schemes on
coarser meshes. We have not computed the results in Tables 2 and 3 using more refined
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Table 4: Accuracy for 3D Burgers equation. Third order linear and WENO schemes. Uniform tetrahedron

mesh. T =0.5/π2.

Linear scheme WENO scheme

# of cells L1 error order L∞ error order L1 error order L∞ error order

6000 3.91E-03 — 1.87E-02 — 1.20E-02 — 8.94E-02 —

48000 4.81E-04 3.02 2.60E-03 2.85 1.30E-03 3.20 1.32E-02 2.75

384000 5.96E-05 3.01 3.31E-04 2.97 7.11E-05 4.20 3.31E-04 5.32

Table 5: Accuracy for 3D Burgers equation. Third order linear and WENO schemes. Computational mesh is

obtained by randomly perturbing the uniform tetrahedron mesh within 4% in the 3D space. T =0.5/π2.

Linear scheme WENO scheme

# of cells L1 error order L∞ error order L1 error order L∞ error order CPU(s)

6000 3.92E-03 — 1.99E-02 — 1.20E-02 — 9.54E-02 — 1.18

48000 4.82E-04 3.02 2.79E-03 2.84 1.31E-03 3.20 1.61E-02 2.57 14.51

384000 5.99E-05 3.01 3.80E-04 2.88 7.13E-05 4.20 4.00E-04 5.33 188.69

meshes because of a limitation of the computer resource. We plan to implement the code
on parallel machines and run it on more refined meshes in the future.

Example 4.2. Nonlinear Burgers equation:

{
ut+( u2

2 )x+( u2

2 )y+( u2

2 )z =0, −3≤ x≤3,−3≤y≤3,−3≤ z≤3;

u(x,y,z,0)=0.3+0.7sin( π
3 (x+y+z)),

(4.2)

with periodic boundary condition. First we use both the third order linear and WENO
schemes to solve the PDE (4.2) to T = 0.5/π2, when the solution is still smooth. From
Table 4 and Table 5, we can observe third order accuracy for both the linear and WENO
schemes, on the uniform meshes and the perturbed meshes respectively. Again we note
that the numerical order of accuracy for the WENO scheme has not settled down to the
expected order yet for the finest meshes in Tables 4 and 5, while the gap of the magni-
tude of errors between the WENO scheme and the corresponding linear scheme narrows
during mesh refinement, as expected. The total computational time needed for the time
evolution (excluding pre-processing stages for preparing geometry constants) in our im-
plementation on a single processor PC is listed for the WENO scheme in Table 5. Then we
solve the PDE to T =5/π2 by the third order WENO scheme, using 384000 tetrahedrons,
and present the contour plots on the whole 3D domain surface (top), the 2D plane z = 0
(middle), and the 1D cutting-plot along the line x = y, z = 0 (bottom) in Fig. 2. We can
observe that the solution is non-oscillatory and the shock is resolved sharply.
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Figure 2: Solution of three-dimensional Burgers equation by the third order WENO scheme, t = 5/π2. Top:
contour plot on the surface; middle: contour plot on the cut z=0 plane; bottom: 1D cutting-plot along x=y,
z=0 with circles representing the numerical solution and the line representing the exact solution.
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5 Concluding remarks

We have constructed a third order finite volume WENO scheme on three dimensional
tetrahedral meshes. The scheme relies on writing a third order quadratic polynomial
reconstruction as a linear combination of several second order linear polynomial recon-
structions based on various small stencils, with the combination coefficients obtained
from linear weights for accuracy and nonlinear weights determined by smoothness in-
dicators. Numerical tests are performed on a uniform tetrahedral mesh as well as on
meshes obtained by random perturbations of the uniform mesh. Further numerical ex-
periments on more general tetrahedral meshes, for three dimensional hyperbolic systems,
and for higher order finite volume WENO schemes, will be performed in the future.
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