
Supplemental Data 

Formation of the BMP Activity Gradient  

in the Drosophila Embryo 
Claudia Mieko Mizutani, Qing Nie, Frederic Y.M. Wan, Yong-Tao Zhang, Peter Vilmos, Rui Sousa-Neves, 
Ethan Bier, J. Lawrence Marsh, and Arthur D. Lander 

Supplemental Experimental Procedures 

1. Effects of Varying Parameter Values 
Figure 5 of the paper shows how the profile of a gradient of receptor occupancy specified by 

a single set of parameters changes over time.  Figure 6 gives profiles of receptor occupancy at a 
single time point (t = 38 min) for different modifications of the parameters used in Figure 5.  
Supplemental Figures S1-S6, below, supplement this information as follows.   

Supplemental Figure S1 shows the time evolution of the full solution for the parameters in 
Figure 5, giving the values for [L], [S], [ST], [T], and [LST] as well as [LR].  The curves depict 
5 min intervals with the final, red curve representing 60 minutes.  All gradients start at time = 0 
from an initial value of zero everywhere.   

Supplemental Figures S2-S6 show how three characteristics of the dorsal midline peak of 
[LR] vary when several of the critical parameters are altered, pairwise, over a substantial range 
from the “base” parameter set of Figure 5.  In each figure, the top left image depicts the peak 
height at 38 min, the time given in Figure 6.  The top right image depicts peak height at 90 min.  
This was used, rather than steady-state peak height, because for some parameter sets, steady state 
occurs later than 90 min, a time too long to be biologically significant.  The lower left image 
depicts the time required for the height of the [LR] peak to achieve 63.2% (1-e-1) of its 90 min 
value; this gives a sense of the overall rate of formation of the BMP activity gradient.  The point 
at the very center of each square represents the parameter set used is Figure 5.   

From Supplemental Figures S2-S6, one can observe a variety of interesting ways in which 
the results depend on the parameters.  For example, Supplemental Figure S2 shows that 
increasing vL and vS have opposite effects on the rate at which the midline signaling peak forms, 
which helps explain why reducing sog gene dosage compensates (under non-steady-state 
conditions) for some of the effect of a reduction in dpp dosage (Figure 7).   
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Supplemental Figure S1.  Dynamic Behavior of the Model, Using the Parameters in Figure 5 

All concentrations are zero at t = 0 and correspond to the red curves at t = 60 min.  The blue 
curves give values at 5 min intervals between 0 and 60 min.   
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Supplemental Figure S2.  Effect of Pairwise Variation of vS and vL on Characteristics of the BMP 
Gradient Model of Figure 4 
Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the dorsal 
midline peak of [LR] at 90 min.  Lower left, time for [LR] at the dorsal midline to attain 63.2% 
of its 90 min value.  The point in the center of each square represents the parameter set used in 
Figure 5, and color coding (see calibration bars) is used to represent values of [LR] or time, as 
appropriate.  The model was numerically solved for 25 separate parameter pairs, and contours 
were generated by interpolation using Matlab software.    
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Supplemental Figure S3.  Effect of Pairwise Variation of kdeg and vL on Characteristics of the 
BMP Gradient Model of Figure 4 
Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the dorsal 
midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to attain 63.2% of 
its 90 min value.  The point in the center of each square represents the parameter set used in 
Figure 5, and color coding (see calibration bars) is used to represent values of [LR] or time, as 
appropriate.  The model was numerically solved for 25 separate parameter pairs, and contours 
were generated by interpolation using Matlab software. 
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Supplemental Figure S4.  Effect of Pairwise Variation of vS and vT on Characteristics of the BMP 
Gradient Model of Figure 4 
Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the dorsal 
midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to attain 63.2% of 
its 90 min value.  The point in the center of each square represents the parameter set used in 
Figure 5, and color coding (see calibration bars) is used to represent values of [LR] or time, as 
appropriate.  The model was numerically solved for 25 separate parameter pairs, and contours 
were generated by interpolation using Matlab software. 
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Supplemental Figure S5.  Effect of Pairwise Variation of jon and τ on Characteristics of the BMP 
Gradient Model of Figure 4   
Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the dorsal 
midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to attain 63.2% of 
its 90 min value.  The point in the center of each square represents the parameter set used in 
Figure 5, and color coding (see calibration bars) is used to represent values of [LR] or time, as 
appropriate.  The model was numerically solved for 35 separate parameter pairs, and contours 
were generated by interpolation using Matlab software. 
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Supplemental Figure S6.  Effect of Pairwise Variation of vS and τ on Characteristics of the BMP 
Gradient Model of Figure 4   
Top left, value of the dorsal midline peak of [LR] at 38 min.  Top right, value of the dorsal 
midline peak of [LR] at 90 min. Lower left, time for [LR] at the dorsal midline to attain 63.2% of 
its 90 min value.  The point in the center of each square represents the parameter set used in 
Figure 5, and color coding (see calibration bars) is used to represent values of [LR] or time, as 
appropriate.  The model was numerically solved for 25 separate parameter pairs, and contours 
were generated by interpolation using Matlab software. 
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2. Model Structure and Parameter Choices 
We sought to minimize the assumptions and simplifications that went into the reaction 

diffusion model (Figure 4) that was studied here.  However, in searching for the fundamental 
behaviors of a system, well-chosen simplifications have practical benefits (e.g., in reducing the 
size of the parameter space to be explored).  Here we point out assumptions and simplifications 
of the present study. 

First, we note that, for our initial conditions (i.e., at time = 0), the levels of L, S, T, and their 
molecular complexes were taken to be zero.  In the absence of biological data to suggest 
otherwise, this is a reasonable choice, but it should be kept in mind that only the steady-state 
solution lacks dependence on the initial conditions. How nonzero initial conditions affect the 
time-dependent solutions could easily be determined through additional numerical simulations.  

Second, we note that Tld was not modeled explicitly, but rather represented by a first-order 
rate constant.  This is equivalent to assuming a constant level of Tld at all times and in all 
locations (in the embryo, Tld is produced on the dorsal side and little is known about its protein 
levels).  In the course of initial simulations in which Tld was explicitly modeled (as a dorsally 
expressed enzyme that transiently interacts with its substrates), we realized that, due to 
unhindered diffusion, Tld localization rapidly equilibrated across the embryo.  Furthermore, its 
levels simply increased monotonically with time.  It seemed more likely that some degradation 
process would ultimately slow the rate of Tld increase, but no biological data are available 
regarding this.  It seemed that neglecting such a process (or modeling it with an arbitrarily 
chosen rate constant) would be just as likely to introduce error as taking Tld levels to be 
constant, so we took the latter approach. 

Similarly, little is known about degradative processes that might counteract a steady rise in 
the concentration of Tsg due to its continuous production.  However, because of its interaction 
with Sog, we chose to model Tsg explicitly, including its localized production (we note, 
however, biological data indicating that the location of Tsg expression appears not to be 
important to patterning [Mason et al., 1997]).   

In the case of Sog, Tld-mediated destruction itself counteracts continuous production, so 
there is no compelling need, from the modeling standpoint, to include other means of removing 
Sog (and therefore none was included in this study).  However, recent experimental data have 
demonstrated a Tld-independent, endocytosis-dependent process of Sog degradation in the 
embryo (Srinivasan et al., 2002).  Thus, we also carried out a series of calculations in which a 
fixed rate constant of degradation of free Sog was included.  While the effects of this change 
were not tested over as wide a set of parameters as those shown in Supplemental Figures S2-S6, 
we did not observe a dramatic alteration in the general behavior of the system, and we found that 
results similar to those in Figures 5-7 and Supplemental Figure S1 could be obtained by 
adjusting the values of other parameters.   

It should also be noted that in the present study we equate [LR] with the morphogen “signal,” 
i.e., PMad.  This assumes that PMad is generated rapidly in response to receptor occupancy, and 
that, when receptor occupancy falls, PMad staining falls as rapidly.  We have explored the 
effects of explicitly defining a signal that integrates [LR] over a particular time period, and find 
that this change has little effect on the results, as long as the rate constant of PMad degradation is 
reasonably fast.   
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Finally, we mention that parameter choices were, whenever possible, chosen to fit available 
experimental data.  Choices for the circumference of the embryo, D and R0, follow reasoning 
similar to that presented by Eldar et al. (2002), although given the sizes of the cells in the 
embryo, we chose a somewhat higher level of receptors per cell; choices for kon and koff follow 
references and discussion in Lander et al. (2002).  The value of kdeg was chosen based on 
information inferred from Figure 3 (see text).  All other parameters were chosen from within 
ranges that were consistent with the biophysics of protein-protein interactions and, where 
applicable, that gave plausible equilibrium binding constants.   

 

3. In Vivo Effects of Receptor Overexpression 
In the model, receptor-mediated BMP degradation plays an important role in allowing for the 
formation of relatively stable PMad patterns.  To the extent that receptors act as a “sink” for 
BMPs, one would predict that the localized expression of ectopic receptors would cause a net 
flux of free BMPs toward the site of receptor overexpression.  One result of this would be a 
depression of BMP signaling in adjacent areas.  Recently, Wang and Ferguson (2005) presented 
experiments in which mRNA for the Dpp receptor Tkv was injected in a localized fashion into 
early embryos.  No discernable differences were observed in the PMad patterns that ultimately 
developed, unless a constitutively active form of the receptor was used (a result that was taken as 
evidence of a signaling-mediated feedback loop that regulates gradient formation).   

At first glance, the lack of effect of wild-type tkv in these experiments would seem to argue 
against a model in which receptor-mediated BMP degradation is a key event.  However, because 
the experiments of Wang and Ferguson (2005) were carried out by RNA injection, it is not 
possible to know whether the levels of ectopic tkv were substantial compared with endogenous 
tkv and therefore whether they should have been expected to have any significant influence on 
BMP degradation.  To resolve this issue, we utilized the GAL4-UAS system to express ectopic 
tkv in the head region of embryos and observed its subsequent effects on PMad staining.   

As shown in Supplemental Figure S7, endogenous tkv expression in the embryonic head 
region is already relatively substantial and can be elevated by expression of wild-type tkv using a 
bcd-GAL4 driver.  When compared with wild-type embryos, those expressing ectopic tkv 
consistently showed a narrowing and weakening of the PMad staining pattern over a range of 10-
12 cell diameters posterior to the border of the bcd domain.  Thus, the data are consistent with 
the prediction of the model that receptors act as a major BMP sink.   
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Supplemental Figure S7.  Localized Expression of Tkv Leads to Reduced PMad Activation in 
Adjacent Cells 
(A) Endogenous tkv expression in a wild-type embryo.  Note that expression is elevated in the 
sections of head relative to the trunk region.  At this stage, tkv expression is restricted to the 
dorsal region of the embryo.  Embryos are viewed from a dorsal perspective with anterior to the 
left in this and subsequent panels.   
(B) Overexpression of a UAS-tkv transgene in the head with the bcd-GCN4/GAL4 driver results 
in increased tkv expression in an anterior cone of cells that circumnavigates the entire D/V axis 
in the head region (bracket).  The level of ectopic tkv expression in dorsal cells is approximately 
equal to that of endogenous tkv.   
(C) PMad staining in a wild-type embryo.   
(D) PMad staining in an embryo expressing tkv in the head under the control of the bcd-
GCN4/GAL4 driver.  Note that the width and level of PMad expression is decreased in trunk 
cells lying posterior to the domain of tkv overexpression.  This depression of PMad staining 
extends for 10-12 cells (bracket) in which endogenous levels of tkv are relatively low at this time 
(see [A]). 
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4. A Space-Independent Version of the Model 
To develop insights into dynamic behaviors of the model that might be independent of 

morphogen transport, we consider in this section only the space-independent limiting case of our 
model, which we obtained by making the following additional simplifications.  First, we 
assumed that all molecules were produced everywhere, so that diffusion could be neglected.  
Second, realizing that in many instances either Tsg or Sog synthesis would be rate limiting for 
the production of the heterodimeric inhibitor (ST), we represented ST by a single inhibitor 
species (which for simplicity we refer to as S) that is generated at a constant rate (vS).  Third, we 
limited our analysis to situations in which receptor occupancy is low enough that levels of free 
receptors are not appreciably reduced by ligand binding.  Fourth, we assume that the rate of 
dissociation of BMPs from their receptors is slow compared with the rate at which ligand 
receptor complexes are degraded.  With these simplifications, the equations in Figure 4 can be 
reduced to the following ordinary differential equations:  

 

 
d[L]
dt  = vL - konR0[L] - jon[L][S] + (joff+τ)[LS] (1) 

 
d[LR]

dt  = konR0[L] – kdeg[LR] (2) 

 
d[S]
dt  = vS - jon[L][S] + joff[LS] (3) 

 
d[LS]

dt  = jon[L][S] - (joff+τ)[LS] (4) 

The steady-state solutions to these equations are 

[L]ss= 
vL

konR0
;    [LR]ss = 

vL
kdeg

;    [S]ss = (1+
joff

τ )(vSkonR0
vLjon

);    and [LS]ss = 
vS

τ  

For vS > vL, and in parameter ranges of interest, we typically see that the behavior of this system, 
as elucidated through asymptotic analysis and numerical simulations, can be divided into three 
phases (Supplemental Figure S8).  During an initial very fast phase, [L] undergoes a rapid rise 
and fall.  For reasonable parameter choices, this occurs too quickly to be of biological 
significance.  During a second “plateau phase,” [L] and [LR] remain relatively constant, well 
below their steady-state values, [S] rises and then falls, and [LS] rises almost linearly.   

 The plateau phase ends when [S] falls to near its steady-state value.  In the subsequent 
“jump” phase, [L] and [LR] rise rapidly to their steady-state values (in some cases undergoing a 
damped oscillation as they approach those values), while [S] and [LS] remain relatively constant.   

 This plateau-jump behavior bears striking resemblance to the behavior of the full system 
(e.g., Figure 4) at the dorsal midline (Supplemental Figure S9; Figure 5).  Therefore, we decided 
to see how this behavior, in particular the duration of the plateau phase, depends upon the 
parameters.   
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Supplemental Figure S8.  Dynamic Behavior of a Simplified Space-Independent Model 
Equations 1-4 were solved numerically from 0 to 3600 s (1 hr). [L], [LR], [S], and [LS] are 
plotted in units of µM.  Parameters were vL = 6 nM; vS = 10 nM; konR0 = 0.5 s-1; kdeg = 0.001 s-1; 
jonR0 = 5 s-1; joff = 3 x 10-4 s-1; τ = 0.001 s-1.  Note the distinct “plateau” and “jump” phases, 
which are shaded in yellow and blue, respectively. 
 

 Since simulations show the rise and fall of [S] during the plateau phase is invariably nearly 
symmetrical, we may estimate the duration of the plateau phase to be twice T, the time for [S] to 
achieve a maximum, which occurs when d[S]

dt  = 0.  Since [L] and [LR] are relatively constant 

during the plateau phase, we may also consider that, at time T, d[L]
dt   ≈ 0.  Thus, combining 

equations 1 and 3 we get  

vL - konR0[L]T - jon[L]T[S]T + (joff+τ)[LS]T = vS - jon[L]T[S]T + joff[LS]T 

where the subscripts indicate evaluation at time T. From this we derive that [LS]T = vS-vL+konR0[L]T

τ
.  We note that if [L] is well below its steady-state value during the plateau phase, then from the 
steady-state solution, we may infer that konR0[L]T << vL.  Accordingly, we may approximate  

 [LS]T = 
vS-vL

τ . (5) 

 Combining equations 3-4, we find that d[S]
dt  + d[LS]

dt  = vS–τ[LS].  At times close to T, d[S]
dt  will 
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be close to zero, and so may be neglected.  If we then replace [LS] with its previously estimated 
value at T from (5), we get d[LS]

dt  ~ vL, which agrees with the observed linear rise in [LS] during 
the plateau phase.  Noting that [LS] appears to grow linearly from almost the earliest times, it is 
appropriate to use the initial condition [LS]t=0 = 0 in integrating this expression, which gives: 
 [LS] = tvL, (6) 
By requiring equations (5) and (6) both to hold at t = T, we derive that  

T = 
vS-vL

τ vL
 = (1

τ )( 
vS
vL

 - 1). (7) 

Thus, the duration of the plateau phase, which should be twice the value of T, should vary 
inversely with τ and, when vS is large compared with vL, directly with the ratio vS

vL
.  Numerical 

solutions of the simplified system support this conclusion.  Moreover, when the full system (i.e., 
Figure 4) is analyzed, one can easily see the same linear dependence of T on vS

vL
 (Supplemental 

Figure S10a). Interestingly, the dependence on 1
τ  appears to be less than linear (Supplemental 

Figure S10b), suggesting that spatial effects that depend upon τ also have an important influence 
on the full system’s behavior.   
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Supplemental Figure S9.  Dynamic Behavior of the Full Model at the Dorsal Midline 
The equations in Figure 4 were solved for the parameters listed in Figure 5.  Values of [L], [LR], 
[S], [ST], [T], and [LST] at the dorsal midline (x = 0) are plotted as a function of time.  Note the 
distinct “plateau” and “jump” phases of the [L] and [LR] curves.  As in the space-independent 
model (Supplemental Figrue S8), the plateau phase is characterized by a nearly symmetrical rise 
and fall in [S], and a nearly linear rise in [LST].   
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Supplemental Figure S10.  Time for [S] to Reach Its Maximum  
The time at which [S] reaches its maximum at the dorsal midline is plotted as a function of vL 
and vS (left image) or τ and vS (right image), for the complete model shown in Figure 4.  To 
create each image, the model was numerically solved for 25 separate parameter pairs, and 
contours were generated by interpolation using Matlab software.  Time (in minutes) is 
represented by color coding (see calibration bar).  Parameters corresponding to those used in 
Figure 5 are located at the center of each square.  In the left image, the contour lines all exhibit a 
slope = 1, indicating that the time for [S] to reach a maximum at the dorsal midline is directly 
proportional to vL/vS.  In the right image, the lower slope of the contour lines indicates that the 
time for maximum [S] is less sensitive to τ than predicted.   
 

5.  Effect of Expression Level on Range of Morphogen Action 
According to Fick’s law, the flux of a diffusing species will be proportional to its 

concentration gradient.  Accordingly, even if a molecule has low intrinsic diffusivity, there can 
be a substantial flux of it away from a source if the concentration gradient is large enough.  Thus, 
with a high enough level of production, a morphogen should be able to act at a substantial 
distance even if its diffusivity is very low.  In the experiments in Figures 2 and 3, st2-dpp is 
expressed at a level up to 2.5 times higher than endogenous Dpp.  We wished to address whether 
this amount of overexpression could have had a significant effect on the observed range of 
action, leading Figures 2 and 3 to overestimate the range that endogenous Dpp would normally 
have in the absence of Sog.   

In a sog- embryo expressing st2-dpp, we may model morphogen gradient formation as a one-
dimensional problem (particularly if endogenous Dpp is ignored or, even better, eliminated 
genetically as in Figure 3).  Morphogen is produced at rate vL in a zone of width “p” equal to the 
width of eve stripe 2 and diffuses out in anterior and posterior directions, with diffusivity D.  
Receptors are assumed to be uniformly distributed and to bind and degrade morphogen with rate 
constant kdeg.  We have analyzed this problem elsewhere (e.g., Lander et al., 2002; Lander et al., 
2005) and obtain approximate steady state solutions in two regimes.  

When vL is sufficiently low that levels of morphogen are nowhere high enough to saturate the 
majority of receptors, the gradient of receptor occupancy [LR], as a function of distance x from 
either edge of the morphogen production region, is approximated by exponential decay: 



 

16 

 

 [LR] = 
vL

kdeg
  

e-xΛ

1+coth(Λ
p
2)

 . (8) 

In this formula, the production region is given by –p < x < 0 and the gradient region on one side 
of the production region by x > 0.  The parameter Λ is a length constant (units of length-1) given 
by  

Λ = 
kdegkonR0

D(koff+kdeg) , 

where kon, koff, and R0 have their usual meanings (Lander et al., 2005).  The inverse of Λ is 
roughly equivalent to what Eldar et al. (2003) call the degradation length.   

Diffusivity enters into the formula in (8) through the fact that Λ is inversely proportional to 
the square root of D.  Decreasing D thus increases Λ and makes the exponential term in the 
numerator fall more rapidly.  It also lowers the value of [LR] at the start of the gradient (i.e., x = 
0) by decreasing the value of 1+coth(Λ

p
2 ), although it should be noted that once Λp

2 ≥1, the effect 

of varying Λ on this term is small.   

Using the parameters given in the legend to Figure 5 and an approximate width for eve-st2 of 
35 µm, we get [LR] ≈ 0.98e-0.12x, which describes a morphogen gradient that falls from 33% to 
0.33% receptor occupancy over about 39 µm.   This is on the order of size of the signaling 
gradient we observe in Figure 3.  In contrast, were we to use a value of D 100-fold lower than 
that of a freely diffusible protein, we would have [LR] ≈ e-1.2x, which falls from 33% to 0.33% 
receptor occupancy over 3.9 µm.  This is much smaller than the signaling gradient observed in 
Figure 3.  However, by adjusting the parameters, we might be able to boost this value.  
According to Equation 8, there are three ways we might do this.  (1) We could increase vL, so 
that more ligand is made, and the gradient therefore starts from a higher level of receptor 
occupancy.  (2) We could modify some of the parameters that determine the value of Λ to 
directly counteract the effects of lowering D. (3) We could assume that cells detect even very 
low levels of receptor occupancy (for example, when receptor occupancy may be 0.33% at 3.9 
µm, if cells were able to detect 0.00033% receptor occupancy then signaling could extend to 
almost 10 µm).   

As it turns out, there are limitations that prevent us from using any of these strategies to great 
effect.  Strategy 1 is limited by the fact that, for sufficiently high vL, receptor occupancy will 
approach saturation, and Equation 8 will no longer apply (more about how to analyze such cases 
will be discussed below).  Strategy 2 is limited by the fact that, although Λ is a function of 
several parameters, under conditions of rapid receptor-mediated morphogen degradation, kdeg >>  
koff, so that both kdeg and  koff drop out from the definition of Λ.  Since we have specified that D is 

100-fold below that of free diffusion, we get Λ = konR0
0.85 µm2 sec-1.  However, since our choice of 

kon = 0.4 µM-1s-1 is already at the lower limit of what is typically observed for ligand-receptor 
association rate constants (Lander et al., 2002), we may consider that Λ = 0.471R0, and our only 
option for decreasing Λ is to decrease R0.   

Indeed, it follows from Equation 8 that, for x > 0, increasing vL by n-fold will shift values of 
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LR farther from the origin by a distance ∆x = ln n
Λ = ln n

0.471R0
.  By choosing a value for R0 that is 

low enough, it should be possible—in theory—to expand a gradient by any desired ∆x, 
regardless of the value of n.  In practice, however, we may not use values of R0 so low that there 
are too few receptors per cell to allow generation of a signal.  Let R1 stand for the minimum 
concentration of receptors that must be occupied for signaling to take place.  Let θ0 stand for the 
value of [LR] at x = 0, normalized to R0, that results when vL is increased n-fold from its usual 
value.  Then, by Equation 8, [LR] = θ0R0e-xΛ (for x>0).  The distance x at which this expression 
falls below the threshold for signaling can be found by solving R1 = θ0R0e-xΛ for x.   This yields  

x = 
-1
Λln

R1

θ0R0
 = 

-1
0.471R0

ln
R1

θ0R0
. 

Any attempt to expand a gradient by more than this distance will be futile, as no signaling 
can occur past this point.  Setting our previous expression for ∆x to this value allows us to 
determine that this will happen when R0=

nR1

θ0
, and ∆x=1.46 ln n θ0

nR1
.  This expression, then, 

represents the maximum amount by which a gradient may be extended by increasing vL and 
decreasing R0.  Since this results follows from Equation 8, it only holds when receptor saturation 
is not high, a condition that also constrains θ0 ≤ 0.5.   

R1, the minimum concentration of receptors that must be occupied for signaling to occur 
must, for obvious reasons, be at least 1 receptor per cell.  However, we note that both race 
expression and PMad staining (the signals measured in Figures 2 and 3) are relatively high 
threshold BMP responses, so we must pick a larger value of R1, lest there be no possibility for 
low threshold responses.  Five receptors per cell would seem to be a very conservative lower 
limit.  Converting units of receptors/cell to molarity requires information about cell size and the 
volume of the perivitelline space and drawing upon arguments similar to those in Lander et al. 
(2002) as well as those used by Eldar et al. (2002), we calculate that 5 receptors per cell 
represents a concentration in the perivitelline space of ≈0.00163 µM.   

Using this value for R1 and 0.5 for θ0, we get ∆x=25.5 ln n
n

.  The maximum value this 

expression can attain is 18.8 µm, which occurs when n≈7.4 (i.e., an increase in vL of 7.4-fold).  
In Figures 2 and 3, where the increase in vL was estimated as no more than 2.5-fold, the value of 
this expression is no more than 14.8 µm, about two cell diameters.  This is much less than the 
observed range of action of ectopic Dpp in the absence of Sog.  From this we infer that, had 
ectopic Dpp been expressed at wild-type levels, instead of levels 2.5-fold higher, the resulting 
gradients of Dpp activity would have still exhibited a considerable range, just a few cell 
diameters lower than what was observed in Figures 2 and 3.    

As already mentioned, the previous analysis depends upon the validity of Equation 8, which 
does not apply when vL is large enough, or R0 small enough, that receptor saturation is high near 
the morphogen source. We now turn our attention to such situations. These cases produce 
receptor occupancy gradients that are sigmoidal in shape, with [LR] being nearly constant ([LR] 
≈ R0) for some distance away from the morphogen source, and then falling in a manner that 
ultimately fits an exponential decay curve (Supplemental Figure S11, a and b).  The analysis of 
this situation is discussed, in part, by Lander et al. (2005) and Lou et al. (2004), and will be 
further elaborated elsewhere (A.D.L., Q.N., and F.Y.M.W., unpublished data).  However, it is 
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relatively straightforward to show that xC, the critical distance at which such curves fall to 50% 
receptor occupancy, is approximately equal to p2 (β ), where β = vL

kdegR0
 .  This can be understood 

intuitively by noting that, when β = 1, morphogen production at each location within the 
production region (vL) exactly equals the maximum rate at which the morphogen can be 
degraded (kdegR0) at that location.  Thus, when β >1, morphogen production exceeds the amount 
that can be destroyed locally by a factor equal to β-1.  Given that cells outside the production 
region degrade the morphogen at the same maximum rate as those within, one would expect that 
the total distance outside the production region that would be needed to absorb all of the excess 
morphogen produced in the production region would be the size of the production region times 
the factor by which morphogen is produced in excess there, i.e., p(β-1). Allocating this distance 
equally to either side of the production region justifies the formula xC = 

p
2 (β ).   

From this analysis we see that, in cases in which receptor saturation is high near morphogen 
sources, we may roughly divide gradients into a highly saturated zone (0 < x < xC, receptor 
occupancy >50%) followed by an exponential decay zone.  While the shape of the gradient 
within the exponential decay zone will certainly depend on D in the manner just described for 
gradients in which receptors are far from saturation, we note that xC is independent of D and 
increases monotonically with vL.  Indeed, for β>>1, xC≈

p
2 β, so the width of the highly saturated 

zone should expand nearly linearly with vL.  Simulations confirm that this is the case 
(Supplemental Figure S11c). 

 

Supplemental Figure S11 (page following).  Behavior of Morphogen Gradients Formed when 
Rates of Morphogen Synthesis Are High Enough to Saturate Receptors Close to the Morphogen 
Source 
To investigate the ability of changing levels of morphogen synthesis to compensate for possible 
reduced diffusivity of Dpp, the diffusion coefficient used in these calculations was 100-fold 
below that of a soluble protein.  
(A) Time evolution of gradients generated by four different values of vL.  In each case, the gray 
area represents the region in which morphogen synthesis takes place, and the number in the 
upper right gives the value of vL normalized to kdegR0.  The time interval separating the 
individual blue curves is 10 min.   
(B) Steady-state values of time evolution curves such as those in (A), for eight different values of 
vL normalized to kdegR0:  0.25, 0.5, 1, 2, 3, 5, 8, and 16.   
(C) Relationship between xC, the location at which the steady-state value of [LR] = 0.5 R0, and 
β−1= (vL/kdegR0) - 1.  The circles represent individual data points calculated from the curves in 
(B).  The dashed line is the predicted relationship between xC and β (see text).   
(D) Relationship between β and the time required for the value of [LR] at x = xC to attain 90% of 
its steady-state value of 0.5R0.  The parameters used in (A)-(D) were: D = 0.85 µm2 s-1; p = 35 
µm; R0 = 0.5; kon = 0.1 s-1; koff = 10-5 s-1; kdeg = 5 x 10-4 s-1.  
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  Given this behavior, overexpression of a morphogen by 2.5-fold could potentially extend its 
range of action by almost 2.5-fold.  However, we can be fairly certain that the condition β>>1 
does not hold when Dpp is produced at its endogenous levels.  This is because, in sog- embryos, 
PMad signaling across the dorsal region (where endogenous Dpp is expressed) is considerably 
lower than the strong PMad signal seen at the dorsal midline of wild-type embryos.  Thus, within 
the broad domain of Dpp production, the wild-type rate of Dpp production must be insufficient 
to saturate all receptors (in agreement with this, the parameter values chosen for Figure 5 imply 
β = .67).  If we increase vL by 2.5-fold (the amount by which st2-dpp expression exceeds that of 
endogenous dpp in Figure 2), β will be 1.67, putting xC at 1/3 the width of a st2 domain, or about 
two cell diameters.  As stated in previously, this is small compared with the overall range of 
action of st2-dpp in Figures 2 and 3.  

Although the above insights were derived from an examination of steady-state behavior, 
further analysis shows that the rate of approach of such gradients to steady-state increases for 
larger vL (Figure S11d) further diminishing the ability of increased vL to cause significant 
gradient expansion within a reasonable time frame (Lou et al., 2004).  

In summary, in regimes of either low or high receptor saturation, if Dpp diffusivity is taken 
to be 100-fold lower than that of a typical soluble protein, overexpressing Dpp to a degree 
similar to that in Figures 2 and 3 should not have been able to expand the Dpp activity gradient 
significantly.  Accordingly, the data do not support very low Dpp diffusivity.     

 

6. Conditions under which Soluble Inhibitors Extend Morphogen Range of 

Action 

In the text we assert that any diffusible inhibitor can extend the range of action of a 
morphogen, even one that is not subject to ligand-induced destruction.  This follows from an 
analysis of the one-dimensional model of a morphogen gradient and its approximate solution 
when receptor occupancy is not close to saturation, i.e., Equation 8.   

 If we assume that a competitive inhibitor of morphogen binding is present in such a system, 
and at a uniform level everywhere, then some fraction of free morphogen molecules will be 
bound to inhibitor and therefore unable to complex with receptors.  Accordingly, the rate at 
which morphogen molecules bind to receptors will go down by exactly the fraction of 
morphogen molecules that is complexed with inhibitor.  As such, the effect of the inhibitor on 
the steady-state distribution of morphogen-receptor complexes can be seen as equivalent to a 
decrease in the association rate constant kon.  Λ will therefore decrease by the square root of that 
fraction.  

 What will the effect of a lower Λ be on the LR gradient?  Both the numerator and 
denominator of Equation 8 will increase, suggesting that the overall gradient might either expand 
or contract, depending upon the parameter values.  This is in fact the case.  The family of curves 
in Supplemental Figure S12 show that as Λ decreases, curves become broader, but also lower.  
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Supplemental Figure S12. Predicted Effect of a Diffusible Inhibitor on the Steady-State Profile 
of a Morphogen Gradient 

According to Equation 8, if receptor occupancy (i.e., [LR]) is normalized to vL/kdeg and distance 
is scaled to the width of the morphogen production region, p, then receptor occupancy versus 
distance depends only on the unitless parameter Λp.  Since Λ is proportional to kon, and the 
presence of a diffusible inhibitor may be modeled as a decrease in kon, we represent the effect of 
increasing amounts of inhibitor with a series of curves of decreasing Λp (values of Λp are shown 
next to each curve).  Each 2-fold decrease in Λp may be thought of as the addition of an amount 
of soluble inhibitor that lowers by 4-fold the amount of free morphogen.   Because decreasing Λp 
makes morphogen gradient profiles both lower and broader, the range of morphogen actions may 
either increase or decrease, depending on the initial value of Λp and the threshold level of [LR] 
required by cells for morphogen response.  

 

When Λp >> 2, the dominant effect of decreasing Λ is broadening; when Λp << 2, the dominant 
effect is lowering.  Since Λ-1 specifies the distance over which such a morphogen gradient 
declines to ~37% of its value at x = 0, we may rephrase the preceding statement as follows: as 
long as the region over which a morphogen gradient is spread does not too greatly exceed the 
width of the region that produces the morphogen, the addition of a diffusible inhibitor can 
significantly extend the effective range of most morphogen actions. The qualification “most” is 
included in the previous sentence because, as Supplemental Figure S12 shows, the amount of 
range extension depends on the threshold of the morphogen response.  For example, when one 
compares the curves representing Λp = 4 with Λp = 1, one sees that the width of a cellular 
domain specified by a morphogen response with a threshold level of 0.2 will expand more than 
2-fold, while a domain specified by a response with a threshold level of 0.3 will contract more 
than 2-fold.    

 Note that in Figure 3C-3E the region of morphogen production is clearly on the same order 
as the width of the Dpp activity gradient.  Thus, one would expect the presence of modest 
amounts of a soluble inhibitor to expand the range of Dpp action for most response thresholds.  
Whether Sog at its endogenous levels is in the optimal range to have such an effect is not known, 
but from the simulations in Supplemental Figure S1 we see (at least when the parameters in 
Figure 5 are used) that about 3/4 of the Dpp that is not receptor bound is complexed with Sog.  
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This would suggest that the inhibitory effects of Sog could be equated with a 2-fold decrease in 
effective Λ, the consequences of which (according to Supplemental Figure S12) could be 
sufficient to explain much of the greater range of Dpp action in sog+ versus sog- embryos.   
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