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Abstract. We develop a second-order continuous finite element method for solving
the static Eikonal equation. It is based on the vanishing viscosity approach with a ho-
motopy method for solving the discretized nonlinear system. More specifically, the ho-
motopy method is utilized to decrease the viscosity coefficient gradually, while New-
ton’s method is applied to compute the solution for each viscosity coefficient. New-
ton’s method alone converges for just big enough viscosity coefficients on very coarse
grids and for simple 1D examples, but the proposed method is much more robust and
guarantees the convergence of the nonlinear solver for all viscosity coefficients and for
all examples over all grids. Numerical experiments from 1D to 3D are presented to
confirm the second-order convergence and the effectiveness of the proposed method
on both structured or unstructured meshes.
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1 Introduction

We consider the static Eikonal equation

{|Vu(x)|:f(x), x€O\T,

(1.1)
u(x)=g(x), xel,
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over the domain Q C R?, d=1,2,3, where f >0 and g are the given functions, I' is the
“boundary” which is a subset of (). Moreover, ¢ is assumed to satisfy the compatible
condition to guarantee the existence of the physical or viscosity solution of (1.1), see
e.g. [29,31].

Eikonal equation (1.1) has many applications such as computational fluid dynam-
ics, optics, wave propagation, material science, differential geometry(geodesics), image
processing and computer graphics [1,5,9,11, 40, 41,46]. When solving two-phases flow
problems [12], the solution u of Eq. (1.1) with f=1 and g=0 is the distance function with
I' as its O-level set, which makes u be able to track the interface between two phases. In
the so-called Shape-from-Shading problem [34], the solution of (1.1) in 2D reconstructs
the surface z = u(x,y) based on f(x,y) which is related to the brightness I(x,y) of the
surface under a remote vertical light source as f = /1—1(x,y)?/I(x,y). In the seismic
ray method where the separation of variable is utilized to locate the high-frequency seis-
mic body wave in the media [37], the solution u of (1.1) describes the travel time with
f(x)=1/v(x) as the slowness associated to the velocity v(x) in the media [6].

Mathematically speaking, Eikonal equation (1.1) is a typical example of Hamilton-
Jacobi equation H (x,u, Vu)= f by taking H(x,u, Vu)=|Vu|. Thus the difficulties of solv-
ing Hamilton-Jacobi equation such as the nonlinearity and non-uniqueness apply to the
Eikonal equation (1.1). Therefore, the generalized solution or viscosity solution has to be
sought for solving the Eikonal equation (1.1) [8-11,29,31]. The concept of viscosity so-
lution is reasonable and satisfactory since: 1) if u is a smooth solution of (1.1), then it is
a viscosity solution; 2) if the viscosity solution u is differentiable at some point, then it
satisfies the equality (1.1); 3) the viscosity solution is unique given appropriate bound-
ary condition; 4) the solution obtained by the vanishing viscosity method is the viscosity
solution.

There are many numerical methods to solve the Eikonal equation and to compute the
viscosity solution. The characteristic method has been developed to solve (1.1) by solv-
ing a first-order ODE [25]. However, the method is hard to find the global solution and
has to deal with the coupling of the spatial variables and the phase space variables. The
level set formulation is utilized to introduce a time variable to solve the static Eikonal
equation [28,32,33]. A monotone finite difference method and a vanishing viscosity
method are used to solve the time-dependent Cauchy problem of the Hamilton-Jacobi
equation with the form of H(Vu) in [11], where the convergence rate is obtained explic-
itly. The fast marching method and fast sweeping method coupled with finite difference
discretization are developed to solve the Eikonal equation. The fast marching method
is based on entropy-satisfying upwind schemes and fast sorting techniques where the
solution is updated by sequentially following the causality [41,44]. The fast sweeping
method does not need heap-sort and the updating follows the causality along with the
characteristics in a parallel way [26,27,46-48]. There are several approaches based on
the finite element method for solving Eikonal equation. For example, a continuous finite
element method based on minimization of the residual in L! norm is proposed to solve
stationary Hamilton—Jacobi equations [18-20]; a discontinuous Galerkin method based
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on the fast sweeping strategy has been developed to solve (1.1) with a second-order con-
vergence [30]; a continuous piecewise linear finite element method [5] adds a biharmonic
regularization in the objective function and Eq. (1.1) is treated as the constraints by the
penalty method; a piecewise linear continuous finite element method [7] relies on the
Schrodinger transformation and only zero boundary condition over I' = d() is consid-
ered; based on the local variation principal or the local Hopf-Lax formula a linear finite
element method is studied in [4]; a time marching method using the piecewise linear
finite element method is proposed to solve the static Eikonal equation in [40, chp. 9]
and [3].

In this paper, we use the vanishing viscosity method [29,31] to compute the viscosity
solution of (1.1). More specifically, it is to seek the limit of vanishing viscosity solutions
U, of

{|Vun(x)| = F(x)+VuAu,,  in OQ\T, 12

un(x)=g(x), onT,

with v, —+ 0 as n — c0. Based on this setup, we develop a piecewise linear continu-
ous finite element method, which is easy to implement, can treat problems on irregu-
lar domains with various boundary conditions, is flexible to use unstructured meshes
in all dimensional spaces, and achieves the second order convergence numerically. The
method combines the homotopy method [21,24] and Newton’s method to solve the non-
linear discretized system in an effective way, since Newton’s method alone does not
converge for arbitrary grids. The paper is organized as follows. In Section 2, we ex-
plain the motivation of our work by a special 1D problem with f =1, ¢ =0, I' =0Q.
In Section 3, the detailed algorithm is presented. In Section 4, several numerical ex-
amples in 1D, 2D, and 3D are devoted to illustrate the effectiveness and feasibility of
the proposed algorithm. In this paper, we use the standard notations on Sobolev space
HY(Q),HY(Q),LP(Q), WP (Q),C%(Q) and their corresponding norms such as || || 1, |-
llLe, || - [[w1e for p€[0,00] (see e.g. [2,16] for more details).

2 Motivation of the algorithm

In order to design a numerical algorithm with second order convergence, we first ex-
amine the convergence rate of the vanishing viscosity method at the continuous level.
Assume I' =0Q). The vanishing viscosity method generates a sequence {u,}_,, where
uy is the viscosity solution or the generalized solution of

{|Vun(x) |= f(x)+vpAuy, inQ, o)

uy(x)=g(x), 0Q),

where {v,} ; is a positive sequence convergent to 0. For fixed n, the existence and
uniqueness of u, is shown in [29, Theorem 3.2]. Based on some priori estimates and
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a compactness argument, the convergence of {u,}$ |, up to a subsequence, is shown
in [29, Theorem 3.2]. Its limit u, is the viscosity solution of (1.1) [10,29,31]. The optimal
convergence rate is ||u, — 1|1~ < c./V, as shown in [31, Proposition 6.3]. It seems that a
second-order numerical method requires v, = h* where } is the mesh size. The question
is whether we have a better estimate for (1.1) if the solution is smooth enough. To answer
this question, we examine a 1D Eikonal equation (1.1) as

! (x)|=1, x€Q:=(0,a), (2.2)
M(O):M(ﬂ)zo |

The vanishing viscosity approximation

lu), (x)|=14vuuj(x), x€Q:=(0,a), 2.3)
uny(0)=uy(a)=0 '
has an explicit solution as follows
x+vn(e$(7%)—e$(x’%)), x€0,5],
un(x)= gy A (yyn) (2.4)
—x+a+1/n(em 2) _ew 2 ), xe[%,g],

Thus the rate of convergence can be estimated:

e u, converges to

pointwisely;
o [, — ()|, <min(2%,a) for p€[1,00);
o |luy—ul|}, <avj for pe[l,00).

Furthermore, the Sobolev embedding theorem (see e.g. [16, page 270] or [2, page 108])
implies

it —ts|| cor <c||thy — ts||yr, =0 (2.5)

with y=1—1/p for p€(1,00).
Inspired by this example, it is expected that, if v, = ch?, the rate of the vanishing
viscosity sequence uj, to the limit u, can reach

e O(h) in H! seminorm;

e O(h?)in L? norm;
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e O(K?)in L' norm;
e O(h?) in L*® norm,

as h—0. Here, the subscript ., is replaced by the subscript .; to highlight the dependence
on the mesh size h. After choosing the viscosity coefficient v, =ch?, an appropriate numer-
ical discretization has to be designed such that no more error pollutes the convergence
rate.

3 Finite element discretization

Our strategy is to use finite element method to solve the vanishing viscosity problem (1.2)
with vj, = ch?. Since the piecewise linear polynomial satisfies the approximation estimate
O(h) in H! seminorm and O(h?) in L? norm for H2(Q) functions [14, (11.17)], which
is consistent with the convergence rate of v, = ch?, it can be utilized in the algorithm to
obtain the goal.

Let {7,} be a mesh family which are affine, conforming (no hanging nodes), and
shape-regular in the sense of Ciarlet [14]. Each mesh 7 is a set of cells K, which are
intervals in one dimensional space, or triangles in two dimensional space, or tetrahedral
in three dimensional space. The union of all cells in 7y, is the whole domain Q). The
domain ) is assumed to be a polygon such that the boundary d(2 is partitioned exactly by
several mesh edges. Moreover, it is assumed that I' is partitioned by the mesh explicitly.
For example, if ' is part of the boundary 0(), we assume that I' is partitioned by several
mesh edges; if I is only a point, we assume it is a node of the mesh. The general curved
I is treated later in Section 3.3 with the help of the viscosity solution u, of (1.1).

Define

VhI:{UEC(Q)I U|K€]P](K), VKEE, U’r:g}, (31)

where P, (K) means the piecewise polynomial over K with the maximum order less
or equal to k, and the parameter /1, used as the subscript, denotes the minimal size of
edges in the mesh 7). Let the Lagrange basis be {¢1,--,¢n} associated with the La-
grange nodes of the mesh {ay,---,ay}. The approximation space V}, is a finite dimen-
sional space and is spanned by {¢;,a; ¢ I'}. If w, €V, it has the explicit expression
wy(x) = Y1, N,a;¢T ngb]-(x)+Zj:1,,.,,N,aj€rg(uj)¢j(x), where W; is the degrees of free-
dom. See e.g. [13,14] for the approximation property of V}, and other related details.

The piecewise linear continuous finite element method to solve (1.2) is to find u;, € V,
such that

v _ Vi,V d—/ 1ty 0pds =0 32
/Q[(| up(x)|— f)op+v, Vuy,- Vo] dx aQ\th uyvyds (3.2)

for all v, € V) :={v e C(Q): v|x €P1, VK € Ty, v|r =0}. Here integration by parts for the
viscous term yields the third term of (3.2) on 0Q\T since the Dirichlet boundary condition
is enforced explicitly in V},.
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3.1 Newton’s method

Since (3.2) is a nonlinear system, Newton’s method is devoted to solve it. Given the k-th
iteration solution u’fl €V}, which is an approximation to the solution of (3.2) or u,, Taylor
expansion implies
Vuk
V| — | Vuk |~ — 7 (), — u
V| = |Vuy,| V] (up—up)

by neglecting the nonlinear terms. Newton’s method is to solve

Js

for any v, € V0. The stopping rule of the iteration over k in (3.3) is to check the L®
k+1
k1

k
Vuy,
| V]

Vuftlo, — foy +thu’[l+l-Vvh] dx_/a . VOt vpds =0 (3-3)
O\T

difference between two successive approximations. Given a tolerance TOL, if ||u

uk|| 1=(0) <TOL, then the iteration stops, and u’[fl is taken as the accepted approximation.

The boundary integral on dQ\T in (3.3) is treated explicitly by using uf. In contrast,
the fast sweeping method [46] uses the linear extrapolation to obtain the value there by
extending the interior value, see Remark 8 of [46]. The linear combination may be used
to treat this term as fQ\th (adyuf ™+ (1) 3, uk )vyds for some a € 0,1].

The algorithm (3.3) works for the unstructured mesh without modification, which is
a remarkable property for problems on the irregular polygon domain. In contrast, it is
not trivial to extend the fast sweeping method from the rectangular mesh to unstructured
triangulated meshes because there is no obvious way to specify an order for nodes of the
unstructured mesh, e.g., [36].

3.2 Homotopy strategy

Solving (3.3) by Newton’s method is challenging especially when the viscosity coefficient
v, = ch? becomes small. Moreover, Eq. (3.3) becomes convection-dominant and has to be
stabilized [15, chp. 61]. Therefore we need a good initial guess u) close to the solution
for Newton’s method. Due to the existence and uniqueness of the viscosity solution
corresponding to v, [29, Theorem 3.2], Newton’s method should converge to the viscosity
solution. In order to choose a good initial guess ) for v, =ch?, we employ the homotopy
method by varying v;, from ch to ch®>. The homotopy method, as a global method, has
been widely used to compute solutions of nonlinear systems such as nonlinear PDEs [21,
22,42,43] and applications in biology and physics [23]. More specifically, we solve (3.3)
for 1/,1 :=ch first. After Newton’s method converges, its solution is used as the initial
guess for v2 =v} /2. In an iterative way, we solve (3.3) until v} <ch?. The improvement
of this strategy can be observed in Example-4 of the next section, where the algorithm
converges to the tolerance over all grids, while Newton’s method does not converge for
finer meshes.
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Algorithm 1: The detailed algorithm

Input: Problem dependent parameter ¢, Stopping tolerance Tol, Maximum
iteration of Newton’s method N

Output: The numerical solution

Initialize v, =ch and u2 =0

while v, > ch? do

for k=0:N do

Assemble the matrix A of (3.3) using v;, and u’,;

Modify A to enforce the given values for all degree of freedoms in I

Assemble the right hand side term b of (3.3) using v, and u},
Solve AU =b to get u; ™ =Yt N, a T u]kH‘Pj(x) +Yj=1.-Naer8(a)9j(x)
if |uf™ —uf || <TOL then
break
uf < uft!
ud «—uf
if v, /2 < ch? then
| vy ch?
else
L vhvn/2

The whole algorithm for solving the static Eikonal equation is obtained, as summa-
rized in Algorithm 1.

3.3 Extension for curved I'

When I is a curve, it cannot be approximated by some edges of the mesh. The above al-
gorithm still works with the help of u,. There are two methods to enforce the “boundary”
condition u=g on I

1) The first method is to assign the value of u, at all degrees of freedom with a distance
less than ah to I', say, « =1. Then almost two layers of degrees of freedom are
specified with the true value u,.

2) The second method is to assign the value of u, at all degrees of freedom with dis-
tance to I less than a constant, say, 0.1. As the mesh become refined, more and more
layers of degrees of freedom are specified with the true value .

These two strategies are illustrated in Fig. 1. The choice of which method to use comes
down to the types of the singularity of the problem (1.1) on I'. If the singularity is weak,
for example, when two characteristic lines are generated at points of I, either choice
works fine. Otherwise, if the singularity is strong, then maybe only the second choice
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Figure 1: Two strategies to enforce the “boundary condition” on I': the first strategy is to specify all degrees
of freedom in blue color since they are in the between of two dot lines which have distance ah to T'; the second
strategy is to specify all degrees of freedom in blue color and red color since they are in the between of two
dash-dot lines which have distance 0.1 to I.

gives the desired convergence rate. For example, the second strategy obtains the full
convergence in Example-8 in Section 4.8. When it is difficult to obtain the exact values
u, to enforce these degrees of freedom close to I', a approximation of u, by some local
methods such as the characteristic method can be applied first.

4 Numerical experiments

In this section, several numerical examples are presented to study the second order con-
vergence of the algorithm, and its effectiveness. The mesh used in the computation is
consisted of intervals, triangles, or tetrahedrals. For convergence test, the meshes are
equidistributed intervals, or structured triangle meshes, and the number of cells in each
spatial dimension is N = 32,64,128,256,512. The structured mesh is established by the
in-house code, while the unstructured triangular or tetrahedral mesh is generated by
Gmesh [17] or Netgen/NGSolve [39]. The numerical errors considered in this section are
defined as
1/2

5 1 1/2 » 1
el(Q)::<@/Q|uh—u*]2dx> , e(Q):= <@/Q]Vuh—Vu*]2dx> ,
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1
lel

e3(Q):= /O|uh—u*|dx, &;(f)):zsul?luh—u*],

xeQ)

where Q) C Q) is chosen to avoid the singular part of i, in order to study the convergence
rate of the method. We choose () = () if u, has no singularity. Here e3(€)) and e4(Q))
are the standard errors in L'(Q) and L®(Q)), while ¢;(Q)) = Huh—u*HLz(Q)/]()]l/z, and

e2(Q) = [y —the g1 ) / 1OV 2.

4.1 Example-1

We choose g=0, f=rt|cos(7tx)|, Q=(0,1) and I' =0Q) in the static Eikonal equation (1.1).
Its solution u,(x) =sin(7tx) is a smooth function. The numerical errors are shown in
Table 1 which indicates the second order convergence in L?(Q),L'(Q),L®(Q) and the
first order in H!(Q)) seminorm. It is consistent with the analysis in Section 1. Although
the solution at x =0.5 is singular since f(0.5) =0, the convergence order is not effected
since 1, is smooth and two characteristic lines merge together from left and right sides of
the point x=0.5. A typical numerical solution is shown in Fig. 2.

Table 1: Numerical errors and convergence orders of Example-1 with v}, =hZ.

h e Order e Order es Order ey Order
3.13e-02 | 1.43e-03 - 6.82e-02 - 1.05e-03 - 3.42¢-03 -
1.56e-02 | 3.56e-04 2.01 | 3.40e-02 1.01 | 2.63e-04 201 | 8.66e-04 1.99
7.81e-03 | 8.89e-05 2.00 | 1.69e-02 1.00 | 6.55e-05 2.00 | 2.17e-04 1.99
391e-03 | 2.22e-05 2.00 | 8.48e-03 1.00 | 1.64e-05 2.00 | 5.45e-05 2.00
1.95e-03 | 5.55e-06 2.00 | 4.24e-03 1.00 | 4.09e-06 2.00 | 1.36e-05 2.00

104 0.0030 —— N=32
—— N=64
—— N=128

N=256

—— N=512

0.0025
0.8

0.0020
0.6

ul

| 0.0015 A

up
un

0.4 1

0.0010

021 0.0005

0.0

000001 LA Q.A; AA.MMAA fA.*
00 02 04 06 08 10 0.0 02 0.4 06 08

X X

10

Figure 2: Numerical solutions uy, (left) and |u, —u,| (right) of Example-1.
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4.2 Example-2
Choosing f=1, g=0, 0=(0,1), and I'=09Q), the viscosity solution of (1.1) becomes
Uy (x) =min{x,1—x}. 4.1)

It is the distance function to the boundary I' since g =0. The numerical solutions on
different grid points are shown in Fig. 3 while the convergence rate is shown in Table 2
to demonstrate O(h?) convergence in L2(Q),L}(Q)),L*(Q) norm and O(h!') in H}(Q)
seminorm.

Table 2: Numerical errors and convergence orders of Example-2 with v=Hh2.

h e1 Order e Order e3 Order ey Order
3.13e-02 | 3.10e-04 - 3.09e-02 - 2.39e-04 - 8.80e-04 -
1.56e-02 | 7.73e-05 2.00 | 1.55e-02 1.00 | 5.97e-05 2.00 | 2.31le-04 193
7.81e-03 | 1.93e-05 2.00 | 7.74e-03 1.00 | 1.49e-05 2.00 | 5.93e-05 1.96
3.91e-03 | 4.83e-06 2.00 | 3.87e-03 1.00 | 3.72e-06 2.00 | 1.50e-05 1.98
1.95e-03 | 1.21e-06  2.00 | 1.94e-03 1.00 | 9.31e-07 2.00 | 3.78e-06 1.99

0.5 1 0.0010

0.4 4 0.0008

0.3 1 — 0.0006

Un
\up — u|

0.2 4 0.0004

0.14 0.0002

0.0 4 0.0000 1

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
X X

Figure 3: Numerical solutions u;, (left) and |uj, —u,| (right) of Example-2.

4.3 Example-3

We choose f=1,¢g=0,2=(0,1), and I'={0.5}. The point x=0.5 is a singular point where
two characteristic lines are generated and spread out. The outflow boundary condition
on d() is used since the characteristic lines exit and leave the domain () there.

When the number of cells in the mesh is N = 32,64,128,256,512, the singular point
x =0.5 is a vertex of the mesh, its value is specified as 0 since it is in I'. As shown in
Table 3, the numerical solution reproduces the true solution u, =|x—0.5| exactly since the
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le—15

0.5

0.4+

0.34

U

0.2

0.14

0.04

0.0 02 04 06 08 10 0.0 02 04 06 08 10
(@) uy, (b) |up—ul

le—15

0.0 02 04 06 08 10 0.0 02 04 0.6 08 10
X X

(©) up (d) Jup—ul

Figure 4: Numerical solutions uj, (a,c) and numerical errors |u,—u| (b,d) with the number of grid points
N=32,64,128,256,512 (a,b) and N =31,63,127,255,511 (c,d) for Example-3 in 1D.

numerical error is around 107> no matter how coarse the mesh is. The numerical error
is so small and near the machine error that the convergence rate cannot be observed.
Numerical solution is shown in Fig. 4.

When N = 31,63,127,255,511, the singular point x = 0.5 lies inside the center cell of
the mesh and is not a vertex of the mesh. In order to enforce the “boundary” condition,
the minimal requirement is to fix two degrees of freedom of the center cell using u,. As
shown in Table 4, the convergence rates of the algorithm becomes O (h'-®),0(h?),O(h!)
and O(h%%) in L2(Q),L}(Q)),L*(Q) norm and H!(Q)) seminorm, respectively. The order
of convergence is reduced by 0.5. It is not surprising since the errors in the table are
measured over the whole domain ), and there exists a mismatch at the center cell where
the value of two degrees of freedom are specified as the given value of u, which results in
a kink since the linear approximation is used in the center cell, as shown in (c) and (d) of
Fig. 4. The error implanted by the kink is O (h!-®),0(h?),0(h'),O(h*®) for L2,L},L® norm
and H'! seminorm. If the errors are measured over Q):= )\ [0.4,0.6], the errors become
near machine error as the previous case, as shown in Table 5.
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Table 3: Numerical errors and convergence orders of Example-3 with v=h? and N =232,64,128,256,512.

h e1 Order e Order e3 Order ey Order
3.13e-02 | 2.88e-15 - 1.00e-14 - 2.49¢-15 - 4.99¢-15 -
1.56e-02 | 2.87e-15 - 1.00e-14 - 2.49e-15 - 4.99¢e-15 -
7.81e-03 | 2.88e-15 - 1.03e-14 - 2.49e-15 - 4.99¢-15 -
3.91e-03 | 2.88e-15 - 1.11e-14 - 2.49e-15 - 4.99¢-15 -
1.95e-03 | 2.88e-15 - 1.43e-14 - 2.49e-15 - 4.99¢-15 -

Table 4: Numerical errors and convergence orders of Example-3 with v="Hh? and N =31,63,127,255,511.

h e1 Order e Order es3 Order ey Order
3.23e-02 | 1.56e-03 - 1.79e-01 - 2.4908e-04 - 1.06e-02 -
1.59e-02 | 5.39¢-04 1.50 | 1.26e-01  0.50 6.03e-05 2.00 | 5.24e-03 1.00
7.87e-03 | 1.88e-04 1.50 | 8.87e-02  0.50 1.48e-05 2.00 | 2.59e-03 1.00
3.92e-03 | 6.62e-05 1.50 | 6.26e-02  0.50 3.68e-06 2.00 | 1.29e-03  1.00
1.96e-03 | 2.33e-05 1.50 | 4.42e-02 0.50 9.17e-07 2.00 | 6.46e-04 1.00

Table 5: Numerical error and convergence orders of Example-3 with v="h2, N =31,63,127,255,511 and Q=

0\ [0.4,0.6].

h e1 Order e Order e3 Order ey Order
3.23e-02 | 2.73e-15 - 9.09e-15 - 2.25e-15 - 4.82e-15 -
1.59e-02 | 2.81e-15 - 8.96e-15 - 2.34e-15 - 4.88e-15 -
7.87e-03 | 2.82¢-15 - 9.28e-15 - 2.35e-15 - 4.99e-15 -
3.92e-03 | 2.85e-15 - 1.02e-14 - 2.37e-15 - 4.99¢-15 -
1.96e-03 | 2.86e-15 - 1.35e-14 - 2.39%-15 - 4.99¢-15 -

4.4 Example-4

In this example, we choose f =121,<p25+41y>025, Q= (0,1) and T =0Q) for (1.1). Its
viscosity solution is u, (x) =12xT1y<g25+ (4—4x)1y>0.25. The example is used to show the
advantage of the Algorithm 1 over Newton’s method. The viscosity is chosen as vj,=50h?.
As shown in Fig. 5, Newton’s method converges over two coarse grids, N=32 and N=64,
but does not converge for other finer grids. The reason may be that the viscosity becomes
too small to stabilize Newton’s method. In contrast, the Algorithm 1 presented in the
paper converges to the tolerance over all grids. The tolerance 10~* is utilized here. The
improvement comes from the better initial guess by the homotopy method. As shown in
Fig. 5, the decrease of the difference of two successive steps is slow only at the beginning
stage where v} ~h since the initial guess is always 0 in the computation. Nevertheless, the
algorithm converges in one or two steps to the tolerance for other halved vf. In fact, the
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Figure 5: Comparison between Newton's method (left) and Algorithm 1 (right) on Example-4: The horizontal
axis represents the number of iterations while the vertical axis is the L* difference between two successive steps.

Table 6: Numerical errors and convergence orders of Example-5 with v=hZ.

h e Order e Order es Order ey Order
1.25e-01 | 3.82e-02 - 1.03e-01 - 3.56e-02 - 5.49e-02 -
6.25e-02 | 1.07e-02 1.83 | 4.64e-02 1.15 | 1.01e-02 1.81 | 1.52e-02 1.85
3.13e-02 | 2.88e-03 190 | 2.25e-02 1.05 | 2.74e-03 1.89 | 3.98e-03 1.94
1.56e-02 | 7.50e-04 1.94 | 1.11e-02 1.01 | 7.15e-04 194 | 1.02e-03 1.96
7.81e-03 | 1.93e-04 1.96 | 5.56e-03 1.00 | 1.84e-04 195 | 2.61e-04 1.97

algorithm works for vj, = h? over all grids, but Newton’s method alone does not. And it
is worth to mention that this phenomenon also happens for many other problems, which
suggests that the Algorithm 1 is more robust.

4.5 Example-5

We choose Q=[—1,1] x[-1,1], T={(0,0) }, u,=cos(m+5x)+cos(w+5y) as the true solu-

tion of (1.1), and g=u,, which implies f=7 \/sin2(7T+ Zx)+sin?(7+Zy). The boundary
dQ) is the outflow boundary and no data is specified there. The “boundary” condition
on I can be enforced by specifying the values of all degree of freedoms in two ways as
Section 3.3. The convergence test is shown in Table 6. Although (0,0) is a singular point
where f(0,0) =0, all numerical errors are computed over the whole domain, i.e. Q=0,
since the singular point does not affect the convergence rate on the whole domain. The
numerical solution on the finest mesh (N =256) is shown in Fig. 6.

4.6 Example-6

We choose Q= [—1,1]x[-1,1], f=1, ¢=0, and I'= {(0.5c0s6,0.5sinh),0 € [0,277) }. The
exact solution u, is the distance function to the circle I'. It is clear that u, is not smooth at
the center (0,0) and the circle T, as indicate by a numerical solution shown in Fig. 7. We
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Figure 6: The 3D plot (left) and the contour plot (right) of numerical solution u;, of Example-5 on a uniform
mesh with N =256.

Table 7: Numerical errors and convergence orders of Example-6 with v=Fh2 by using the 1st method to enforce
the “boundary” condition.

h e1 Order e Order es Order ey Order
1.25e-01 | 6.43e-03 - 8.03e-02 - 5.19e-03 - 3.12e-02 -
6.25e-02 | 2.20e-03 155 | 3.83e-02 1.07 | 1.83e-03 150 | 1.00e-02  1.63
3.13e-02 | 6.18¢-04 1.83 | 1.86e-02 1.04 | 5.26e-04 1.80 | 2.53e-03  1.99
1.56e-02 | 1.64e-04 191 | 9.32e-03 1.00 | 1.40e-04 190 | 7.94e-04 1.68
7.81e-03 | 4.22e-05 196 | 4.70e-03 0.99 | 3.63e-05 195 | 247e-04 1.68

choose

O:=0\(d({(0,0)},0.1)ud(T,0.1)), (4.2)

where d(S,a) denotes the subset of () containing points having distance to SC() less than
a. This is because IP; finite element method is used in the algorithm and Q) should not
include d(T,0.1) as Example-3 in Section 4.3.

We also compare two methods discussed in Section 3.3 to enforce the “boundary”
condition on I': the first method is to specify all degrees of freedom with distance to I' less
than 2/1in, while the second method is to specify all degrees of freedom with distance to
I' less than 0.1. The convergence tests are shown in Tables 7 and 8. Both methods give the
expected accuracy. The second method produces a smaller numerical error since more
degrees of freedom near I' are specified.
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Figure 7: The 3D plot (left) and the 2D contour plot (right) of numerical solution u;, of Example-6 in 2D on a
uniform mesh N =256.

Table 8: Numerical errors and convergence orders of Example-6 with v=h? by using the 2nd method to enforce
the “boundary” condition.

h e Order e Order es Order ey Order
1.25e-01 | 1.25e-02 - 9.02e-02 - 1.02e-02 - 2.82e-02 -
6.25e-02 | 2.30e-03 244 | 3.83e-02 1.23 | 1.93e-03 240 | 1.03e-02 1.45
3.13e-02 | 5.54e-04 2.05 | 1.86e-02 1.04 | 4.64e-04 2.06 | 2.45e-03 2.08
1.56e-02 | 1.35e-04 2.03 | 9.32e-03 1.00 | 1.12e-04 2.04 | 7.57e-04 1.70
7.81e-03 | 3.36e-05 2.01 | 4.70e-03 0.99 | 2.78¢-05 2.02 | 2.39¢-04 1.66

4.7 Example-7

We use QO =[-2,2]?, f=1, ¢=0, and T' = {(£1+0.5c0s0,0.5sin6),0 € [0,27]}. The true
solution u, of (1.1) is the distance function to I', which consists of two circles. Unlike
Section 4.6, the true solution u, is singular not only at the centers and two circles, but
also along Y-axis. It suggests to choose () as

A=0\(d({(~1,0)},0.1)Ud({(1,0)},0.1) Ud(Y-axis,0.1)Ud(T,0.1)).

(4.3)

Numerical convergence tests confirms the desired behavior, as shown in Tables 9 and 10.
The profile of a numerical solution is plotted in Fig. 8.
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Table 9: Numerical errors and convergence orders of Example-7 with v="h2 by using the 1st method to enforce
the boundary condition.

h e1 Order e Order e3 Order ey Order
2.50e-01 | 3.33e-02 - 1.74e-01 - 2.63e-02 - 1.02e-01 -
1.25e-01 | 1.13e-02  1.56 | 6.75e-02  1.37 | 9.40e-03 149 | 3.12¢e-02 1.72
6.25e-02 | 3.31e-03 1.77 | 3.29¢-02 1.03 | 2.83e-03 1.73 | 1.00e-02 1.63
3.13e-02 | 9.01e-04 1.88 | 1.59¢-02 1.05 | 7.84e-04 1.86 | 2.53e-03 1.99
1.56e-02 | 2.34e-04 194 | 791e-03 1.01 | 2.05e-04 193 | 7.94e-04 1.68

Table 10: Numerical errors and convergence orders of Example-7 with v="h> by using the 2nd method to enforce

the boundary condition.

h e1 Order e Order e3 Order ey Order
2.50e-01 | 5.70e-02 - 1.92e-01 - 4.95e-02 - 1.11e-01 -
1.25e-01 | 1.65e-02 1.78 | 7.41e-02 1.38 | 1.43e-02 1.79 | 3.35e-02 1.73
6.25e-02 | 3.39e-03 229 | 3.30e-02 117 | 293e-03 229 | 1.03e-02 1.69
3.13e-02 | 8.36e-04 2.02 | 1.59e-02 1.05 | 7.20e-04 2.02 | 2.45e-03  2.08
1.56e-02 | 2.05e-04 2.02 | 7.92¢-03 1.01 | 1.76e-04 2.03 | 7.57e-04 1.70

05 % o5 115 2

-2 -15 -1
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Figure 8: The 3D plot (left) and the 2D contour (right) of numerical solution uj of Example-7 in 2D on a
uniform mesh N =256.

4.8 Example-8

We use Q=[-1,1]?, f=1, g=0, and T ={(0,0)}. The exact solution u, is the distance
function to the origin point (0,0). Since u, is singular at (0,0), we choose

Q=0\d({(0,0)},0.1). (4.4)
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Table 11: Numerical errors and convergence orders of Example-8 with v=Fh? by using the 1st method to enforce
the boundary condition.

h e1 Order e Order e Order ey Order
1.25e-01 | 2.95e-02 - 8.63e-02 - 2.86e-02 - 4.16e-02 -
6.25e-02 | 1.11e-02  1.41 | 4.15e-02  1.05 | 1.09e-02 1.39 | 1.50e-02  1.47
3.13e-02 | 3.99e-03 148 | 2.03e-02 1.03 | 3.93e-03 1.48 | 5.38e-03 1.48
1.56e-02 | 1.42e-03 1.49 | 1.05e-02 0.95 | 1.37e-03 151 | 2.01e-03 1.42
7.81e-03 | 5.29e-04 143 | 5.81e-03 0.86 | 4.78e-04 153 | 7.96e-04 1.34

Table 12: Numerical errors and convergence orders of Example-8 with v=h? using the 2nd method to enforce
the boundary condition.

h e Order e Order es Order ey Order
1.25e-01 | 4.46e-02 - 9.05e-02 - 4.36e-02 - 6.25e-02 -
6.25e-02 | 1.11e-02  2.00 | 4.15e-02 1.12 | 1.09e-02 1.99 | 1.50e-02  2.06
3.13e-02 | 2.61e-03 2.09 | 1.99¢-02 1.06 | 2.56e-03 210 | 3.74e-03  2.00
1.56e-02 | 6.50e-04 2.01 | 9.88e-03 1.01 | 6.36e-04 2.01 | 9.39e-04 2.00
7.81e-03 | 1.58e-04 2.04 | 4.92¢-03 1.00 | 1.55e-04 2.04 | 2.24e-04 2.07

Because all characteristic lines are generated from (0,0), its singularity is stronger than the
previous two examples in Section 4.6 and Section 4.7. Thus the first method of enforcing
I' condition is not sufficient to ensure the desired convergence rate as shown in Table 11.
However, the second method produces the full convergence rate as shown in Table 12. A
numerical solution is plotted in Fig. 9.

4.9 Example-9

We use ()= [—1,1]2, g=0,f=1and I as the curve shown in the Fig. 10. The true solution
u, is the distance function to I'. It is not smooth along I' and the shock wave S that is
indicated in Fig. 11 in bold line. Therefore we choose

Q=0\(d(T,0.1)Ud(S,0.1)) (4.5)

to measure the convergence of the algorithm. Because of three strong singular points
{(1,0),(0,1),(0,0) } producing infinite many characteristic lines, the first strategy to en-
force the boundary condition on I' does not produce the full convergence rate in Table 13,
but the second strategy obtains the desired convergence as shown in Table 14. Here, we
choose v, =5h? which is bigger than previous examples.
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Figure 9: The 3D plot (left) and the 2D contour plot (right) of numerical solution 1, of Example-8 in 2D on a
uniform mesh N =256.
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Figure 10: The curve I' and the shock & of Example-9.

4.10 Example-10

This example is a typical problem of shape-from-shading over the domain Q) = [0,1]?,
see e.g. [38,46]. The true solution u, is the shape function reconstructed from (1.1) with
f(x,y)=+/[cos(27tx)sin(27ty)]2 + [sin(271x) cos(27ty)]? which is related to the brightness
of the shape. The set I is chosen as

I =3QU{(0.25,0.25),(0.25,0.75),(0.75,0.25),(0.75,0.75),(0.5,0.5) }.
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Table 13: Numerical errors and convergence orders of Example-9 in 2D with v=5h? using the 1st method to

enforce the boundary condition.

h e1 Order e Order es Order e4 Order
2.50e-01 | 9.72e-02 - 2.30e-01 - 7.06e-02 - 2.69e-01 -
1.25e-01 | 4.88¢-02 0.99 | 1.12e-01  1.04 | 3.53e-02 1.00 | 1.43e-01 091
6.25e-02 | 1.93e-02 1.33 | 3.67e-02 1.61 | 1.30e-02 1.44 | 5.70e-02  1.33
3.13e-02 | 6.56e-03 156 | 1.48e-02 130 | 4.12e-03 1.66 | 1.93e-02 1.56
1.56e-02 | 2.11e-03  1.63 | 7.10e-03  1.07 | 1.25e-03 1.72 | 6.11e-03 1.66

Table 14: Numerical errors and convergence orders of Example-9 with v=>5h2 using the 2nd method to enforce

the boundary condition.

Figure 11: The 3D plot (left) and the 2D contour plot (right) of numerical solution 1), of Example-9 in 2D on

a uniform mesh N =256.

The function g is the restriction on I' of the exact shape function ui, i=1,2. Two cases are

considered

1_

a) u, =sin(27mx)sin(27y);

2 15 -1 -05 p 05 1 15

h e1 Order e Order es Order e4 Order
2.50e-01 | 2.06e-01 - 3.18e-01 - 1.74e-01 - 4.12e-01 -
1.25e-01 | 6.70e-02  1.63 | 1.31e-01 1.28 | 4.99e-02 1.81 | 1.84e-01 1.16
6.25e-02 | 1.95e-02 1.78 | 3.67e-02 1.84 | 1.32¢-02 191 | 5.70e-02  1.69
3.13e-02 | 5.12e-03 193 | 1.25e-02 155 | 3.36e-03 198 | 1.55e-02 1.87
1.56e-02 | 1.30e-03 197 | 5.74e-03 1.13 | 8.45e-04 1.99 | 3.95e-03 1.98
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Table 15: Numerical errors and convergence orders of Example-10 a) with v=20h2.
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h e1 Order e Order e3 Order ey Order
6.25e-02 | 1.19e-01 - 1.75e+00 - 9.32e-02 - 2.38e-01 -
3.13e-02 | 6.12e-02  0.97 | 1.10e+00 0.67 | 4.72e-02 098 | 1.17e-01  1.02
1.56e-02 | 1.94e-02 1.65 | 5.39e-01 1.03 | 1.52e-02 1.63 | 4.04e-02 154
7.81e-03 | 4.92e-03 198 | 2.58e-01 1.06 | 3.88¢-03 1.97 | 1.20e-02 1.75
3.91e-03 | 1.21e-03  2.02 1.30e-01 099 | 9.61e-04 2.02 | 4.10e-03 1.55

Table 16: Numerical errors and convergence orders of Example-10 b) with v=20h2.

h e1 Order e Order e3 Order ey Order
6.25e-02 | 9.84e-02 - 1.69e+00 - 7.63e-02 - 2.51e-01 -
3.13e-02 | 6.26e-02 0.65 | 1.07e+00 0.66 | 4.28e-02 0.83 | 1.67e-01  0.59
1.56e-02 | 2.43e-02 136 | 5.40e-01 0.99 | 1.64e-02 1.38 | 5.68e-02 1.55
7.81e-03 | 7.28e-03 1.74 | 2.66e-01 1.02 | 4.96e-03 1.73 | 1.51e-02 191
3.91e-03 | 1.96e-03  1.89 1.37e-01 096 | 1.34e-03 1.89 | 4.42e-03 1.78

max (|sin(27tx)sin(27ty)|,1+cos(27tx) cos(27my)),
b) ul= if [x+y—1/<3% and |x—y|[<3,

|sin(27tx)sin(27y)|, otherwise.

The zero condition of ¢ on d2 is implemented as usual finite element methods, while the
condition over other five points of I is enforced by the second method of Section 3.3 since
the strong singularity happens at I'. As shown in Tables 15 and 16, the convergence rates
are O(h?),0(h?)),0(h?) and O(h') in L% L!,L® norm and H'! seminorm, respectively.
However, the convergence rate of case b) is slightly smaller than case a) since u? is not as
smooth as u}. A numerical solution is shown in Fig. 12.

The comparison between the execution times of the proposed method and a DG fast
sweeping method is reported in Table 17. The second column of the table is from Table
3.13 of [45], where the same problem over the same mesh is considered. It shows that the
second order DG fast sweeping method is more efficient. However, the execution time of
the proposed method is also linear with respect to the mesh size, and more importantly,
it works for the unstructured mesh without additional special manipulations.

411 Example-11
In this example, we use QO =1[0,1]2, [=9Q), ¢=0, and u,, f are defined as

f=2 P22 7R,
D V= (1-22) (1-2);
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Figure 12: The 3D plot (upper) and the 2D contour plot (lower) of numerical solution u;, of Example-10 a) &
b) in 2D on a uniform mesh N =256.

f=vA=[x?+1-y])?
= (1= [x[) (1= y])-

The convergence tests are shown in Tables 18 and 19. A numerical solution on the struc-
tured mesh is shown in Fig. 13.
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Table 17: Numerical performance of Example-10a.

Execution time of the Execution time of
Mesh size DG Fast sweeping method [45] the proposed algorithm
(unit: sec) (unit: sec)
40 x40 0.22 0.314
80x 80 0.87 2.268
160160 3.40 13.127
320 % 320 13.62 73.245

(a) 2D Example-11a
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Figure 13: The 3D plot (upper) and the 2D contour plot (lower) of numerical solution 1, of Example-11 a) &

b) in 2D on a uniform mesh N =256.
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Table 18: Numerical errors and convergence orders of Example-11a with v=~Hh2,

h e1 Order e Order e Order ey Order
1.25e-01 | 2.13e-02 - 1.28e-01 - 1.70e-02 - 5.63e-02 -
6.25e-02 | 5.33e-03  2.00 6.20e-02 1.06 4.25e-03 2.01 1.51e-02 1.90
3.13e-02 | 1.33e-03  2.00 3.06e-02 1.02 1.06e-03  2.00 3.93e-03 1.94
1.56e-02 | 3.33e-04 2.00 1.52e-02 1.01 2.65e-04  2.00 1.02e-03 1.94
7.81e-03 | 8.33e-05 2.00 7.61e-03 1.00 6.63e-05  2.00 2.67e-04 1.94

Table 19: Numerical errors and convergence orders of Example-11b with v="Hh2.

h e1 Order e Order es3 Order ey Order
1.25e-01 | 5.32e-03 - 1.14e-01 - 2.94e-03 - 3.89¢e-02 -
6.25e-02 | 1.11e-03  2.25 5.88e-02  0.96 6.69e-04 2.14 9.52e-03  2.03
3.13e-02 | 2.56e-04 2.13 2.95e-02 1.00 1.62e-04 2.04 2.37e-03  2.00
1.56e-02 | 6.21e-05 2.04 1.47e-02 1.00 4.02¢-05 2.01 5.97e-04 1.99
7.81e-03 | 1.53e-05 2.01 7.38e-03 1.00 1.00e-05  2.00 1.50e-04 1.99

4.12 Example-12

23

In this example, we choose f =1 to compute the distance function to the boundary of
several irregular domains. Four different cases [5] are considered

1. L-shape domain: ()1 :=[0,2]?\[1,2]?;
2. Unit disk: Qp:={(x,y): x2+y><1};

3. Ellipse: Qz:={(x,y): ¥*+y*/4<1};

4. Half ellipse: Qg:={(x,y): x*+y*/4<1, x>0}.

The unstructured meshes are shown in Fig. 14. The numerical results are shown in
Figs. 15, 16, 17, and 18. The number of iterations and the execution time for the first
case is shown in Table 20, which shows that the method is almost close to the linear
computational complexity. It demonstrates the efficiency of the proposed method.

4.13 Example-13

In this example, the computational domain is the ellipse Q= {(x,y): x*+y*/4<1}. The
true solution is the distance function to the two foci (O,j:\/§), The “boundary condition”
over I'={(0,41/3)} is enforced by specifying the values of all degree of freedoms with
distance less than 0.1 to the two foci. The numerical results are shown in Fig. 19.
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Figure 14: Unstructured meshes used in four different domains of Example-12. The zoom-in meshes highlight
in specific sub-domains.

(a) 2D Example-12 on () (b) 20 contours of 2D Example-12 on ()

Figure 15: The 3D plot and the 2D contour plot of numerical solution uj; of Example-12 on () with a
unstructured mesh (69932 cells and 209796 nodes).
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(a) 2D Example-12 on () (b) 20 contours of 2D Example-12 on (2

Figure 16: The 3D plot and the 2D contour plot of numerical solution u; of Example-12 on (), with a
unstructured mesh (71672 cells and 215016 nodes).

X

(a) 2D Example-12 on )3 (b) 20 contours of 2D Example-12 on Q3

Figure 17: The 3D plot and the 2D contour plot of numerical solution u; of Example-12 on Q)3 with a
unstructured mesh (141094 cells and 423282 nodes).

Table 20: Numerical performance of Example-12 on L-shape domain.

. Total number of Number of Execution time
Mesh size h Degrees of freedom ] ] . )
Newton iterations homotopy reduction (unit: sec)
0.08 610 12 3 0.13
0.04 2271 17 4 0.62
0.02 8893 21 5 4.07
0.01 35367 30 6 21.86
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(a) 2D Example-12 on ()4 (b) 20 contours of 2D Example-12 on ()

Figure 18: The 3D plot and the 2D contour plot of numerical solution uj; of Example-12 on ()4 with a
unstructured mesh (70780 cells and 212340 nodes).
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(a) 2D Example-13 on )3 (b) 20 contours of 2D Example-13 on )3

Figure 19: The 3D plot and the 2D contour plot of numerical solution uj; of Example-13 on (3 with a
unstructured mesh (19726 cells and 19777 nodes).

4.14 Example-14

In this example, an anisotropic Eikonal equation is considered

\/au%C +bu§ —2cuuy=1, (xy)cQ= (—2,2)?,
1(0,0)=0,

(4.6)
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Figure 20: Numerical solution u;, of Example-14 over a structured mesh N =101 and its 2D contour plot.

where a=b=1, c=0.9. The example is from [35] where a fast sweeping method is designed
for structured and unstructured meshes. The exact solution u, has the following form

2 e — 2 h? —
x\/ap +b> —2cpq u*(x,y):y\/ap +bgq 2cpq,

ap—cq bqg—cp ®n

() =
where p =cy+bx and g =cx+ay. It is used to specify the value of degrees of freedom
with distance less than 0.1 to the center (0,0) since it is a singular point of the problem.
We solve the problem on a structured mesh with 100x 100 x 2 triangle cells and plot the
solutions in Fig. 20.

4.15 Example-15

In this example, we compute the 3D distance functions to the two spheres S with center
(£1,0,0) and radius 0.5 over the domain Q:=[—2,2]3\ (S, US_). The unstructured mesh
and several isosurfaces are shown in Fig. 21. The efficiency of the method is shown in
Table 21, which indicates that the method is close to the linear computational complexity.

Table 21: Numerical performance of Example-15.

. Total number of Number of Execution time
Mesh size h Degrees of freedom ) ] . )
Newton iterations homotopy reduction (unit: sec)
0.4 24464 10 2 1.22
0.2 220832 10 2 7.81
0.1 1773828 11 2 78.24
0.05 14144920 16 3 1098.87
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) u=16 (h) u=24

Figure 21: Part of the mesh with h=0.05 and some isosurfaces of the numerical solution of Example-15.
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5 Conclusion

We propose a continuous finite element method based on the vanishing viscosity strategy
to solve the static Eikonal equation. The new method utilizes the homotopy method and
Newton’s method to efficiently solve the discretized nonlinear system. The homotopy
method guarantees the convergence of the nonlinear solver for all v, =ch? in all examples
and over all grids, while Newton’s method usually converges for just special big v, =ch
on very coarse grids, or simple 1D examples only. Extensive numerical examples show
the second order convergence of the algorithm problems on structured or unstructured
meshes. In this paper, we focus on the linear finite element method only. We will ex-
tended it to IP; finite element along with the high order viscosity as v, = O(k*), which
may require more advanced homotopy techniques and will be investigated with further
efforts in the future.
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