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We construct high order fast sweeping numerical methods for comput-
ing viscosity solutions of static Hamilton–Jacobi equations on rectangular
grids. These methods combine high order weighted essentially non-oscillatory
(WENO) approximations to derivatives, monotone numerical Hamiltonians and
Gauss–Seidel iterations with alternating-direction sweepings. Based on well-
developed first order sweeping methods, we design a novel approach to incorpo-
rate high order approximations to derivatives into numerical Hamiltonians such
that the resulting numerical schemes are formally high order accurate and inherit
the fast convergence from the alternating sweeping strategy. Extensive numeri-
cal examples verify efficiency, convergence and high order accuracy of the new
methods.

KEY WORDS: fast sweeping methods; WENO approximation; high order
accuracy; static Hamilton–Jacobi equations; Eikonal equations.

1. INTRODUCTION

We consider the static Hamilton–Jacobi equations{
H(φx1 , . . . , φxd , x)=0, x ∈�\�,
φ(x)=g(x), x ∈�⊂�, (1.1)

where � is a computational domain in Rd and � is a subset of �. The
Hamiltonian H is a nonlinear Lipschitz continuous function. Such Ham-
ilton–Jacobi (H–J) equations appear in many applications, such as optimal
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control, differential games, image processing and computer vision, and
geometric optics.

A very important member of the family of the static Hamilton–Jacobi
equations is the Eikonal equation. The standard isotropic Eikonal equation is{

|∇φ(x)|=f (x), x ∈�\�,
φ(x)=g(x), x ∈�⊂�, (1.2)

where f (x) is a positive function.
Since the boundary value problems (1.1), (1.2) are nonlinear first

order partial differential equations, we may apply the classical method of
characteristics to solve these equations in phase space; namely, consider
the gradient components as independent variables and solve ODE sys-
tems to follow the propagation of characteristics. Although the charac-
teristics may never intersect in phase space, their projection into physical
space may intersect so that the solution in physical space is not uniquely
defined at these intersections. By mimicking the entropy condition for
hyperbolic conservation laws to pick out a physically relevant solution,
Crandall and Lions [7] introduced the concept of viscosity solutions for
Hamilton–Jacobi equations so that a global, physically relevant solution
can be defined for such first order nonlinear equations. Moreover, mono-
tone finite difference schemes are developed to compute such viscosity
solutions stably.

There are mainly two classes of numerical methods for solving static
Hamilton–Jacobi equations. The first class of numerical methods is based
on reformulating the equations into suitable time-dependent problems.
Osher [22] provides a natural link between static and time-dependent
Hamilton–Jacobi equations by using the level-set idea and thus raising the
problem one-dimensional higher. The zero-level set of the viscosity solu-
tion ψ of the time-dependent H–J equation

ψt +H(ψx1 , . . . ,ψxd , x)=0 (1.3)

at time t is the set of x such that φ(x) = t of (1.1), where the
Hamiltonian H is homogeneous of degree one. In the control framework, a
semi-Lagrangian scheme is obtained for Hamilton–Jacobi equations by
discretizing in time the dynamic programming principle [9,10]. Another
approach to obtaining a “time” dependent H–J equation from the static
H–J equation is using the so called paraxial formulation in which a pre-
ferred spatial direction is assumed in the characteristic propagation [8,
11,17,27,28]. High order numerical schemes are well developed for the
time dependent H–J equation (1.3) on structured and unstructured meshes



Static Hamilton–Jacobi Equations

[1,2,4–6,13,14,16,20,23–25,39]; see a recent review on high order numerical
methods for time dependent H–J equations by Shu [35]. Due to the finite
speed of propagation and the CFL condition for the discrete time step size,
the number of time steps has to be of the same order as that for one of the
spatial dimensions so that the solution converges in the entire domain.

The other class of numerical methods for static H–J equations is
to treat the problem as a stationary boundary value problem: discretize
the problem into a system of nonlinear equations and design an efficient
numerical algorithm to solve the system. Among such methods are the
fast marching method and the fast sweeping method. In the fast march-
ing method [12,32–34,38], the solution is updated by following the cau-
sality in a sequential way; i.e., the solution is updated pointwise in the
order that the solution is strictly increasing (decreasing); hence two essen-
tial ingredients are needed in the algorithm: an upwind difference scheme
and a heap-sort algorithm. The resulting complexity of the fast marching
method is of order O(N logN) for N grid points, where the logN fac-
tor comes from the heap-sort algorithm. In the fast sweeping method [3,
18,19,37,40,41], Gauss–Seidel iterations with alternating direction sweep-
ings are incorporated into upwind finite differences. In contrast to the fast
marching method, the fast sweeping method follows the causality along
characteristics in a parallel way; i.e., all characteristics are divided into a
finite number of groups according to their directions and each Gauss–Sei-
del iteration with a specific sweeping ordering covers a group of charac-
teristics simultaneously; no heap-sort is needed. The fast sweeping method
is optimal in the sense that a finite number of iterations is needed [40], so
that the complexity of the algorithm is O(N) for a total of N grid points;
i.e., the number of iterations is independent of the grid size. The algorithm
is extremely simple to implement.

Both the fast marching method and the fast sweeping method are
extremely efficient algorithms for solving static Hamilton–Jacobi equa-
tions. In fact both of them solve the same system of discretized equations
and try to order the nonlinear system of equations following the causal-
ity along characteristics. Here we point out a few interesting differences
between these two methods. For the complexity, the fast marching method
is O(N logN) and the fast sweeping method is O(N). However the con-
stant in the complexity for the fast marching method does not depend
on the equation while the constant in the complexity for the fast sweep-
ing method depends on the equation (but not on the grid size) [40]. On
a given discretization which method is faster depends on the equation. In
practice, they are more or less comparable. As to the ordering philoso-
phy, these two methods are different. The fast marching method sorts out
the ordering on the fly using the heap-sort algorithm; a strict causality
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principle has to exist and to be enforced to order the equations; i.e., equa-
tions solved later has no influence on the previous equations. On the other
hand, the fast sweeping method is in the general framework of iterative
methods. If a strict causality exists (such as in Eikonal equations), it can
be enforced in the iterative procedure, which guarantees convergence in a
finite number of alternating sweepings. Therefore, the iterative framework
is more robust and flexible for general equations and high order methods.
With alternating ordering, the iterations can follow causality along char-
acteristics, and handle global relaxation and smoothing effects as well. For
examples, even if there is no strict causality, such as when the Hamiltonian
is not convex, or there are viscosity terms (e.g., the solutions are coupled
globally), or the numerical method (e.g., high order method) is not mono-
tone, it is still possible that the iteration will converge. Another interesting
remark is on the convergence mechanism for iterative methods. In general,
the convergence of iterative methods is due to a certain contraction prop-
erty as in the fixed point iteration. Infinite number of iterations are needed
for full convergence. When a strict causality exists and is enforced in the
fast sweeping method as in Eikonal equations, the convergence is achieved
in a finite number of iterations due to the alternating sweeping order. In
general, different sweeping orders will not change the contraction property
of an iterative method. So both mechanisms can be in effect in more gen-
eral situations.

In many applications, the numerical solutions from H–J equations
are used to compute other quantities and thus their numerical deriva-
tives are needed as well; for example, in geometrical optics the derivatives
of travel-times are used to compute amplitudes [29]. In this paper,
we develop a quite general framework for constructing high order fast
sweeping methods. We adapt high order schemes for time dependent
Hamilton–Jacobi equations in [14,24,39] to the static H–J equations in
a novel way. First-order sweeping schemes are used as building blocks in
our high order methods. The high order accuracy in our schemes results
from the high order approximations for the partial derivatives because
the monotone numerical Hamiltonians are Lipschitz continuous and con-
sistent with the Hamiltonian H in the PDEs. In particular, we use the
WENO approximations [14,15], since the weighted essentially nonoscilla-
tory (WENO) approximations have uniform high order accuracy, and are
more robust and efficient than other schemes such as ENO schemes.

The algorithm is developed in Section 2. First we describe the algo-
rithm for the Eikonal equation, then we extend it to the general static
Hamilton–Jacobi equations. In Section 3, extensive numerical experiments
are performed to demonstrate accuracy and fast convergence of the
algorithms. High order accuracy in smooth regions and good resolution
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of derivative singularities are observed. Concluding remarks are given in
Section 4.

2. HIGH ORDER SWEEPING METHODS

We consider the two dimensional problems for simplicity. The exten-
sion to higher dimensions is straightforward.

2.1. Principles for Constructing Sweeping Methods

To compute the viscosity solution for Eq. (1.1), we first discretize the
domain �. Suppose that a rectangular mesh �h covers the computational
domain �. Let (i, j) denote a grid point in �h, i.e., �h = {(i, j),1 � i �
I,1�j�J }, and φi,j denote the numerical solution at the grid point (i, j).
hx and hy denote uniform grid sizes in the x-direction and the y-direction,
respectively; to simplify the notation, we take hx =hy =h.

Next we discretize the Hamiltonian H by a monotone numerical
Hamiltonian Ĥ [24]:{

Ĥ (φ−
x , φ

+
x ;φ−

y , φ
+
y )ij =0, (i, j)∈�h \�h,

φij =gij , (i, j)∈�h⊂�h.
(2.1)

Since the H–J equation is in general nonlinear, we end up with a
coupled nonlinear system for unknown solutions at those mesh points.
Because the boundary values are usually given on irregular geometries,
it is very involved to solve the nonlinear system globally. Therefore, we
appeal to construct an iterative method based to local solvers. An essential
ingredient for constructing a sweeping method is an efficient local solver
which expresses the value at the standing mesh point in terms of its neigh-
boring values. If the Godunov’s Hamiltonian is the numerical Hamiltonian
in Eq. (2.1), then it is straightforward to carry out the local solution
procedure for the Eikonal equation (1.2); in fact, the popularity of the
Fast Marching method [32,38] and Fast Sweeping method [40] is more
or less due to such efficient local solvers. Furthermore, if the Godunov’s
Hamiltonian is the numerical Hamiltonian in Eq. (2.1), then it is also pos-
sible to carry out the local solution procedure for H–J equations (1.2)
with convexity in the gradient component of Hamiltonians; see [37]. But
if the Hamiltonian is nonconvex in the gradient component, then it is
extremely involved to carry out the minmax optimization resulting from
the Godunov monotone Hamiltonian. On the other hand, if the Lax–
Friedrichs Hamiltonian is utilized, then it is extremely simple to carry out
the local solution process, no matter whether the Hamiltonian is convex
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or not, no matter how complicated the Hamiltonian could be; see [18]. In
passing, we note that it is also possible to use the Roe-entropy fix type
numerical Hamiltonian to discretize the H–J equation, and it is expected
that the resulting scheme will interpolate the behavior of Godunov and
Lax–Friedrichs schemes.

Once a local solver is in place, symmetrical Gauss–Seidel nonlin-
ear iterative methods can be applied immediately to obtain efficient fast
sweeping methods.

2.2. Eikonal Equations

We take d=2 in (1.2):

{√
φ2
x +φ2

y =f (x, y), (x, y)∈�⊂R2,

φ(x, y)=g(x, y), (x, y)∈�⊂�.
(2.2)

A first-order Godunov upwind difference scheme is used to discretize
the PDE (2.2) as in [40]:

⎡
⎣
⎛
⎝φi,j −φ(xmin)

i,j

h

⎞
⎠

+⎤
⎦

2

+
⎡
⎣
⎛
⎝φi,j −φ(ymin)

i,j

h

⎞
⎠

+⎤
⎦

2

=f 2
i,j , (2.3)

where φ(xmin)
i,j =min(φi−1,j , φi+1,j ), φ

(ymin)
i,j =min(φi,j−1, φi,j+1) and

(x)+ =
{
x, x >0,
0, x�0.

(2.4)

In order to construct a higher order scheme, we need to approximate the
derivatives φx and φy with high order accuracy. We choose to use the pop-
ular WENO approximations developed in [14,15]. To illustrate the feasi-
bility of the approach, we take the third order rather than the fifth order
WENO approximations; one certainly can replace the third order WENO
with the fifth order or even higher order WENO approximations. The
interpolation stencil for the third order WENO scheme is shown in Fig. 1.
(φx)i,j and (φy)i,j denote approximations for φx and φy at the grid point
(i, j), respectively. The approximation for φx at the grid point (i, j) when
the wind “blows” from the left to the right is

(φx)
−
i,j = (1−w−)

(
φi+1,j −φi−1,j

2h

)
+w−

(
3φi,j −4φi−1,j +φi−2,j

2h

)
, (2.5)
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φx
+-

i-2 i-1 i i+1 i+2

φx

Fig. 1. Stencil of the third-order WENO Scheme.

where

w− = 1

1+2r2−
, r− = ε+ (φi,j −2φi−1,j +φi−2,j )

2

ε+ (φi+1,j −2φi,j +φi−1,j )
2
; (2.6)

on the other hand, the approximation for φx at the grid point (i, j) when
the wind “blows” from the right to the left is

(φx)
+
i,j = (1−w+)

(
φi+1,j −φi−1,j

2h

)
+w+

(−φi+2,j +4φi+1,j −3φi,j
2h

)
,

(2.7)

where

w+ = 1

1+2r2+
, r+ = ε+ (φi+2,j −2φi+1,j +φi,j )2

ε+ (φi+1,j −2φi,j +φi−1,j )
2
. (2.8)

Similarly we define (φy)
−
i,j and (φy)

+
i,j .

Next we have to incorporate these high order approximations
(2.5)–(2.8) for derivatives into monotone numerical Hamiltonians. In the
case of Eikonal equations, the numerical Hamiltonian under consideration
is (2.3). In order to achieve this, we notice that the following identities hold:

(φx)
−
i,j =

φi,j − [φi,j −h · (φx)−i,j ]

h
, (φx)

+
i,j =

[φi,j +h · (φx)+i,j ]−φi,j
h

, (2.9)

(φy)
−
i,j =

φi,j − [φi,j −h · (φy)−i,j ]

h
, (φy)

+
i,j =

[φi,j +h · (φy)+i,j ]−φi,j
h

. (2.10)

According to the definitions of (φx)
−
i,j and (φx)

+
i,j , φi,j − h · (φx)−i,j can

be considered as an approximation to φi−1,j while φi,j + h · (φx)+i,j can
be considered as an approximation to φi+1,j . Similarly in (2.10), φi,j −h ·
(φy)

−
i,j and φi,j +h · (φy)+i,j can be considered as approximations to φi,j−1

and φi,j+1, respectively. Replacing φi−1,j , φi+1,j , φi,j−1, φi,j+1 with these
approximations in Eq. (2.3), we have the following higher order schemes,

⎡
⎣
⎛
⎝φnew

i,j −φ(xmin)
i,j

h

⎞
⎠

+⎤
⎦

2

+
⎡
⎣
⎛
⎝φnew

i,j −φ(ymin)
i,j

h

⎞
⎠

+⎤
⎦

2

=f 2
i,j (2.11)
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where {
φ
(xmin)
i,j =min(φold

i,j −h · (φx)−i,j , φold
i,j +h · (φx)+i,j ),

φ
(ymin)
i,j =min(φold

i,j −h · (φy)−i,j , φold
i,j +h · (φy)+i,j ).

(2.12)

Here φnew
i,j denotes the to-be-updated numerical solution for φ at the grid point

(i, j), andφold
i,j denotes the current old value forφ at the same grid point. When

WENO approximations for derivatives (φx)
−
i,j , (φx)

+
i,j , (φy)

−
i,j , (φy)

+
i,j in (2.12)

are computed according to formulae (2.5)–(2.8), we always use the newest avail-
able values for φ in the interpolation stencils according to the philosophy of
Gauss–Seidel type iterations. Of course, since we have not updated φi,j yet,
φold
i,j is used in (2.5)–(2.8). The solution for Eq. (2.11) is:

φnew
i,j =

⎧⎪⎨
⎪⎩

min(φ(xmin)
i,j , φ

(ymin)
i,j )+fi,j h, |φ(xmin)

i,j −φ(ymin)
i,j |�fi,j h,

φ
(xmin)
i,j +φ(ymin)

i,j +
√

2f 2
i,j h

2−(φ(xmin)
i,j −φ(ymin)

i,j )2

2 , otherwise. (2.13)

Remark 1. We introduce the high order accuracy by replacing
φi−1,j , φi+1,j , φi,j−1, φi,j+1 with φi,j − h · (φx)−i,j , φi,j + h · (φx)+i,j , φi,j − h ·
(φy)

−
i,j , φi,j +h · (φy)+i,j , respectively, where (φx)

−
i,j , (φx)

+
i,j , (φy)

−
i,j , (φy)

+
i,j are

higher order WENO approximations for partial derivatives. When the iter-
ations converge, we have solved the system√

max{[(φx)−i,j ]+, [−(φx)+i,j ]+}2 +max{[(φy)−i,j ]+, [−(φy)+i,j ]+}2 = fi,j ,

1� i� I,1� j �J. (2.14)

Since the Godunov numerical Hamiltonian is Lipschitz continuous with
respect to all of its arguments, i.e., all of these high order approximations
for partial derivatives, our schemes achieve the same formal higher order
accuracy as the approximations for partial derivatives do.

Remark 2. The first order Godunov fast sweeping scheme (2.3) is
purely upwind and monotone, hence the fast convergence is guaranteed
(see [40]). There is no such monotonicity for the higher order scheme
(2.11)–(2.12). A reliable initial guess is needed for the fast convergence of
the Gauss–Seidel iterations. In other words, to achieve fast convergence
we wish to have φi,j − h · (φx)−i,j , φi,j + h · (φx)+i,j , φi,j − h · (φy)−i,j , φi,j + h ·
(φy)

+
i,j as good approximations to φi−1,j , φi+1,j , φi,j−1, φi,j+1, respectively,

so that the causality of the true solution is approximately right. In the
implementations of Godunov based high order fast sweeping schemes, we
use the first order Godunov fast sweeping scheme, which is robust and effi-
cient, to provide a good initial guess. Since the first order Godunov fast
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sweeping scheme converges in just a few iterations, it is efficient to initial-
ize the solution by such a scheme.

We summarize the higher order Godunov fast sweeping method for
the eikonal equation (2.2) as follows:

1. Initialization: according to the boundary condition φ(x, y) =
g(x, y), (x, y)∈�, assign exact values or interpolated values at grid
points whose distances to � are less than or equal to (n − 1)h,
where n is the number of grid points in the small stencil in WENO
approximations. For example, n = 3 for the third order WENO
approximations. These values are fixed during iterations. The solu-
tion from the first-order Godunov fast sweeping method is used as
the initial guess at all other grid points.

2. Iterations: solve the discretized nonlinear system (2.11) by Gauss–
Seidel iterations with four alternating direction sweepings:

(1) i=1 : I, j =1 :J ;
(2) i= I : 1, j =1 :J ;
(3) i= I : 1, j =J : 1;
(4) i=1 : I, j =J : 1.

Equations (2.5)–(2.8) and Eqs. (2.12), (2.13) are used to solve (2.11).
High order extrapolations are used for the ghost points when calculat-
ing the high order WENO approximations of derivatives (2.5)–(2.8) for
grid points on the boundary of the computational domain.

3. Convergence: if

||φnew −φold||L1 � δ,

where δ is a given convergence threshold value and || · || denotes the
L1 norm, the algorithm converges and stops.

Remark 3. In the first order fast sweeping method [40], at each grid
point (i, j), when the solution, denoted by φ̄, of (2.3) is calculated from
the current values of its neighboring grid points, φnew

i,j = min(φold
i,j , φ̄) is

enforced so that the solution at each grid point is monotonically decreas-
ing from an initially assigned large value. The reason for imposing this
condition is that the first order scheme is monotone, thus the numeri-
cal solution at any iteration cannot get smaller than the numerical steady
state solution for the discretized nonlinear system. However, for higher
order schemes there is no such monotonicity any more. The solution
may oscillate around the steady state solution. The oscillations are small.
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However, we can NOT force φnew
i,j = min(φold

i,j , φ̄) as in the first order
scheme. Otherwise, the order of accuracy of the schemes will deteriorate.
Our numerical experiments have verified this.

Remark 4. In general the solution of this nonlinear PDE is not
smooth. So the high order accuracy of our numerical schemes may not
be achieved at singularities. However, the main issue is whether the break-
down at singularities will pollute the whole solution since errors can prop-
agate along characteristics. There are two different scenarios for this issue.
If the singularities are caused by the collision of characteristics analo-
gous to the formation of shocks in hyperbolic conservation laws, the errors
incurred at these singularities will not pollute solutions in other regions
since no characteristics flow out of such singularities. If there are char-
acteristics flowing out of the the singularities analogous to rarefaction
waves in hyperbolic conservation laws, there will be pollution effects in the
rarefaction wave region and more refined meshes are needed near these
singularities to achieve uniform error bounds; see [29]. For the bound-
ary value problem (2.2) all characteristics emanate from the boundary �.
If there are singularities, such as corners or point sources, from which
characteristics emanate, we assign exact solutions to a fixed local domain
around those singularities when we refine the mesh, so that the high
order convergence of the scheme can be observed. The above observation
will be verified and discussed in more detail in the section for numerical
examples.

Remark 5. Another important issue is to compare the computational
cost of our higher order methods with that of the first order method. Sup-
pose that the number of grids in each direction is N and the space dimen-
sion is d for the pth order method. To achieve the same accuracy for a
first order method, we need Np grid points in each direction. Since the
first order method converges in a finite number of iterations independent
of grid size, the computation cost is O(Npd). So as long as the number of
iterations for the pth order method does not grow faster than N(p−1)d , we
reduce the computational cost by using the high order method. For exam-
ple, if we take the third order method in two dimensions, we can see from
our numerical examples in Section 3 that the number of iterations is far
fewer than N4.

2.3. General Static Hamilton–Jacobi Equations

The idea of constructing high order sweeping methods for Eikonal
equations can be straightforwardly extended to general static Hamilton–
Jacobi equations
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{
H(φx,φy)=f (x, y), x ∈�\�,
φ(x, y)=g(x, y), x ∈�⊂�. (2.15)

To discretize a general Hamiltonian H(φx,φy), we may use the
Lax-Friedrichs numerical Hamiltonian [24] which is the simplest among all
monotone numerical Hamiltonians:

ĤLF (u−, u+;v−, v+) = H

(
u− +u+

2
,
v− +v+

2

)

−1
2
αx(u+ −u−)− 1

2
αy(v+ −v−) (2.16)

where

αx = max
A�u�B
C�v�D

|H1(u, v)|, αy = max
A�u�B
C�v�D

|H2(u, v)|. (2.17)

Here Hi(u, v) is the partial derivative of H with respect to the ith argu-
ment, or the Lipschitz constant of H with respect to the ith argument.
[A,B] is the value range for u±, and [C,D] is the value range for v±.

Kao, Osher and Qian constructed the first order Lax-Friedrichs
sweeping schemes for general static Hamilton–Jacobi equations in [18]

φnew
i,j =

(
1

αx
hx

+ αy
hy

)[
f −H

(
φi+1,j −φi−1,j

2hx
,
φi,j+1 −φi,j−1

2hy

)

+αx
φi+1,j +φi−1,j

2hx
+αy

φi,j+1 +φi,j−1

2hy

]
. (2.18)

Following the idea in Section (2.2), we replace φi−1,j , φi+1,j , φi,j−1 and
φi,j+1 with φi,j −hx · (φx)−i,j , φi,j +hx · (φx)+i,j , φi,j −hy · (φy)−i,j and φi,j +
hy · (φy)+i,j , respectively, in (2.18), where (φx)

−
i,j , (φx)

+
i,j , (φy)

−
i,j , and (φy)

+
i,j

are higher order WENO approximations for partial derivatives of φ. Then
the high order Lax-Friedrichs sweeping schemes for static H–J equations
can be written as

φnew
i,j =

(
1

αx
hx

+ αy
hy

)[
f −H

(
(φx)

−
i,j + (φx)+i,j

2
,
(φy)

−
i,j + (φy)+i,j

2

)

+ αx
2φold

i,j +hx((φx)+i,j − (φx)−i,j )
2hx

+αy
2φold

i,j +hy((φy)+i,j − (φy)−i,j )
2hy

]
,

(2.19)

or, written more compactly,
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φnew
i,j =

(
1

αx
hx

+ αy
hy

)[
f −H

(
(φx)

−
i,j + (φx)+i,j

2
,
(φy)

−
i,j + (φy)+i,j

2

)

+αx
(φx)

+
i,j − (φx)−i,j

2
+αy

(φy)
+
i,j − (φy)−i,j

2

]
+ φold

i,j , (2.20)

where φnew
i,j denotes the to-be-updated numerical solution for φ at the grid

point (i, j), and φold
i,j denotes the current old value for φ at the same grid

point. When WENO approximations for derivatives (φx)
−
i,j , (φx)

+
i,j , (φy)

−
i,j ,

(φy)
+
i,j in (2.20) are calculated using formulae (2.5)–(2.8), we always use

the newest value that we currently have for φ in the interpolation stencils
according to the Gauss–Seidel type iteration. Of course, since we have not
updated φi,j yet, φold

i,j is used in (2.5)–(2.8).
Since the Lax-Friedrichs numerical Hamiltonian is not a purely

upwind flux, the causality along the characteristics is not strictly enforced.
Thus the Lax-Friedrichs sweeping may take more iterations than the
Godunov sweeping in general. However, it is easy to implement the Lax-
Friedrichs Hamiltonians for more general equations. From our numerical
experiments, the Lax-Friedrichs high order sweeping is more robust with
respect to the initial guess than the Godunov high order sweeping. In our
implementations we use big values, rather than the results from the first
order Lax-Friedrichs fast sweeping method, as the initial guess in the high-
order Lax-Friedrichs fast sweeping methods. The number of iterations is
almost the same as the first order version in [18].

The high order Lax-Friedrichs fast sweeping methods for general
static Hamilton–Jacobi equations are summarized as follows:

1. Initialization: according to the boundary condition φ(x, y) =
g(x, y), (x, y) ∈ �, assign exact values or interpolated values at
grid points whose distances to � are less than or equal to (n−1)h,
where n is the number of grid points in the small stencil in WENO
approximations. For example, n = 3 for the third order WENO
approximations. These values are fixed during iterations. Big values
are used as the initial guess at all other grid points.

2. Iterations: update φnew
i,j in (2.20) by Gauss–Seidel iterations with

four alternating direction sweepings:

(1) i=1 : I, j =1 :J ;
(2) i= I : 1, j =1 :J ;
(3) i= I : 1, j =J : 1;
(4) i=1 : I, j =J : 1.
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WENO approximations (2.5)–(2.8) are used in (2.20). Linear
Extrapolations are used for the ghost points when calculating the
high order WENO approximations of derivatives (2.5)–(2.8) for
grid points on the boundary of the computational domain.

3. Convergence: if

||φnew −φold||L1 � δ,

where δ is a given convergence threshold value, the algorithm con-
verges and stops.

Remark 6. High order approximations for derivatives can also be incor-
porated into other monotone numerical Hamiltonians in the same way as
done here for Godunov and Lax-Friedrichs numerical Hamiltonians.

Remark 7. From our numerical experiments, the iterations needed for
the Godunov based high order scheme to converge are fewer than those
for the Lax-Friedrichs based high order scheme; however, which one to
choose really depends on how easy to carry out the local solution proce-
dure.

Remark 8. In our implementation for the third order Lax-Friedrichs
sweeping scheme, we use linear extrapolation at the boundary points if
there is no prescribed influx or other boundary conditions. It seems that
high order extrapolations with bad initial guesses may cause instability
because the causality along characteristics may not be followed correctly
and no monotonicity exists for high order extrapolations. If the infor-
mation is flowing out of the boundary, the low order accuracy at the
boundary will not affect the accuracy in the interior, and the boundary
points are excluded when we measure the error of our numerical solu-
tions. But for the high order Godunov sweeping scheme, the initial guesses
are the solutions from the first order scheme, so high order extrapolation
boundary conditions are very robust. A fourth order extrapolation bound-
ary condition is used in our implementation for the third order Godunov
sweeping scheme.

3. NUMERICAL EXAMPLES

We apply the high order fast sweeping methods to some typical two
dimensional and three dimensional problems. Third order WENO approx-
imations are used. In all the examples, the threshold value at which the
iteration stops is taken to be δ=10−11. One iteration count includes four
alternating sweepings for two-dimensional problems and eight alternating
sweepings for three dimensional problems.
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Example 1. Eikonal equation (2.2) with

f (x, y)= π

2

√
sin2(π + π

2
x)+ sin2(π + π

2
y), (3.1)

and � is the point (0,0). The computational domain is [−1,1] × [−1,1].
The exact solution for this problem is

φ(x, y)= cos
(
π + π

2
x
)

+ cos
(
π + π

2
y
)
. (3.2)

The Godunov Hamiltonian is used. Since the solution is smooth, errors
and convergence rates in Table I indicate that the third order accuracy is
obtained in the whole domain.

Example 2. Eikonal equation (2.2) with f (x, y)= 1. The computa-
tional domain is �= [−1,1] × [−1,1], and � is a circle of center (0,0)
and radius 0.5. The exact solution is the distance function to the circle
�; thus the solution has a singularity at the center of the circle to which
the characteristics converge. The Godunov Hamiltonian is used. Table II
shows the errors and the third order accuracy in the smooth region (0.15
distance away from the center) of the solution. Table III shows the accu-
racy for the whole domain. Because of the singularity in the solution, the
scheme achieves only the first order accuracy in the L∞ norm; however,
the L1 accuracy for the whole domain still indicates the third order accu-
racy because the first order error is only made at the center (which is of
measure O(h2)) and there is no pollution effect. This indicates that the
L1 norm might be a more appropriate measure for the convergence rate
of approximate solutions than the L∞ norm. Theoretically, this was con-
cluded by Lin–Tadmor [21].

Example 3. Case 1. 2-D Eikonal equation (2.2) with f (x, y)=1.
The computational domain is �= [−3,3] × [−3,3]; � consists of two

circles of equal radius 0.5 with centers located at (−1,0) and (
√

1.5,0),
respectively. The exact solution is the distance function to �. The singular
set for the solution is composed of the center of each circle and the line that

Table I. Smooth Solution. Godunov Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

40 × 40 1.89E−4 – 6.32E−4 – 36
80 × 80 1.31E−5 3.85 3.08E−5 4.36 27
160 × 160 6.75E−7 4.28 1.19E−6 4.69 33
320 × 320 6.89E−8 3.29 1.14E−7 3.38 43
640 × 640 8.47E−9 3.02 1.40E−8 3.03 70
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Table II. � Consists of a Circle. Smooth Region 0.15 Away from the
Derivative Singularity. Godunov Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

80 × 80 1.70E−6 – 1.27E−4 – 19
160 × 160 2.64E−7 2.69 3.70E−6 5.10 23
320 × 320 3.98E−8 2.73 1.16E−6 1.68 31
640 × 640 5.03E−9 2.99 1.52E−7 2.93 48

Table III. � Consists of a Circle. Errors for the Whole Domain. Godunov
Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

80 × 80 7.59E−6 – 5.87E−3 – 19
160 × 160 7.54E−7 3.33 2.80E−3 1.07 23
320 × 320 8.41E−8 3.16 1.27E−3 1.14 31
640 × 640 1.27E−8 2.72 5.34E−4 1.25 48

is equally distant to the two circles. All of these singularities correspond to
the intersection of characteristics. The Godunov Hamiltonian is used. Table
IV shows that the third order accuracy is obtained in the smooth region,
where the errors are measured 0.15 distance away from the singular set.
Table V shows that the scheme achieves only the first order accuracy in the
L∞ norm due to the singularity in the solution; moreover, the L1 error in
the whole domain indicates the second order accuracy since the singular set
has a measure of O(h).

Case 2. The 3-D eikonal equation.
Following the idea of high order fast sweeping algorithms for two

dimensional problems in Section 2, we can construct the algorithms for
three dimensional problems straightforwardly. For example, consider the
3-D eikonal equation

Table IV. � Consists of Two Circles. Smooth Region 0.15 Away from the
Derivative Singularity. Godunov Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

80 × 80 1.29E−4 – 2.35E−3 – 26
160 × 160 4.57E−6 4.82 6.72E−4 1.81 26
320 × 320 4.34E−7 3.40 2.99E−5 4.49 34
640 × 640 6.57E−8 2.72 2.70E−6 3.47 53
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Table V. � is Two Circles. Whole Region. Godunov Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

80 × 80 1.49E−4 – 9.57E−3 – 26
160 × 160 9.68E−6 3.94 4.84E−3 0.98 26
320 × 320 1.28E−6 2.92 2.35E−3 1.04 34
640 × 640 2.42E−7 2.40 9.97E−4 1.24 53

Table VI. � is Two Spheres. Whole Region. Godunov Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

40 × 40 × 40 2.61E−3 – 3.67E−2 – 18
80 × 80 × 80 2.79E−4 3.22 1.49E−2 1.30 13
160 × 160 × 160 1.18E−5 4.57 7.64E−3 0.97 19
320 × 320 × 320 8.06E−7 3.87 3.75E−3 1.03 28

{√
φ2
x +φ2

y +φ2
z =f (x, y, z), (x, y, z)∈�⊂R3,

φ(x, y, z)=g(x, y, z), (x, y, z)∈�⊂�.
(3.3)

The local solver by the Godunov numerical Hamiltonian is

⎡
⎣
⎛
⎝φnew

i,j −φ(xmin)
i,j

h

⎞
⎠

+⎤
⎦

2

+
⎡
⎣
⎛
⎝φnew

i,j −φ(ymin)
i,j

h

⎞
⎠

+⎤
⎦

2

+
⎡
⎣
⎛
⎝φnew

i,j −φ(zmin)
i,j

h

⎞
⎠

+⎤
⎦

2

=f 2
i,j (3.4)

where ⎧⎪⎨
⎪⎩
φ
(xmin)
i,j =min(φold

i,j −h · (φx)−i,j , φold
i,j +h · (φx)+i,j ),

φ
(ymin)
i,j =min(φold

i,j −h · (φy)−i,j , φold
i,j +h · (φy)+i,j ),

φ
(zmin)
i,j =min(φold

i,j −h · (φz)−i,j , φold
i,j +h · (φz)+i,j ).

(3.5)

(φx)
−
i,j , (φx)

+
i,j , (φy)

−
i,j , (φy)

+
i,j , (φz)

−
i,j , (φz)

+
i,j are the WENO approximations

for left and right derivatives in x, y, z directions. The discretized nonlinear
system (3.4) is solved by the systematic method in [40] and Gauss–Seidel
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Fig. 2. Two Spheres problem. Godunov numerical Hamiltonian. Top left: contour plot for
the whole surface; top right: a part of the interior region; bottom left: the contour plot for
φ=0.5; bottom right: the contour plot for φ=1.0. For the contour lines in the top two pic-
tures, there are 30 equally spaced of them from φ=0.2 to φ=4. Third order numerical solu-
tion with 80×80×80 mesh.

iterations with eight alternating direction sweepings. We use the two-sphere
problem to test the third order algorithm for three dimensional problems.
The computational domain is � = [−3,3] × [−3,3] × [−3,3]; � consists
of two spheres of equal radius 0.5 with centers located at (−1,0,0) and
(
√

1.5,0,0), respectively. The accuracy for the whole domain and iteration
numbers are listed in Table VI, and the contour plots of the solution by a
80×80×80 mesh are presented in Fig. 2 for the surface of the domain, a
part of the interior of the domain and in the cases of two contour values
0.5 and 1.0 in the 3-D case, respectively. Similar conclusions as in the 2-D
example can be drawn here.

Example 4. Eikonal equation (2.2) with f (x, y) = 1. The Godunov
Hamiltonian is used. The computational domain is �= [−1,1] × [−1,1],
and � is a source point with coordinates (0,0). So the exact solution is
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Table VII. � is a Point. Initial Values are Given in the Box with Length
0.3 which Includes the Source Point. Godunov Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

40 × 40 1.56E−4 – 2.88E−4 – 30
80 × 80 2.80E−6 5.80 5.60E−6 5.69 28
160 × 160 6.64E−7 2.08 1.28E−6 2.12 32
320 × 320 9.70E−8 2.78 1.83E−7 2.81 44
640 × 640 1.23E−8 2.98 2.32E−8 2.98 68

the distance function to the source point �. The solution is singular at the
source point. Since all characteristics emanate from this source point anal-
ogous to rarefaction waves in hyperbolic conservation laws, errors incurred
at the source point will propagate out and pollute the solution in the
whole computational domain. We illustrate this subtlety with different ini-
tializations near the source point. This was also treated in the geometrical
optics setting in [29].

First we assign the exact values to a small region which encloses the
source point, say, a small box with length 0.3. This box size is fixed dur-
ing the mesh refinement study. Accuracy and errors are reported in Table
VII, and the third order accuracy is obtained.

Next we initialize the solution near the source point by fixing the
number of grid points during the mesh refinement study. Thus the box
which encloses the source point is taken to have length 2h, where h is the
mesh size. Accuracy and errors are reported in Table VIII, and the third
order accuracy is polluted to some extent. We remark that in Examples 2
and 3 where singularities are of shock type, both of the two initializations
led to neat third order accuracy. The reason is that the rarefaction wave
is different from the shock wave. Characteristics intersect to form shocks.
Errors incurred at the shocks will not propagate from shocks to other
locations to degrade the high order accuracy of the solution in smooth
regions. But if � has source points or corners from which the character-
istics emanate so that the rarefaction wave forms, the errors incurred at
the singular point will propagate to pollute the solution in the smooth
region, hence leading to the loss of accuracy. Of course, if a small fixed
domain is used to wrap up the singular corner point, i.e., accurate values
are assigned to the small region, the high order accuracy can be achieved.
The most efficient way to recover such a loss of accuracy is to use adap-
tive meshes with good a posteriori estimates near singularities; see [29] for
such an adaptive method in the paraxial formulation.
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Table VIII. � is a Point. Initial Values are Given in the Box with Length
2h which Includes the Source Point. Godunov numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

40 × 40 4.51E−4 – 8.41E−4 – 52
80 × 80 1.71E−4 1.40 3.16E−4 1.41 37
160 × 160 5.42E−5 1.66 1.07E−4 1.56 37
320 × 320 9.90E−6 2.45 2.36E−5 2.18 52
640 × 640 1.46E−6 2.76 2.21E−6 3.41 84

Table IX. � is a Point. Initial Values are Given in the Box with Length
2h which Includes the Source Point. First Order Scheme. Godunov

Numerical Hamiltonian

Mesh L1 error Order L∞ error Order Iteration number

40 × 40 6.29E−3 – 1.27E−2 – 1
80 × 80 3.52E−3 0.84 6.66E−3 0.93 1
160 × 160 1.90E−3 0.89 3.47E−3 0.94 1
320 × 320 1.01E−3 0.92 1.79E−3 0.96 1
640 × 640 5.26E−4 0.94 9.16E−4 0.96 1

In Table IX, we also list the errors and convergence rates for the first
order fast sweeping method (2.3). In comparison with the results in Table
VII and VIII, the high order schemes do achieve much smaller errors than
a low order method does on the same grids.

Example 5. Eikonal equation (2.2) with f (x, y) = 1. The Godunov
Hamiltonian is used. The computational domain �= [−2,2]× [−2,2], and
� is a sector of three quarters of a circle shown in Fig. 3. So the exact
solution is the distance function to the sector �. Singularities at two cor-
ners in � give rise to different scenarios in different regions, which include
both shocks and rarefaction waves. In Fig. 3, we illustrate the shocks by
a boldfaced solid line and three rarefaction wave regions with letter(s)
“R” or “Rarefaction”; the solution is smooth in other regions. During
the mesh refinement, we fix the number of grid points when we initialize
the domain. Errors and convergence rates are presented in Table X. We
only list results for L1 errors. The third order accuracy is obtained in the
regions where the solution is smooth. Moreover, we still obtain the sec-
ond order accuracy in the whole computational domain. The accuracy in
the rarefaction wave region is consistent with the results in Example 4.
We also plot the 3-D pictures of the exact solution and numerical solution
with an 80×80 mesh in Fig. 4; the sharp shock transition is apparent.
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ShockRarefaction

Rarefaction

R

Fig. 3. � is a sector.

Table X. � is a Sector in Fig. 3. Accuracy in Different Regions. Godunov
Numerical Hamiltonian

Smooth region Whole region Rarefaction

Mesh L1 error Order L1 error Order L1 error Order Iter

80 × 80 1.03E−5 – 1.70E−4 – 5.71E−4 – 38
160×160 1.32E−6 2.96 6.09E−5 1.48 2.26E−4 1.33 26
320 × 320 2.89E−7 2.19 1.72E−5 1.82 5.83E−5 1.96 34
640 × 640 4.03E−8 2.84 4.13E−6 2.06 1.03E−5 2.50 53

Example 6 (shape-from-shading). Eikonal equation (2.2) with

f (x, y)= 2π
√

[cos(2πx) sin(2πy)]2 + [sin(2πx) cos(2πy)]2. (3.6)

�= {( 1
4 ,

1
4 ), (

3
4 ,

3
4 ), (

1
4 ,

3
4 ), (

3
4 ,

1
4 ), (

1
2 ,

1
2 )}, consisting of five isolated points.

The computational domain �= [0,1] × [0,1]. φ(x, y)= 0 is prescribed at
the boundary of the unit square. The solution for this problem is the
shape function, which has the brightness I (x, y)= 1/

√
1+f (x, y)2 under

vertical lighting. See [31] for details. In [14], high order time marching
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Fig. 4. Distance to �. where � is a sector in Fig. 3. Godunov numerical Hamiltonian.
Left: exact solution; right: third order numerical solution with 80×80 mesh.

WENO schemes are used to calculate the solution for this problem. We
apply both high order Godunov based and Lax-Friedrichs based fast
sweeping schemes to the following two cases.

Case 1.

g

(
1
4
,

1
4

)
=g

(
3
4
,

3
4

)
=1, g

(
1
4
,

3
4

)
=g

(
3
4
,

1
4

)
=−1, g

(
1
2
,

1
2

)
=0.

The exact solution for this case is

φ(x, y)= sin(2πx) sin(2πy),

a smooth function.
Case 2.

g

(
1
4
,

1
4

)
=g

(
3
4
,

3
4

)
=g

(
1
4
,

3
4

)
=g

(
3
4
,

1
4

)
=1, g

(
1
2
,

1
2

)
=2.

The exact solution for this case is

φ(x, y)=

⎧⎪⎨
⎪⎩

max(| sin(2πx) sin(2πy)|,1+ cos(2πx) cos(2πy)),
if |x+y−1|< 1

2 and |x−y|< 1
2 ;

| sin(2πx) sin(2πy)|, otherwise;
this solution is not smooth.

Errors, convergence rates and iteration numbers are reported in
Table XI and XII for both Godunov and Lax-Friedrichs sweeping meth-
ods, respectively. Both methods yield fully third order accuracy in the case
of smooth solutions (Case 1). Since the exact solution in Case 2 is not
smooth, globally numerical errors indicate that the convergence order is
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Table XI. Example 6, Shape-from-Shading Problem, Godunov Numerical Hamiltonian

Case 1 (smooth) Case 2 (non-smooth)

Mesh L1 error Order Iteration number L1 error Order Iteration number

80 × 80 1.24E−4 – 16 1.14E−3 – 18
160 × 160 5.78E−6 4.43 23 1.98E−4 2.53 23
320 × 320 3.27E−7 4.14 29 2.95E−5 2.74 31
640 × 640 3.56E−8 3.20 52 7.28E−6 2.02 57

Table XII. Example 6, Shape-from-Shading Problem, Lax-Friedrichs Numerical Hamilto-
nian, αx =αy =1

Case 1 (smooth) Case 2 (non-smooth)

Mesh L1 error Order Iteration number L1 error Order Iteration number

80 × 80 1.44E−4 – 22 2.94E−3 – 28
160 × 160 7.68E−6 4.23 33 8.35E−4 1.81 38
320 × 320 4.93E−7 3.96 58 2.20E−4 1.92 75
640 × 640 5.58E−8 3.14 111 4.67E−5 2.24 136

higher than the second order, which is consistent with the results in the
examples shown above. In terms of the iteration numbers shown in Tables
XI and XII, the high order Godunov fast sweeping method needs fewer
iterations than the high order Lax-Friedrichs fast sweeping method does.
Figures 5 and 6 illustrate three-dimensional pictures and contour plots for
numerical solutions of these two cases on the 80×80 mesh; these numeri-
cal solutions are from both the third order Godunov scheme and the first
order Godunov fast sweeping method. Obviously, the high order method
achieves much higher accuracy and resolution than the first order scheme
does on the same mesh. Figures by the Lax-Friedrichs third order fast
sweeping schemes are very similar to those by the Godunov Hamiltonian,
hence they are omitted to save space.

Remark 9. Using this example, we compared our third order fast
sweeping method with the time marching approach in [14], based on both
Godunov and Lax-Friedrichs numerical Hamiltonians, and the results are
reported in Table XIII. For the time marching approach, we use the third
order WENO in spatial direction [14] and a third order TVD Runge-Kutta
scheme [36] in time direction, and the CFL number is taken to be 0.6 as in
[14]. The initial guesses of the time marching method are totally the same
as our third order fast sweeping method; i.e., for the Godunov numeri-
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Fig. 5. Example 6, shape-from-shading, case 1. Godunov numerical Hamiltonian. Left:
third order scheme; right: first order scheme; top: three-dimensional view; bottom: contour
lines, 30 equally spaced contour lines from φ=−1 to φ=1.

cal Hamiltonian, they are generated by the first order Godunov sweeping
method; for the Lax-Friedrichs numerical Hamiltonian, the initial guesses
are just big values. The convergence criteria of both methods are the same
too. In Table XIII, one iteration count of the time-marching approach
includes three stages of the third order TVD Runge-Kutta scheme, and
one iteration count of the fast sweeping method includes four alternating
sweepings. For this example, the third order fast sweeping method with
the Godunov numerical Hamiltonian is about three times faster than the
third order time-marching approach on a 80×80 mesh. When the mesh is
refined, the advantage of our fast sweeping algorithm with the Godunov
numerical Hamiltonian becomes more significant due to the upwind prop-
erty of the Godunov numerical Hamiltonian, and it is about eight times
faster than the third order time-marching approach on a 640×640 mesh.
For the Lax-Friedrichs numerical Hamiltonian, the third order fast sweep-
ing method is about six times faster than the third order time-march-
ing approach for all mesh sizes. So our method is much more efficient
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Fig. 6. Example 6, shape-from-shading, case 2. Godunov numerical Hamiltonian. Left:
third order scheme; right: first order scheme; top: three-dimensional view; bottom: contour
lines, 30 equally spaced contour lines from φ=0 to φ=2.

than the time-marching approach, for both Godunov and Lax-Friedrichs
numerical Hamiltonians.

Example 7 (shape-from-shading). Eikonal equation (2.2) with

Case (a): f (x, y) =
√
(1−|x|)2 + (1−|y|)2; (3.7)

Case (b): f (x, y) = 2
√
y2(1−x2)2 +x2(1−y2)2. (3.8)

The computational domain �= [−1,1] × [−1,1]. φ(x, y)= 0 is prescribed
at the boundary of the square for both cases. Additional boundary con-
dition φ(0,0)= 1 is prescribed for case (b). The exact solutions for these
two cases are
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Table XIII. The Comparison between the Third Order Fast Sweeping Method and
the Time-marching Method (Third-Order WENO Schemes with Third-Order TVD
Runge-Kutta in Time Direction, see [14]) for the Example 6, Shape-from-shading

Problem, Case 2 (Non-smooth Solution)

3rd-order Time-marching 3rd-order Fast Sweeping

Mesh L1 error Order Iteration number L1 error Order Iteration number

Godunov Numerical Hamiltonian
80 × 80 1.14E−3 – 70 1.14E−3 – 18
160 × 160 1.98E−4 2.53 133 1.98E−4 2.53 23
320 × 320 2.96E−5 2.74 281 2.95E−5 2.74 31
640 × 640 7.31E−6 2.02 578 7.28E−6 2.02 57

Lax–Friedrichs Numerical Hamiltonian
80 × 80 2.94E−3 – 217 2.94E−3 – 28
160 × 160 8.35E−4 1.81 327 8.35E−4 1.81 38
320 × 320 2.19E−4 1.93 589 2.20E−4 1.92 75
640 × 640 4.79E−5 2.19 1092 4.67E−5 2.24 136

Godunov numerical Hamiltonian & Lax–Friedrichs numerical Hamiltonian.

Case (a): φ(x, y) = (1−|x|)(1−|y|); (3.9)

Case (b): φ(x, y) = (1−x2)(1−y2). (3.10)

In [13], a time-marching discontinuous Galerkin method is used to com-
pute the solution for these two cases. We apply our high order Godunov
fast sweeping method to these problems. Because the exact solution of case
(a) is a piecewise bi-linear polynomial and the exact solution of case (b)
is a bi-quadratic polynomial, the numerical solutions by the third order
scheme are accurate up to round-off errors. Table XIV indicates that the
errors for both cases are round-off errors, and the iteration numbers in
Table XIV demonstrate the fast convergence of the scheme, which is again
much faster than the time marching results. The three-dimensional pictures
and contour plots for the numerical solution of both cases on an 80×80
mesh are presented in Fig. 7.

Example 8 (Travel-time problem in elastic wave propagation). The
quasi-P and the quasi-SV slowness surfaces are defined by the quadratic
equation [26]:

c1φ
4
x + c2φ

2
xφ

2
y + c3φ

4
y + c4φ

2
x + c5φ

2
y +1=0, (3.11)

where

c1 = a11a44, c2 = a11a33 +a2
44 − (a13 +a44)

2,

c3 = a33a44, c4 =−(a11 +a44), c5 =−(a33 +a44).
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Table XIV. Example 7, Shape-from-Shading Problem, Third Order Scheme,
Godunov Numerical Hamiltonian

Case a Case b

Mesh L1 error L∞ error Iter number L1 error L∞ error Iter number

80 × 80 1.68E−16 2.23E−14 2 1.62E−16 3.38E−14 27
160 × 160 8.00E−16 3.30E−13 4 3.49E−16 4.83E−14 32
320 × 320 3.88E−15 4.39E−12 7 4.05E−16 1.41E−13 46
640 × 640 1.81E−14 5.30E−11 10 4.05E−16 4.30E−13 76

Here aij s are given elastic parameters. The corresponding quasi-P wave
eikonal equation is√

−1
2
(c4φ

2
x + c5φ2

y)+
√

1
4
(c4φ

2
x + c5φ2

y)
2 − (c1φ

4
x + c2φ

2
xφ

2
y + c3φ

4
y) =1,

(3.12)

which is a convex Hamilton–Jacobi equation. The elastic parameters are
taken to be

a11 =15.0638, a33 =10.8373, a13 =1.6381, a44 =3.1258

in the numerical example to be shown; Figure 8 shows the corresponding
convex slowness surface in the gradient component.

The corresponding quasi-SV wave eikonal equation is√
−1

2
(c4φ

2
x + c5φ2

y)−
√

1
4
(c4φ

2
x + c5φ2

y)
2 − (c1φ

4
x + c2φ

2
xφ

2
y + c3φ

4
y)=1,

(3.13)

which is a nonconvex H–J equation. The elastic parameters are taken to be

a11 =15.90, a33 =6.21, a13 =4.82, a44 =4.00

in the numerical example to be shown; Figure 8 shows the corresponding
non-convex slowness surface in the gradient component.

The computational domain is [−1,1] × [−1,1], and �= {(0,0)}. Ini-
tial values are assigned in a box with length 0.3 which includes the source
point. Because both Hamiltonians are pretty complicated, it is trouble-
some to apply the Godunov Hamiltonian to these examples. Thus we
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Fig. 7. Example 7, shape-from-shading. Third order scheme, Godunov numerical
Hamiltonian. Top left: three-dimensional view for case (a); bottom left: three-dimensional
view for case (b); top right: contour lines for case (a), 30 equally spaced contour lines from
φ=0 to φ=1; bottom right: contour lines for case (b), 30 equally spaced contour lines from
φ=0 to φ=1.
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Fig. 8. Example 8. Slowness surfaces. Left: quasi-P wave slowness surface; right: quasi-SV
wave slowness surface.
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Table XV. Quasi-P Wave, Lax-Friedrichs Numerical Hamiltonian, Initial
Values are Given in the Box with Length 0.3 which Includes the Source

Point, αx = αy = 4

Mesh L1 error Order L∞ error Order Iteration number

40 × 40 7.23E−4 – 3.07E−3 – 27
80 × 80 9.33E−5 2.95 5.81E−4 2.40 36
160 × 160 9.58E−6 3.28 6.72E−5 3.11 58
320 × 320 1.27E−6 2.92 8.94E−6 2.91 98
640 × 640 1.62E−7 2.97 1.16E−6 2.95 178
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Fig. 9. Example 8. Left: Convexified quasi-SV slowness surface; right: ray tracing solutions
at y=1.0: solid lines; convexified solutions at y=1.0: stars.

apply the third order Lax-Friedrichs fast sweeping method (2.20) to these
problems.

Errors and convergence rates are listed in Table XV for the quasi-
P wave travel-time, which is smooth in the whole domain except at the
source point. In fact, since the slowness surface is convex, the resulting
point-source solution is a pure rarefaction wave. To initialize a fixed box
around the source point, we use a shooting method by solving a two-point
boundary value problem; see [27] for details. The third order accuracy is
obtained.

For the quasi-SV wave, the solution is smooth except along the lines
x = 0 and y = 0 because of its nonconvexity in the slowness space along
the two axes. In this case, since the outward normals of the slowness
surface correspond to the ray directions in the physical space according
to the method of characteristics, we have so-called instantaneous singular-
ities along the lines x = 0 and y = 0 and the resulting travel-time field is
multivalued; see the solid lines in Fig. 9. To pick out a unique, physically
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Table XVI. Quasi-SV Wave, Lax-Friedrichs Numerical Hamiltonian, Initial Val-
ues are Given in the Box with Length 0.3 Which Includes the Source Point,

αx =αy =2

Mesh L1 error Order L∞ error Order Iteration number

Smooth region 0.15 away from x=0 and y=0
40 × 40 9.20E−4 – 3.65E−3 – 42
80 × 80 6.21E−5 3.89 6.32E−4 2.53 34
160 × 160 2.39E−6 4.70 2.28E−5 4.79 57
320 × 320 4.61E−7 2.37 1.47E−6 3.96 99
640 × 640 5.97E−8 2.95 2.97E−7 2.30 181

Whole region
40 × 40 2.19E−3 – 1.53E−2 – 42
80 × 80 6.09E−4 1.84 8.02E−3 0.93 34
160 × 160 1.62E−4 1.91 4.19E−3 0.94 57
320 × 320 3.70E−5 2.13 2.00E−3 1.06 99
640 × 640 1.02E−5 1.86 8.21E−4 1.29 181
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Fig. 10. Example 8, Travel-time problem in elastic wave propagation. Third order Lax-
Friedrichs fast sweeping scheme. 80 × 80 mesh. Left: quasi-P wave, αx = αy = 4, 30 equally
spaced contour lines from φ=0 to φ=0.44173; right: quasi-SV wave, αx =αy =2, 30 equally
spaced contour lines from φ=0 to φ=0.909652.

relevant solution, we convexify the nonconvex slowness surface first and
then adapt a shooting method, similar to the one used for quasi-P waves,
to pick out a continuous solution; see the stars in Fig. 9. This construc-
tion agrees with a method based on the Huygens’s principle demonstrated
in [30]. The shooting method is also used to initialize the traveltime field
in a specified box around the source point. Therefore, the point source
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problem for quasi-SV wave traveltime produces both rarefaction and shock
singularities.

Table XVI illustrates that the third order accuracy is obtained in the
smooth region of the solution in both L1 and L∞ norms; however, in
terms of the whole domain including the shock wave region, the second
order accuracy is obtained in the L1 norm and only the first order accu-
racy is obtained in the L∞ norm. Overall, the third-order scheme achieves
much smaller errors than the first order scheme does, even in the shock
wave region. The contour plots of the solutions are shown in Fig. 10. The
quasi-SV solution agrees with the results based on the Huygens’s principle
shown in [30].

4. CONCLUDING REMARKS

We have developed high order fast sweeping methods for static
Hamilton–Jacobi equations on rectangular meshes. A general procedure is
given to incorporate the high order approximations into monotone numer-
ical Hamiltonians so that the first order sweeping schemes can be extended
to high order schemes. Extensive numerical examples demonstrate that the
high order methods yield higher order accuracy in the smooth region of
the solution, higher resolution for the singularities of derivatives, and fast
convergence to viscosity solutions of the Hamilton–Jacobi equations.
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