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Abstract

The dominant cost for integration factor (IF) or exponential time differencing (ETD) methods is the repeated vector–
matrix multiplications involving exponentials of discretization matrices of differential operators. Although the discretiza-
tion matrices usually are sparse, their exponentials are not, unless the discretization matrices are diagonal. For example, a
two-dimensional system of N � N spatial points, the exponential matrix is of a size of N 2 � N 2 based on direct represen-
tations. The vector–matrix multiplication is of OðN 4Þ, and the storage of such matrix is usually prohibitive even for a mod-
erate size N. In this paper, we introduce a compact representation of the discretized differential operators for the IF and
ETD methods in both two- and three-dimensions. In this approach, the storage and CPU cost are significantly reduced for
both IF and ETD methods such that the use of this type of methods becomes possible and attractive for two- or three-
dimensional systems. For the case of two-dimensional systems, the required storage and CPU cost are reduced to
OðN 2Þ and OðN 3Þ, respectively. The improvement on three-dimensional systems is even more significant. We analyze
and apply this technique to a class of semi-implicit integration factor method recently developed for stiff reaction–diffusion
equations. Direct simulations on test equations along with applications to a morphogen system in two-dimensions and an
intra-cellular signaling system in three-dimensions demonstrate an excellent efficiency of the new approach.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Integration factor (IF) or exponential differencing time (ETD) methods are popular methods for temporal
partial differential equations. In these methods, the linear operators of the highest order derivative are treated
exactly. As a result, the stability constraint associated with the highest order derivatives are totally removed, and
large time steps can be used. However, the exact treatment of the differential operator requires evaluating expo-
nentials of the approximation matrix for the linear differential operator. For periodic systems, this calculation is
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cheap both in CPU and storage because the approximation matrix can be diagonalized in the Fourier space [1–
7]. For non-periodic systems, in which the approximation matrices are not diagonal, storage and calculation of
exponentials of the matrices are significantly more expensive. In two or three spatial dimensions, this computa-
tional cost becomes prohibitive for any practical use, consequently neither IF nor ETD methods have been used
for non-periodic systems.

To illustrate this, we apply the IF or ETD methods to reaction diffusion equations of this form:
ou

ot
¼ DDuþ FðuÞ; ð1Þ
where u 2 Rm represent a group of physical or biological species, D 2 Rm�m is the diffusion constant matrix, Du

is the Laplacian associated with the diffusion of the species u, and FðuÞ describes the chemical or biological
reactions. The first step of constructing the IF or ETD schemes is to reduce the (1) to a system of ODEs using
method of lines:
ut ¼ Cuþ FðuÞ; ð2Þ

where Cu is assumed to be a finite difference approximation of the differential operator DDu. Let n denote the
total number of spatial grid points (the sum of the points in every dimension of Rm) for the approximation of
the Laplacian Du, then uðtÞ 2 Rn�m and C representing a spatial discretization of the diffusion is a block matrix
with each block of a size n� n. In a one-dimensional system with one diffusion, C is a tri-diagonal matrix for a
second order central difference approximation on the diffusion.

The next step of the construction is to multiply (2) by eCt and to integrate it in time. Different approximation
of the integral involving nonlinear term FðuÞ results in either the integration factor (IF) method or the expo-
nential time differencing (ETD) method [8]. For example, the second order integration factor Adams–Bash-
forth method (IFAB2 [9]) has the form
ukþ1 ¼ eCDtuk þ Dt
3

2
eCDtFðukÞ �

1

2
e2CDtFðuk�1Þ

� �
; ð3Þ
and the second order ETD method [2,9] has a form:
ukþ1 ¼ eCDtuk þ
1

Dt
C�2f½ðI þ DtCÞeCDt � I � 2DtC�FðukÞ � ½eCDt � I � DtC�Fðuk�1Þg: ð4Þ
In (3) and (4), eCDt is a matrix of size n� n for a system with only one diffusive species, and uk is the approx-
imate solution at the kth time step. The computational cost for updating ukþ1 at one time step is of order of n2

due to the three vector–matrix multiplications associated with eCDt and e2CDt in (3). During the temporal updat-
ing, these two matrices remain the same for a fixed Dt, and they only need to be evaluated once initially from C
and be stored. All IF or ETD methods require storage of these types of exponential matrices because re-cal-
culating them at each time step is not efficient.

For a system in one spatial dimension, the size of eCDt usually can be handled [9,5,8]. In two or three spatial
dimensions, corresponding to a large n, the required storage of eCDt may become prohibitive if the one-dimen-
sional approach [9,5,8] is directly applied to the higher dimensional system. For instance, in a three-dimen-
sional system with a moderate number of spatial grid points such as 40� 40� 40, it yields n ¼ 6:4� 104.
The required storage is Oðn2Þ ¼ Oð109Þ; that is not manageable for a typical machine. This bottle-neck limits
application of IF and ETD methods for non-periodic systems in two or three spatial dimensions.

In this paper, we reduce the required storage by introducing a compact representation for the matrix
approximating the differential operator. The new compact form, in the case of equal spacing in each spatial
direction (for simplicity of illustration), involves storage only proportional to the number of unknowns,
i.e., the dimension of u, unlike the non-compact approach, which is proportional to the square of the
unknowns. For example, in a two-dimensional system of N � N grid points, the unknown values of u at
the grid points are stored as a N � N matrix analogous to its natural spatial partition [10]. As a result, the
exponential of the discretized Laplacians in ETD and IF methods is N � N . The new approach needs only
OðN 2Þ storage and OðN 3Þ operations, compared to the OðN 4Þ storage requirement and an OðN 4Þ operation
count in the non-compact approach. In three-dimensions, the improvement for the new approach is even more
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significant. For a system with N � N � N grid points, the new approach needs OðN 3Þ storage and OðN 4Þ oper-
ations, compared to OðN 6Þ storage and OðN 6Þ operations using the non-compact representation.

The compact representation can be easily used in IF and ETD methods without altering the stability prop-
erties of these methods. Their implementations are straightforward, and the number of grid points in each spa-
tial direction does not need to be the same. The new technique is tested for simple linear systems as well as
nonlinear systems arising from biological applications in both two- and three-dimensions, using a class of
semi-implicit integration factor (IIF) method developed recently for systems with stiff reactions [8].

In Section 2, we derive the semi-implicit integration factor methods using the compact representation, along
with a stability analysis. This is done for both two- and three-dimensions. In Section 3, we test the new meth-
ods on linear systems and a couple of nonlinear models in cell and developmental biology.

2. Compact implicit integration factor (cIIF) in high spatial dimensions

2.1. Two-dimensions

To distinguish the new compact implicit integration factor method from the standard IIF, we denote it as
cIIF. In this section, we illustrate the new method by applying the IIF method with the new compact repre-
sentation to a two-dimensional reaction–diffusion equation with periodic boundary conditions in the x direc-
tion and Neumann boundary conditions in the y direction:
ou
ot ¼ D o2u

ox2 þ o2u
oy2

� �
þ FðuÞ; ðx; yÞ 2 X ¼ fa < x < b; c < y < dg;

ou
ox ða; y; tÞ ¼ ou

ox ðb; y; tÞ ¼ 0;

uðx; c; tÞ ¼ uðx; d; tÞ; ou
oy ðx; c; tÞ ¼ ou

oy ðx; d; tÞ:

8>><
>>: ð5Þ
We first discretize the spatial domain by a rectangular mesh: ðxi; yjÞ ¼ ðaþ i� hx; cþ j� hyÞ where
hx ¼ ðb� aÞ=ðN x þ 1Þ, hy ¼ ðd � cÞ=ðNy þ 1Þ and 0 6 i 6 N x þ 1 and 0 6 j 6 Ny þ 1. Using the second order
central difference discretization on the diffusion, we obtain a system of nonlinear ODEs
dui;j

dt
¼ D

uiþ1;j � 2ui;j þ ui�1;j

h2
x

þ ui;jþ1 � 2ui;j þ ui;j�1

h2
y

 !
þ Fðui;jÞ: ð6Þ
Next we define three matrices U, A and B by
U ¼

u1;1 u1;2 � � � u1;Ny u1;Nyþ1

u2;1 u2;2 � � � u2;Ny u2;Nyþ1

..

. ..
. ..

. ..
. ..

.

uNx;1 uNx;2 � � � uNx;Ny uNx;Nyþ1

0
BBBB@

1
CCCCA

Nx�ðNyþ1Þ

; ð7Þ

A ¼ D

h2
x

�

� 2
3

2
3

1 �2 1

1 �2 1

. .
. . .

. . .
.

1 �2 1
2
3
� 2

3

0
BBBBBBB@

1
CCCCCCCA

Nx�Nx

; ð8Þ
and
B ¼ D

h2
y

�

�2 1 0 0 � � � 1
1 �2 1 0 � � � 0
0 1 �2 1 � � � 0

. .
. . .

. . .
.

0 0 � � � 1 �2 1
1 0 � � � 0 1 �2

0
BBBBB@

1
CCCCCA
ðNyþ1Þ�ðNyþ1Þ

: ð9Þ
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In terms of these three matrices, the semi-discretized form (6) becomes
Table
A list

Order

p�1ðsÞ
p0ðsÞ
p1ðsÞ
p2ðsÞ
dU

dt
¼ AUþUBþ FðUÞ: ð10Þ
This formulation is based on a compact representation previously developed for solving a two-dimensional
Poisson’s equation and other related separable equations [10].

To apply the integration factor technique to the compact discretization form (10), we multiply (10) by expo-
nential matrix e�At from the left, and e�Bt from the right to obtain
dðe�AtUe�BtÞ
dt

¼ e�AtF ðUÞe�Bt: ð11Þ
Integration of (11) over one time step from tn to tnþ1 � tn þ Dt, where Dt is the time step, leads to
Unþ1 ¼ eADtUneBDt þ eADt

Z Dt

0

e�AsF ðUðtn þ sÞÞe�Bsds

� �
eBDt: ð12Þ
To construct a scheme of rth order truncation error, we approximate the integrand in (12),
GðsÞ � e�AsFðUðtn þ sÞÞe�Bs; ð13Þ

using a ðr � 1Þth order Lagrange polynomial at a set of interpolation points tnþ1; tn; . . . ; tnþ2�r:
PðsÞ �
Xr�2

j¼�1

ejADtF ðUn�jÞejBDtpjðsÞ; 0 6 s 6 Dt; ð14Þ
where
pjðsÞ ¼
Yr�2

k¼�1
k 6¼j

sþ kDt
ðk � jÞDt

: ð15Þ
The specific form of the polynomial (15) at low orders is listed in Table 1.
In terms of PðsÞ, (12) takes the form,
Unþ1 ¼ eADtUneBDt þ eADt

Z Dt

0

PðsÞds

� �
eBDt: ð16Þ
So the new r-th order implicit schemes are
Unþ1 ¼ eADtUneBDt þ Dt a1FðUnþ1Þ þ
Xr�2

j¼0

a�je
ðjþ1ÞADtFðUn�jÞeðjþ1ÞBDt

 !
; ð17Þ
where a1; a0; a�1; � � � ; a�rþ2 are coefficients calculated from the integrals of the polynomial in PðsÞ,
a�j ¼
1

Dt

Z Dt

0

Yr�2

k¼�1
k 6¼j

sþ kDt
ðk � jÞDt

ds; �1 6 j 6 r � 2: ð18Þ
In Table 2, the value of coefficients, a�j, for schemes of order up to four are listed.
1
of polynomials defined in (15) that correspond to the second, third and fourth order methods

2 3 4

s=Dt sðsþ DtÞ=ð2Dt2Þ sðsþ DtÞðsþ 2DtÞ=ð6Dt3Þ
ðDt � sÞ=Dt �ðsþ DtÞðs� DtÞ=Dt2 �ðs� DtÞðsþ DtÞðsþ 2DtÞ=ð2Dt3Þ
0 sðs� DtÞ=ð2Dt2Þ ðs� DtÞsðsþ 2DtÞ=ð2Dt3Þ
0 0 �ðs� DtÞsðsþ DtÞ=ð6Dt3Þ



Table 2
Coefficients for cIIF schemes with localized nonlinear systems

Order a1 a0 a�1 a�2

1 1 0 0 0
2 1

2
1
2 0 0

3 5
12

2
3 � 1

12 0

4 9
24

19
24 � 5

24
1

24
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In particular, the second order approximation of
R Dt

0
GðsÞds
Z Dt

0

GðsÞds � F ðUnÞ þ e�ADtFðUnþ1Þe�BDt

2
Dt ð19Þ
leads to the second order IIF scheme (cIIF2)
Unþ1 ¼ eADt Un þ
Dt
2
F ðUnÞ

� �
eBDt þ Dt

2
FðUnþ1Þ: ð20Þ
Like the one-dimensional form [8], the nonlinear reaction term at tnþ1 in (20) is decoupled from the diffusion
terms. As a result, only a local nonlinear system needs to be solved at each spatial grid point. The two matrices
eADt and eBDt are N x � Nx and ðNy þ 1Þ � ðN y þ 1Þ, respectively. Both are orders of magnitude smaller than the
size of the matrix, NxðNy þ 1Þ � N xðNy þ 1Þ, in the non-compact representation. As to be demonstrated in
direct numerical simulations in Section 3, this saving in storage is critical for carrying out simulations with
even moderate numbers of spatial grid points. Also, the new approach requires fewer operations. In the
non-compact approach, a matrix–vector multiplication with operations of the order of N 2

xðN y þ 1Þ2 dominates
the computational cost at each time step. In the new approach, the corresponding calculations are two matrix–
matrix operations of an order of NxðNy þ 1Þ2 þ N 2

xðN y þ 1Þ, which is significantly smaller. Also, because of the
smaller size of those matrices, the initial calculations of the exponentials of those matrices become cheaper as
well. Therefore, the new method is advantageous in both CPU time and memory savings.

Remark 1. The compact explicit IF (cIF) can be derived in a similar way. For example, the compact form of
the IFAB2 (3) takes the form:
Unþ1 ¼ eADtUneBDt þ Dt
3

2
eADtFðUnÞeBDt � 1

2
e2ADtFðUn�1Þe2BDt

� �
: ð21Þ
Remark 2. The compact semi-discretization system (10) can also be used for other types of methods, such as
the ETD methods. In the derivation of ETD schemes based on a non-compact representation, only the F in
the integrand (an integral similar to the one in (12)) is approximated by an interpolation polynomial, with the
exponential function unchanged in the integrand; then a direct integration of the approximate integrand leads
to the ETD methods [8].

For a compact system with (12), one needs to evaluate
Z Dt

0

e�AsPðsÞe�Bs ds ð22Þ
where P ðsÞ is a polynomial matrix, and matrices A, B have dimensions N x � Nx, Ny � Ny , respectively. After
assuming that
P ðsÞ ¼
X

p

CðpÞsp; ð23Þ
(22) takes the form of
X
p

Z Dt

0

e�AsCðpÞspe�Bs ds: ð24Þ
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If the matrices A, CðpÞ, and B commute with each other, (24) can be simplified as
X
p

CðpÞ
Z Dt

0

e�ðAþBÞssp ds: ð25Þ
The integral in (25) can be integrated explicitly through integration by parts, and the matrices CðpÞ andR Dt
0 e�ðAþBÞssp ds have the same dimension N ¼ N x ¼ Ny . The total operation of evaluating (25) is OðN 3Þ due

to the matrix–matrix multiplication in (25).The overall computational cost is similar to the cIIF methods dis-
cussed above.

If matrices A, CðpÞ, and B do not commute, one may need to consider the eigenspace of matrices A and B in
order to evaluate (22) explicitly [11,12]. Assuming an eigenvalue decomposition A ¼ V diagða1; . . . ; aNxÞV �1

and B ¼ W diagðb1; . . . ; bNy ÞW �1, then the ði; nÞth element of matrix (24) is
X
p

XNx

j;k¼1

XN y

l;m¼1

fjmV ijV �1
jk CðpÞkl W lmW �1

mn ; ð26Þ
where fjm �
R Dt

0
e�ðajþbmÞssp ds can be evaluated recursively through integration by parts.The operation count of

(26) is OðN 2
xN 2

yÞ, and it leads to an operation count of OðN 3
xN 3

yÞ for generating the whole matrix (24). The cost

associated with such an approach is even more expensive than the non-compact approach.
To obtain the ETD type methods that do not require any commutativity properties on the matrices A and

B, and have the same order of operation count as that of the cIIF schemes, one may leave only one of the
exponential functions unchanged and apply the polynomial approximation to the rest of the integrand in (12).
To illustrate this approach, we first approximate the integrand
GðsÞ � F ðUðtn þ sÞÞe�Bs; ð27Þ
using a r � 1th order Lagrange polynomial at a set of interpolation points tnþ1; tn; . . . ; tnþ2�r:
PðsÞ �
Xr�2

j¼�1

FðUn�jÞejBDt
Yr�2

k¼�1
k 6¼j

sþ kDt
ðk � jÞDt

: ð28Þ
Then (12) becomes
Unþ1 ¼ eADtUneBDt þ eADt

Z Dt

0

e�AsPðsÞds

� �
eBDt: ð29Þ
A first order implicit approximation to GðsÞ of the form
PðsÞ ¼ FðUnþ1Þe�BDt; 0 6 s 6 Dt; ð30Þ

leads to a first order implicit scheme
Unþ1 ¼ eADtUneBDt þ A�1ðeADt � IÞFðUnþ1Þ: ð31Þ

A second order implicit approximation to GðsÞ,
PðsÞ ¼ 1

Dt
FðUnÞðDt � sÞ þ FðUnþ1Þe�BDts
� �

; 0 6 s 6 Dt; ð32Þ
leads to a second order implicit scheme
Unþ1 ¼ eADtUneBDtþ 1

Dt
½A�2ðI � eADtÞþDtA�1eADt�F ðUnÞeBDtþ
�

½A�2ðeADt� IÞ�DtA�1�FðUnþ1Þ
	
: ð33Þ
Like the implicit ETD methods based on the non-compact representation, the nonlinear function of Unþ1 in
the compact implicit ETD (33) is also multiplied by terms involving the approximated differential operators
and their exponentials. This non-local coupling makes the implicit ETD method inefficient. In contrast, in
IIF [8] and cIIF,the diffusion term and nonlinear reaction term are decoupled. This makes IIF more desirable.
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The compact explicit ETD (cETD) methods can be derived similarly. For example, the compact form of the
second order ETD method (4) becomes
Unþ1 ¼ eADtUneBDt þ 1

Dt
A�2 ½ðI þ DtAÞeADt � I � 2DtA�F ðUnÞeBDt�

�
½eADt � I � DtA�F ðUn�1Þe2BDt

	
: ð34Þ
2.2. Stability analysis of cIIF methods

The linear stability of the high-dimensional cIIF methods can be analyzed by an approach similar to that
for the one-dimensional system [2,13,8]. We test the linear stability on the the following linear equation
ut ¼ �q1u� q2uþ du with q1; q2 > 0; ð35Þ

where q1 and q2 represent diffusions in the x and y directions, respectively. The boundaries of the stability re-
gion, a family of curves for different values of ðq1 þ q2ÞDt, based on the test problem (35) are presented for the
second and third order implicit integration factor methods. The quantity ðq1 þ q2ÞDt involves the ratio be-
tween the time step and the spatial grid for the discretization of the reaction–diffusion Eq. (1).

To obtain the stability region, we apply cIIF2 (20) to the Eq. (35), then substitute un ¼ einh into the resulted
equation. This leads to
eih ¼ e�q1Dt 1þ 1

2
k

� �
e�q2Dt þ 1

2
keih; ð36Þ
where k ¼ dDt. The equations for kr, the real part of k, and ki, the imaginary part of k, become
kr ¼
2ð1� e�2ðq1þq2ÞDtÞ

ð1� e�ðq1þq2ÞDtÞ2 þ 2ð1þ cos hÞe�ðq1þq2ÞDt
;

ki ¼
4ðsin hÞe�ðq1þq2ÞDt

ð1� e�ðq1þq2ÞDtÞ2 þ 2ð1þ cos hÞe�ðq1þq2ÞDt
:

ð37Þ
Since q1 þ q2 > 0, we have kr > 0 for 0 6 h 6 2p. Therefore, the stability region is in the left half complex
plane. This implies that the second order IIF is A�stable. In Fig. 1, the stability region of the method is plotted
for ðq1 þ q2ÞDt ¼ 0:5; 1; 2. The exterior of the closed curves located on the complex plane at kr > 0 is the sta-
bility region.
0 2 4 6 8 10
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–3

–2

–1

0

1

2

3

4

qΔt=2

0

1

2

3

4

qΔt=1

qΔt=0.5

Fig. 1. Stability regions (exterior of the closed curves) for cIIF2 with ðq1 þ q2ÞDt ¼ 0:5; 1; 2; where q ¼ q1 þ q2.
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When q1 þ q2 ! 0, the stability region will coincide with the domain kr < 0; and when q1 þ q2 !1, the
stability region becomes the entire complex plane excluding the point ð2; 0Þ.

For the third order two-dimensional cIIF scheme:
unþ1 ¼ eADtuneBDt þ Dt
5

12
F ðunþ1Þ þ

2

3
eADtF ðunÞeBDt � 1

12
e2ADtFðun�1Þe2BDt

� �
: ð38Þ
We can perform a similar analysis for the stability to obtain k
k ¼ eih � e�ðq1þq2ÞDt

5
12

eih þ 2
3
e�ðq1þq2ÞDt � 1

12
e�2ðq1þq2ÞDt�ih

: ð39Þ
As seen in Fig. 2 for ðq1 þ q2ÞDt ¼ 0; 0:45; 0:5; 0:6; 1:0, the third order scheme is not A-stable. Similar to the
one-dimensional case, the stability region sensitively depends on the value of ðq1 þ q2ÞDt. The size of the region
is an increasing function of ðq1 þ q2ÞDt. Forðq1 þ q2ÞDt < 0:54, the stability region is in the left half of the com-
plex plan k bounded by a closed curve. For ðq1 þ q2ÞDt > 0:55, the stability region contains the entire left half
plane and most of the right half plane. When q1 þ q2 !1, the stability region becomes the entire complex
plane excluding one point on the real axis.

The stability analysis for cETD schemes is similar to the stability analysis of ETD [2,14,6,7,9], and the sta-
bility analysis of cIIF presented above.

2.3. Three-dimensions

The compact representation of the Laplacian operator like (10) for two-dimensional systems can be
extended to higher dimensional systems. In this section, we present a derivation for a three-dimensional reac-
tion–diffusion equation in a cube with no-flux boundary conditions:
ou
ot ¼ DDuþ FðuÞ; ðx; y; zÞ 2 X ¼ fal < x < au; bl < y < bu; cl < z < cug;
n � ru ¼ 0; ðx; y; zÞ 2 oX



ð40Þ
where n is the unit outward normal direction of oX.
Let Nx;Ny ;N z denote the number of spatial grid points in x; y; z-direction, respectively, hx; hy ; hz be the grid

size, and ui;j;k represents the approximate solution at the grid ðxi; yj; zkÞ. A second order central difference dis-
cretization on the Laplacian operator yields
dui;j;k

dt
¼D

uiþ1;j;k � 2ui;j;k þ ui�1;j;k

h2
x

þ ui;j�1;k � 2ui;j;k þ ui;jþ1;k

h2
y

 
þ ui;j;k�1� 2ui;j;k þ ui;j;kþ1

h2
z

!
þFðui;j;kÞ: ð41Þ
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Fig. 2. Stability regions for the third order cIIF scheme with ðq1 þ q2ÞDt ¼ 0; 0:45; 0:5; 0:6; 1:0; where q ¼ q1 þ q2.
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Define Ax ¼ D
h2

x
ANx�Nx , Ay ¼ D

h2
y
ANy�Ny , and Az ¼ D

h2
z
ANz�Nz , where
AP�P ¼

�2 2 0 0 0 � � � 0
1 �2 1 0 0 � � � 0
0 1 �2 1 0 � � � 0
..
. ..

. ..
. ..

. ..
. ..

. ..
.

0 0 0 0 � � � 2 �2

0
BBBB@

1
CCCCA

P�P

: ð42Þ
Then (41) has the following compact representation
Ut ¼
XNx

l¼1

ðAxÞi;lul;j;k þ
XNy

l¼1

ðAyÞj;lui;l;k þ
XNz

l¼1

ðAzÞk;lui;j;l

 !
þ FðUÞ ð43Þ
where U ¼ ðui;j;kÞ and F ðUÞ ¼ ðF ðui;j;kÞÞ. The three summation terms in (43) are similar to the two vector–ma-
trix multiplications in the two-dimensional case in (10). In addition to a left multiplication and a right mul-
tiplication in (10), there is a ‘middle’ multiplication in (43).

Define an operator LðtÞ by
LðtÞU ¼
XNz

n¼1

XNy

m¼1

XNx

l¼1

ðe�AztÞk;nðe�Ay tÞj;mðe�AxtÞi;lul;m;n

 !
: ð44Þ
Taking derivatives of (44) yields
dðLðtÞUÞ
dt

¼ LðtÞ Ut �
XNx

l¼1

ðAxÞi;lul;j;k þ
XNy

l¼1

ðAyÞj;lui;l;k þ
XNz

l¼1

ðAzÞk;lui;j;l

 ! !
: ð45Þ
Letting LðtÞ act on both sides of (43), and using (45), we obtain
dðLðtÞUÞ
dt

¼ LðtÞFðUÞ: ð46Þ
Integrating (46) over one time step from tn to tnþ1, and using a transformation s ¼ tn þ s for the integration,
we obtain
Lðtnþ1ÞUnþ1 ¼ LðtnÞUn þ LðtnÞ
Z Dt

0

LðsÞF ðUðtn þ sÞÞds: ð47Þ
Applying Lð�tnþ1Þ on both sides of (47) yields
Unþ1 ¼ Lð�DtÞUn þ Lð�DtÞ
Z Dt

0

GðsÞds

� �
; ð48Þ
where
GðsÞ ¼ LðsÞFðUðtn þ sÞÞ: ð49Þ

To derive (48), we’ve used two identities:
Lð�rtÞLðrtÞU ¼ U ð50Þ

and
Lð�rtÞLðstÞU ¼ L ðs� rÞtð ÞU ð51Þ

for any two scalars r and s. Both (50) and (51) can be easily proved based on the definition of L.

Similar to the construction for the two-dimensional system, the approximation of GðsÞ using a r � 1th order
Lagrange polynomial results in a scheme with truncation error of rth order. Specifically, a second order
approximation,
Z Dt

0

GðsÞds � F ðUnÞ þ LðDtÞF ðUnþ1Þ
2

Dt;
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leads to the second order IIF (cIIF2) method for a three-dimensional system:
Unþ1 ¼ Lð�DtÞ Un þ
Dt
2
FðUnÞ

� �
þ Dt

2
FðUnþ1Þ: ð52Þ
The scheme (52) has a form similar to the one- and two-dimensional case. The evaluation of the nonlinear
term F at tnþ1 is still local and decoupled from the global diffusion term such that a nonlinear system of the
size of F needs to be solved at each spatial grid point.

To evaluate Lð�DtÞ in (52), three square matrices eAxDt, eAyDt, and eAzDt have to be pre-calculated and stored.
The size of the three matrices is N 2

x , N 2
y , and N 2

z , respectively. The size of U is of order N xNyN z. In a non-com-
pact representation, the matrix which needs to be stored has a size of the order of N 2

xN 2
y N 2

z . Clearly, the storage
requirement for the new approach is smaller by orders of magnitude. Even for moderate Nx, Ny and N z, the
storage requirement for the non-compact representation usually becomes prohibitive even for computers with
large memory, as seen in the numerical examples in Section 3. In contrast, the new approach can easily handle
the same system with even higher spatial resolutions.

In addition, the new approach takes considerably fewer CPU operations. The operation count for evalu-
ating Lð�DtÞU is of the order of N 2

xNyN z þ N xN 2
y N z þ N xNyN 2

z . This is much smaller than N 2
xN 2

y N 2
z , the oper-

ation count for the corresponding matrix–vector multiplication in a non-compact representation. The savings
in CPU and memory for the new approach are more significant as Nx;Ny ;Nz becomes larger.

Remark. (43) can be re-written in the following form
Ut ¼ Ax Uþ Ay Uþ Az Uþ FðUÞ ð53Þ

by defining three operators,
ðAx UÞi;j;k ¼
XNx

l¼1

ðAxÞi;lul;j;k; ð54Þ

ðAy UÞi;j;k ¼
XNy

l¼1

ðAyÞj;lui;l;k; ð55Þ
and
ðAz UÞi;j;k ¼
XNz

l¼1

ðAzÞk;lui;j;l: ð56Þ
As a result, the Eq. (44) for LðtÞ becomes
LðtÞU ¼ eAzDt eAyDt eAxDt U; ð57Þ

and cIIF2 (52) becomes
Unþ1 ¼ eAzDt eAyDt eAxDt Un þ
Dt
2
FðUnÞ

� �
þ Dt

2
FðUnþ1Þ ð58Þ
which has a form similar to its two-dimensional counterpart (20).
One can also easily obtain other types of cIF and cETD schemes similar to the two-dimensional case. For

example, the second order implicit cETD takes the form:
Unþ1 ¼ Lð�DtÞUn þ
1

Dt
A�2

x ðI � eAxDtÞ þ DtA�1
x eAxDt

� �
eAyDt

�
eAzDt FðUnÞ

þ A�2
x ðeAxDt � IÞ � DtA�1

x

� �
FðUnþ1Þ

	
; ð59Þ
and the second order explicit cETD takes the form:
Unþ1 ¼ Lð�DtÞUn þ
1

Dt
A�2

x ðI þ DtAxÞeAxDt � I � 2DtAx

� �� ��
eAyDt eAzDt F ðUnÞ

� A�2
x ðeAxDt � I � DtAxÞ

� �
e2AyDt e2AzDt F ðUn�1Þ

	
: ð60Þ



5248 Q. Nie et al. / Journal of Computational Physics 227 (2008) 5238–5255
3. Numerical simulations

To study the efficiency and accuracy of the new approach for the IF methods, we will implement and test
the second order implicit integration factor method using the new approach (cIIF2). We will compare it with
IIF2 [8] and with a regular second order Runge–Kutta method (RK2). In addition to testing them on linear
systems in two- and three-dimensions, we will also demonstrate the efficiency of cIIF2 by applying it to two
reaction–diffusion systems arising from models in developmental and cell biology.

In the calculation, the exponential of the square matrix is computed using a scaling and squaring algorithm
with a Pade approximation as implemented in ‘‘expm” of Matlab similar to the one dimensional case [8].

Because the matrix exponentials depend only on the spatial grid size, the time step, and diffusion coeffi-
cients, during the entire temporal updating they only need to be calculated once initially for a fixed numerical
resolution. The local nonlinear systems resulting from IIF2 and cIIF2 are solved using a fixed point iteration
procedure similar to that used in the one-dimensional case [8].

3.1. Tests on simple systems

3.1.1. A linear problem in two-dimensions

We consider a linear reaction–diffusion equation
Table
Error,

N � N

40� 4
80� 8
160�
320�
ou
ot ¼ 0:2 o2u

ox2 þ o2u
oy2

� �
þ 0:1u; ðx; yÞ 2 X ¼ f0 < x < 2p; 0 < y < 2pg;

ou
ox ð0; y; tÞ ¼ ou

ox ð2p; y; tÞ ¼ 0;

uðx; 0; tÞ ¼ uðx; 2p; tÞ ¼ 0;

uðx; y; 0Þ ¼ cosðxÞ þ sinðyÞ:

8>>>><
>>>>:

ð61Þ
The exact solution of the system is
uðx; y; tÞ ¼ e�0:1tðcosðxÞ þ sinðyÞÞ: ð62Þ

Because of the simple structure of the cIIF2 scheme, it can be easily implemented using MATLAB. The

simulation is carried up to t ¼ 1 at which the L1 difference between the numerical solution and the exact solu-
tion is measured. For the convenience of comparison between IIF2 and cIIF3, we also set hx ¼ hy for this case.

As seen in Table 3, the IIF2 method on a workstation with 1GB-RMB runs out of memory when N ¼ 80
because IIF2 needs to store matrices with a size of N 2 � N 2. In contrast, cIIF2 implemented on the same
machine can handle much larger N. For smaller N such as N ¼ 40, although the machine has enough memory
for IIF2, it needs almost 2000 times more CPU time to achieve the same accuracy as cIIF2. On the other hand,
RK2 can run because of its small memory requirement, but its stability constraint (Dt must be proportional to
h2

x) demands a much smaller time step, and consequently results in more CPU time than cIIF2 for the same
accuracy. Overall, cIIF2 is more efficient than both IIF2 and RK2.

3.1.2. A linear problem in three-dimensions

In three-dimensions, we consider a similar system
ou
ot ¼ dDuþ au; ðx; y; zÞ 2 X;

n � ru ¼ 0 ðx; y; zÞ 2 oX;



ð63Þ
3
order of accuracy, and CPU time for cIIF2, IIF2, and RK2 for a two-dimensional case

cIIF2, Dt ¼ hx=2 IIF2, Dt ¼ hx=2 RK2, Dt ¼ h2
x

L1 error Order CPU (s) L1 error Order CPU(s) L1 error Order CPU (s)

0 5:65� 10�4 – 0:08 5:65� 10�4 – 142:47 5:65� 10�4 – 0:03
0 1:56� 10�4 1:86 0:15 Out of memory – – 1:55� 10�4 1:86 0:27
160 4:16� 10�5 1:91 1:02 Out of memory – – 4:16� 10�5 1:91 7:43
320 1:09� 10�5 1:93 33:54 Out of memory – – 1:09� 10�5 1:93 210:62



Q. Nie et al. / Journal of Computational Physics 227 (2008) 5238–5255 5249
where X ¼ f0 < x < p; 0 < y < p; 0 < z < pg, n is outward normal of oX, and d ¼ 0:2; a ¼ 0:1. The exact
solution of (63) has a form similar to (62). The initial condition in the simulations is taken from the exact solu-
tion of (63) at t ¼ 0. The computation is carried up to t ¼ 2 at which the error is measured. We also chose
hx ¼ hy ¼ hz for convenience of comparisons with other methods.

Similar to the two-dimensional case, the machine quickly runs out of memory for the IIF2 in three-dimen-
sions when N > 15. For three dimensional systems, the required memory for IIF2 is so large that IIF2 is prac-
tically impossible to handle any moderate spatial resolutions.

When cIIF2 is compared to RK2 which needs much less memory, cIIF2 shows superiority in CPU times as
seen in Table 4. As expected, RK2 does not converge if Dt is set to the same value as used in cIIF2 for most
values of N. Because of the sever stability constraint on Dt, RK2 requires a much smaller time-step and
becomes more expensive. As shown in Table 4, cIIF2 requires less CPU time than RK2 but achieves the same
accuracy.

3.2. Applications to two models in biology

Many models in developmental and cell biology take the form of reaction–diffusion Eq. (1). In such sys-
tems, the rate constants in biochemical reactions in F usually vary by more than five orders of magnitude.
As demonstrated in one-dimensional systems [8], a standard IF, ETD or RK method is not efficient, and
the implicit integration factor method (IIF) is much more desirable for such applications with stiff reactions.
In this section, we apply cIIF2 to two different models for the study of embryonic patterning and cell signaling,
one in two-dimensions and one in three-dimensions.

3.2.1. A two-dimensional model for dorsal-ventral patterning

For proper functioning of tissues, organs and embryos, each cell is required to differentiate appropriately
for its position. Positional information that instructs cells about their prospective fate is often conveyed by
concentration gradients of morphogens bound to cell signaling receptors. Morphogens are signaling molecules
that, when bound to cell receptors, assign different cell fates at different concentrations [15,16]. This role of
morphogens has been the prevailing thought in tissue patterning for over half a century; but only recently have
there been sufficient experimental data and adequate modeling for us to begin to understand how various mor-
phogens interact and patterns emerge [17–19].

One example is the dorsal-ventral patterning in Drosophila embryos, a well-known regulatory system
involving several zygotic genes. Among them, decapentaplegic (Dpp)promotes dorsal cell fates such as amnio-
serosa and inhibits development of the ventral central nervous system; and another gene Sog promotes central
nervous system development. In this system, Dpp is produced only in the dorsal region while Sog is produced
only in the ventral region. For the wild-type, the Dpp activity has a sharp peak around the mid-line of the
dorsal with the presence of its ‘‘inhibitor” Sog. Intriguingly, mutation of Sog results in a loss of ventral struc-
ture as expected, but, in addition, the amnioserosa is reduced as well. It appears that the Dpp antagonist, Sog,
is required for maximal Dpp signaling [20–23]. In [24–26], simulations and analysis for a simplified one-dimen-
sional dynamic Dpp–Sog model were carried out along with experimental studies. The robustness and tempo-
ral dynamics of the morphogens were investigated under various genetic mutations [24–26].

Recently, motivated by experimental study of over-expression of the receptors along the anterior-posterior
axis of the embryo [26], a two-dimensional model was developed [27] to examine the Dpp activities outside the
Table 4
Error, order of accuracy, and CPU time for cIIF2 and RK2 for a three-dimensional case

cIIF2, Dt ¼ hx=3 RK2, Dt ¼ hx=3 RK2, Dt ¼ h2
x=3

N � N L1 error Order CPU (s) L1 error Order CPU(s) L1 error Order CPU (s)

10� 10� 10 8:07� 10�3 – 0.0 8:07� 10�3 – 0.0 8:07� 10�3 – 0.0
20� 20� 20 2:02� 10�3 2.0 0.08 NC – – 2:02� 10�3 2.0 0.18
40� 40� 40 5:05� 10�4 2.0 2.18 NC – – 5:05� 10�4 2.0 6.85
80� 80� 80 1:26� 10�4 2.0 126.56 NC – – 1:26� 10�4 2.0 293.4
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area of elevated receptors in a Drosophila embryo. In this paper, we apply the cIIF2 to obtain accurate numer-
ical solutions for this two-dimensional system [27].

Let ½L�; ½S�; ½LS�; ½LR� denote the concentration of Dpp, Sog, Dpp–Sog complexes, and Dpp–receptor com-
plex, respectively. In the model formulated in [25,27], the dynamics of the Dpp–Sog system is governed by the
following reaction diffusion equations:
Table
Error,

Dt

1:375�
6:875�
3:438�
o½L�
oT
¼ DL

o
2½L�
oX 2

þ o
2½L�
oY 2

� �
� kon½L� RðX ; Y Þ � ½LR�ð Þ þ koff ½LR�

� jon½L�½S� þ ðjoff þ sjdegÞ½LS� þ V LðX ; Y Þ

o½LR�
oT
¼ kon½L� RðX ; Y Þ � ½LR�ð Þ � ðkoff þ kdegÞ½LR�

o½LS�
oT
¼ DLS

o2½LS�
oX 2

þ o2½LS�
oY 2

� �
þ jon½L�½S� � ðjoff þ jdegÞ½LS�

o½S�
oT
¼ DS

o2½S�
oX 2

þ o2½S�
oY 2

� �
� jon½L�½S� þ joff ½LS� þ V SðX ; Y Þ

ð64Þ
in the domain 0 < X < X max; 0 < Y < Y max, where
RðX ; Y Þ ¼
Rh; X 6 X h;

R0; X > X h:



ð65Þ

V LðX ; Y Þ ¼
vL; Y < 1

2
Y max;

0; Y P 1
2
Y max:

(
ð66Þ

V SðX ; Y Þ ¼
0; Y < 1

2
Y max;

vS ; Y P 1
2
Y max:

(
ð67Þ
The boundary conditions for ½L�, ½LS�, and ½S� are no-flux at X ¼ 0 and X ¼ X max, and periodic at Y ¼ 0 and
Y ¼ Y max. RðX ; Y Þ is the concentration of the initially available receptor in space; X ¼ X h is the boundary
between the two regions with different level of receptors; V LðX ; Y Þ and V SðX ; Y Þ are the production rates for
Dpp and Sog, respectively; DL;DLS ;DS are diffusion coefficients; s is the cleavage rate for Sog; and other coef-
ficients are on, off and degradation rate constants for the corresponding bio-chemical reactions.

The initial concentrations of all morphogen molecules are zeros. Both X max and Y max are taken to be
0:055 cm, based on the Drosophila embryo size at its appropriate developmental stage [26].

To study the performance and convergence of cIIF2, we list in Table 5 the error, order of accuracy and CPU
time for simulations using cIIF2 to solve (64) for the set of parameters presented in Fig. 3 without the receptor
over-expression. In this case, the spatial resolution is fixed as N ¼ 40 in both directions. The error at Dt is mea-
sured as a difference between this solution, uDt, and the solution u2Dt for time step size 2Dt at T ¼ 10, i.e.,
EDt ¼ jjuDt � u2DtjjL1 : ð68Þ

The cIIF2 clearly shows a second order of accuracy in time as expected. As demonstrated in Table 3, the IIF2

for this case will be much slower than cIIF2 for small N, and it runs out of memory for N > 40.
Next we study the over-expression experiments in [26] by setting Rh ¼ 9 lM in the region 0 < X < X h ¼

0:02 cm [26]. The concentrations of Dpp, Dpp–receptor, Dpp–Sog and Sog are plotted in Fig. 3. It is worth
5
order of accuracy, and CPU time for cIIF2 applied to a two-dimensional system

EDt Order CPU (s)

10�3 1:76� 10�8 – 7:54
10�4 4:40� 10�9 2:00 15:08
10�4 1:10� 10�9 2:00 30:20
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Fig. 3. Concentrations of ½L�; ½LR�; ½LS�; ½S� at T ¼ 7200 s for the two-dimensional Dpp–Sog system (64) when receptors are over-expressed.
Dt ¼ hx ¼ hy ¼ 0:001375 in the simulation. Parameters are DL ¼ DLS ¼ DS ¼ 85 lm2 s�1; vL ¼ 1 nM s�1; vS ¼ 80 nM s�1; kon ¼
0:4 lM�1 s�1; koff ¼ 4� 10�6 s�1; kdeg ¼ 5� 10�4 s�1; jon ¼ 95 lM�1 s�1; joff ¼ 4� 10�6 s�1; jdeg ¼ 0:54 s�1; s ¼ 1; R0 ¼ 3 lM.
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of noting that in the simulations the over-expression of receptor induces a local boost of Dpp–receptor activities
near the boundary of two different concentration regions of receptors, similar to the experimental observations
[26]. This two-dimensional spatial effect was not modeled in the previous study [26]. A more systematic study on
the receptor over-expression will be reported in [27].

3.2.2. A three-dimensional model for intra-cellular signaling

When a hormone or growth factor binds to a cell-surface receptor, a cascade of proteins inside the cell
relays the signal to specific intra-cellular targets. A class of proteins referred to as scaffolds are thought to play
many important roles during this process [28–30]. Scaffold usually binds dynamically to two or more consec-
utively-acting components of a signaling cascade. Experimental work suggests that scaffolds may promote sig-
nal transmission by tethering consecutively acting kinases near each other [31,32]. However, it has also been
experimentally observed that some scaffold inhibit signaling when over-expressed [33–35]. In support of these
observations, computations of non-spatial models have demonstrated that scaffold proteins may either
enhance or suppress signaling, depending on the concentration of scaffold. In [36], a model of generic, spatially
localized scaffold protein was developed for one and two spatial dimensions, and the model indicated that a
scaffold protein could boost signaling locally (in and near the region where it was localized) while simulta-
neously suppressing signaling at a distance.

In this paper, we present simulations for the set of reaction–diffusion equations formulated in [36] that
describes a spatially localized scaffold and freely diffusing products and reactants in three dimensions. The
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model contains a scaffold protein (S), which can bind to two other proteins (A and B). In the absence of the
scaffold protein, A and B can bind directly to each other. In the presence of the scaffold protein S, first A binds
to S, forming AS. Next B binds to AS forming ASB. Finally, A and B bind to each other on the scaffold and
an AB complex is released. The symmetrical path, where B binds to the scaffold before A, is also available.
Denote [ ] as the concentration of the proteins, the mass reaction equations with diffusion take the form,
Table
Error,

Dt

2:5� 1
1:25�
6:25�
d½S�
dt
¼ �jonð½A�½S� þ ½B�½S�Þ þ joffð½AS� þ ½BS�Þ þ jcon½ABS�;

d½AS�
dt
¼ jonð½A�½S� � ½AS�½B�Þ � joffð½AS� � ½ABS�Þ;

d½BS�
dt
¼ jonð½B�½S� � ½BS�½A�Þ � joffð½BS� � ½ABS�Þ;

d½ABS�
dt

¼ jonð½AS�½B� þ ½BS�½A�Þ � ð2joff þ jconÞ½ABS�;

d½A�
dt
¼ DD½A� � kon½A�½B� þ koff ½AB� � jonð½A�½S� þ ½BS�½A�Þ þ joffð½AS� þ ½ABS�Þ;

d½B�
dt
¼ DD½B� � kon½A�½B� þ koff ½AB� � jonð½B�½S� þ ½AS�½B�Þ þ joffð½BS� þ ½ABS�Þ;

d½AB�
dt
¼ DD½AB� þ kon½A�½B� � koff ½AB� þ jcon½ABS�:

ð69Þ
In the system (69), D is the diffusion constant; kon; koff are the on and off rates for the off-scaffold reactions,
jon; joff , jcon are the rate constants for the on-scaffold reactions. The system (69) holds in the cell: X ¼ f0 6 x 6
10 lm;0 6 y 6 10 lm;0 6 z 6 10 lmg, with no-flux boundary conditions for A;B;AB.

First, we test the convergence of cIIF2 when it is applied to the system (69). In this simulation, the initial
concentrations of A and B are set at 1 lM, and they are uniformly distributed throughout the cell. And the
scaffolds initially are localized in part of the cell: 4 lm 6 x2 þ y2 þ z2

6 9 lm, with ½S� ¼ 50 lM in this region.
The diffusion and rate constants are chosen to be D ¼ 1 lm2 s�1, kon ¼ 0:1 ðlMsÞ�1, koff ¼ 0:3 s�1, jon ¼
1 ðlMsÞ�1, joff ¼ 0:005 s�1, and jcon ¼ 0:1 ðlMsÞ�1. In Table 6, the error and order of accuracy are estimated
at T ¼ 1 second using a spatial resolution N ¼ 40 in three-directions. As expected, the cIIF2 converges in sec-
ond order in time, and it has excellent efficiency. And for the IIF, the machine runs out of memory for this
spatial resolution: N ¼ 40.

Next, we present a case study on the effect of scaffolds in Fig. 4. Due to the symmetry of chemical reaction
pathways between A and B, we only need to show four different products. In this simulation, the initial dis-
tribution of each protein and the scaffold are the same as in Table 6. The concentration of each component is
represented using density of dots: more dots represent more proteins.

Compared to the case without scaffolds but with other reaction rates being the same, the desired product
AB, in the case of Fig. 4, is more concentrated in the region where scaffolds are initially distributed, and it is
suppressing away from the scaffold region in the meantime. This unevenly distributed AB results from an inti-
mate interaction between reactions and diffusions. It is similar to the corresponding one- or two-dimensional
systems studied in [36], in which a detailed analysis has been carried out on the condition under which the
boost and the suppressing of AB simultaneously occur. Although the qualitative features of the system remain
the same in different spatial dimensions, we have observed the expected quantitative differences arising in these
systems.
6
order of accuracy, and CPU time for cIIF2 applied to a three-dimensional system

EDt Order CPU (s)

0�2 2:09� 10�4 – 18:91
10�2 5:24� 10�5 2:0 37:64
10�3 1:32� 10�5 1:99 75:37



Fig. 4. Concentrations for A;B;AB and ABS at T ¼ 10 s. The dot density represents the level of concentrations. The parameters are
D ¼ 1 lm2 s�1, kon ¼ 0:1 ðlMsÞ�1, koff ¼ 0:3 s�1, jon ¼ 100 ðlMsÞ�1, joff ¼ 0:05 s�1, jcon ¼ 0:1 s�1.
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4. Conclusions and discussions

In integration factor (IF) and exponential time differencing (ETD) methods, the linear operator with the
highest order spatial derivatives in the differential equation is treated exactly in time discretization. This tem-
poral integration involving exponentials of the differential operator leads to unconditional stability associated
with that term; however, the computational cost resulting from the approximation usually is very expensive
for systems with general boundary conditions, and often it becomes prohibitive in two- or three-dimensions.

In this paper, we introduced a compact representation of the linear differential operator in two- and three-
dimensions. Such a representation in IF and ETD methods reduces the computational cost significantly in
both storage and CPUs, and it makes IF and ETD in two- and three-dimensions efficient and attractive meth-
ods. We analyzed and implemented such an approach for an implicit integration factor (IIF) method for stiff
reaction–diffusion equations. The new compact IIF (cIIF) preserves the stability property of the IIF; and our
direct simulations on linear and nonlinear systems in both two- and three-dimensions demonstrated that cIIF
is much more efficient than the IIF.

Although we only implemented the new compact approach for reaction–diffusion equations, this technique
may be applied to other type of systems, such as equations involving higher order derivatives. Also, the tensor-
like representation of the linear differential operators presented in the remark of Section 2.3 can easily be
extended to systems in dimensions higher than three. In addition, its excellent stability condition (assuring
unconditional linear stability with respect to both diffusions and reactions) along with its compact structure
and CPU efficiency make cIIF particularly suitable and useful for spatially adaptive methods. Currently,
we are incorporating cIIF with AMR (Adaptive Mesh Refinement) in two- and three-dimensions, and good
performance has been observed [37].
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