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Abstract. In a previous study [21], a class of efficient semi-implicit schemes
was developed for stiff reaction-diffusion systems. This method which treats

linear diffusion terms exactly and nonlinear reaction terms implicitly has ex-
cellent stability properties, and its second-order version, with a name IIF2, is
linearly unconditionally stable. In this paper, we present another linearly un-

conditionally stable method that approximates both diffusions and reactions
implicitly using a second order Crank-Nicholson scheme. The nonlinear system
resulted from the implicit approximation at each time step is solved using a
multi-grid method. We compare this method (CN-MG) with IIF2 for their ac-

curacy and efficiency. Numerical simulations demonstrate that both methods
are accurate and robust with convergence using even very large size of time
step. IIF2 is found to be more accurate for systems with large diffusion while
CN-MG is more efficient when the number of spatial grid points is large.

Key words and phrases. Integrating factor methods, Crank-Nicholson, multi-grids, reaction-
diffusion equations, morphogen gradients.
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1. Introduction. Mathematical equations for many physical and biological appli-
cations are of the form:

∂u

∂t
= D∆u + F(u), (1.1)

where u ∈ Rm represents a group of physical or biological species, D ∈ Rm×m is
the diffusion constant matrix, ∆u is the Laplacian associated with the diffusion of
the species u, and F(u) describes the chemical or biological reactions.

When the diffusion term is discretized using finite difference methods, the reaction-
diffusion system (1.1) is first reduced to a system of ODEs:

ut = Cu + F(u), (1.2)

where Cu is a finite difference approximation of D∆u. Let N denote the number of
spatial grid points for the approximation of the Laplacian ∆u, then u(t) ∈ RN ·m

and C is a (N ·m) × (N ·m) matrix. For instance, C is a tri-diagonal matrix in a
one dimensional system when a second order central difference is carried out on the
diffusion.

For a time integrator applied to Eq. (1.2), the time step is constrained by the
size of the eigenvalues of the diffusion matrix C, which are proportional to diffusion
coefficients and spatial resolutions as well as the stiffness of the nonlinear reaction
term F(u). The constraint due to diffusion can be totally removed by treating
the term Cu exactly [9, 1, 2]. Different approximations on the temporal integral
involving F(u) in this approach result in either Integration Factor (IF) method
[18, 21] or Exponential Time Differencing (ETD) method [13, 6, 7, 8].

Although the stability constraint due to diffusion is totally removed in the IF
and ETD methods, the time step is still constrained by stiffness of the reaction
term F(u) due to their explicit treatment of F(u) through either linear multi-step
methods [9, 2] or Runge-Kutta approximations [5]. These methods are efficient for
diffusion-dominated systems but not for systems with highly stiff reactions as well
as strong diffusive effects, as often is the case in many biological applications. In
diffusive morphogen gradient systems [16, 11, 19, 20], for instance, the reaction rate
constants usually differ by four to six magnitudes and the system is very stiff as a
result.

Recently, a new class of semi-implicit integrating factor (IIF) methods [21] has
been introduced to address this issue. The new IIF method treats diffusion terms
exactly and nonlinear reaction terms F(u) implicitly in such a way that the implicit
approximation of the nonlinear terms is decoupled from the global calculation of
the diffusion term. Consequently, it avoids solving a large nonlinear system with
N ·m unknowns; instead, a system of size m, the number of the original differential
equations, has to be solved at each spatial grid point. The structure of the the
small nonlinear system is particularly suitable for simple iterative nonlinear solvers
such as the fixed point iteration. The overall computational cost is of the same
order as the explicit IF or ETD methods, and it mainly comes from the matrix-
vector multiplications due to the exact representation of diffusion operators. The
IIF methods have much better stability properties than the explicit IF or ETD
methods, and the second-order IIF (IIF2) is unconditionally stable.

In this paper, we will compare this semi-implicit method (IIF2) with a fully
implicit and unconditionally stable method. In the fully implicit method, a second-
order Crank-Nicholson approximation [4] is applied to Eq. (1.1). As a result, a large
system of nonlinear equations with (N ·m) equations and (N ·m) unknowns has
to be solved at every time step. Because the size of the nonlinear system linearly
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depends on the spatial resolution N , using a standard nonlinear solver for such
system is usually very expensive. To speed up the calculation, we incorporate an
efficient multi-grid method [3] to solve the system at every time step. Finally, we
study accuracy and efficiency for the two methods, IIF2 and the Crank-Nicholson
method with multi-grid (CN-MG) based on simulations of a test problem with an
analytical solution and a set of fully nonlinear equations which models a morphogen
system in developmental biology.

The rest of the paper is organized as following. In section 2, we review briefly the
IIF schemes, and introduce the Crank-Nicholson scheme with a nonlinear multi-grid
solver for the reaction-diffusion equations. In section 3, we compare the accuracy
and efficiency between the second-order IIF scheme and CN-MG scheme, using two
examples. We conclude the paper in section 4.

2. Two Numerical Methods. In this section, we will briefly describe two un-
conditionally stable methods with second-order of accuracy for reaction-diffusion
systems.

2.1. Implicit Integration Factor (IIF). First, we present the Implicit Integra-
tion Factor (IIF) method [21] based on a scalar case of the semi-discrete system
(1.2) of the form

ut = cu + f(u), t > 0, u(0) = u0, (2.3)

where c is a constant representing the diffusion and f is a nonlinear function repre-
senting the reaction.

After multiplying (2.3) by an integrating factor e−ct, we integrate the equation
over one time step from tn to tn+1 ≡ tn + ∆t to obtain

u(tn+1) = u(tn)ec∆t + ec∆t

∫ ∆t

0

e−cτf(u(tn + τ))dτ. (2.4)

For a scheme of r-th order truncation error, we first approximate the integrand,
e−cτf(u(tn + τ)), using an (r − 1)-th order Lagrange polynomial, p(τ), with inter-
polation points at tn+1, tn, ..., tn+2−r:

p(τ) =

r−2
∑

i=−1

eic∆tf(un−i)

r−2
∏

j=−1

j 6=i

τ + j∆t

(j − i)∆t
. (2.5)

where un is the approximated solution for u(tn). Next, we integrate the polynomial
p(τ) with respect to τ , and derive

un+1 = ec∆tun + ∆t

(

αn+1f(un+1) +

r−2
∑

i=0

αn−if(un−i)

)

, (2.6)

where αn+1, αn, αn−1, · · · , αn−r+2 calculated from the integrals of the polynomial
p(τ) are listed in [21]. The second-order scheme (IIF2) is of the following form

un+1 = ec∆t

(

un +
∆t

2
f(un)

)

+
∆t

2
f(un+1), (2.7)

with a local truncation error

−
1

12

(

c2fn − 2cḟn + f̈n

)

∆t3. (2.8)

The IIF method has excellent stability properties compared to explicit integration
factor methods and other exponential time difference schemes. In real practice, Eq.
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(2.3) is usually a system where u and f are vectors, and ec∆t is a matrix. Unlike
most other implicit methods, the dominant computational cost for IIF is usually
from the exact treatment of diffusion terms instead of solving the nonlinear systems
due to implicit treatment of the nonlinear equations. In particular, in IIF2 the
matrix-vector multiplication in the first term of the right-hand side of Eq. (2.7)
dominates the cost of calculation for a system of reaction-diffusion equations. From
the stability point of view, IIF2 is the best among IIF methods, and it is linearly
unconditionally stable.

2.2. A Crank-Nicholson Method with a Multi-Grid Solver (CN-MG). An
alternative approach to construct an unconditionally stable method for reaction-
diffusion systems is to treat both reaction and diffusion terms implicitly. A Crank-
Nicholson approximation for the diffusion and reaction terms leads to a fully implicit
scheme:

un+1
j − un

j

∆t
= D·

1

2

(

un+1
j+1 − 2un+1

j + un+1
j−1

(∆x)2
+

un
j+1 − 2un

j + un
j−1

(∆x)2

)

+
1

2

(

F(un+1
j ) + F(un

j )
)

.

(2.9)

for a one-spatial dimensional form of Eq. (1.1). Define λ , D ∆t
(∆x)2 , then Eq. (2.9)

can be re-written as

un+1
j −

λ

2

(

un+1
j+1 − 2un+1

j + un+1
j−1

)

−
∆t

2
F(un+1

j ) = Gn
j (2.10)

where

Gn
j , un

j +
λ

2

(

un
j+1 − 2un

j + un
j−1

)

+
∆t

2
F(un

j ).

This method is linearly unconditionally stable [4], similar to IIF2, and its local
truncation error is

−
1

12

(

(c + ḟn)2(cun + fn) + f̈n(cun + fn)2
)

∆t3 (2.11)

when the Crank-Nicholson scheme (2.10) is applied to Eq. (2.3).
In particular, cu represents the finite difference approximation of the diffusion

D∆u as in the ODE system (1.2), and the eigenvalues of C are proportional to
DN2. If the number of spatial grid points N or the diffusion constant D is large
enough, terms involving c will dominate in the truncation errors (2.8) and (2.11). In
these cases, the truncation error (2.8) of IIF2 has the leading term O(c2∆t3), while
that (2.11) of the Crank-Nicholson scheme has the leading term O(c3∆t3). So we
expect that IIF2 is more accurate than the Crank-Nicholson scheme for diffusion
dominated problems. Direct numerical simulations on a test problem in Section
3 indicate that the errors of the solutions computed from IIF2 are no larger than
those from the Crank-Nicholson scheme.

To advance the Crank-Nicholson scheme from the n-th time step to the (n + 1)-
th, one has to solve a nonlinear system (2.10) of (m · N) unknowns at every time
step. A direct nonlinear solver usually has at least computational complexity with
an order of N2 and is very expensive. In this paper, we will use one of the nonlinear
multi-grid methods, the full approximation scheme (FAS) [3], to speed up solving
(2.10). The FAS method is based on a nonlinear Gauss-Seidel relaxation scheme
[22] and it has a computational complexity of order of N . More details and the
implementations of FAS method are given in the next subsection. We denote the
Crank-Nicholson scheme with a multi-grid solver as CN-MG in short.
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In the multi-level FAS method [3], solutions of a local nonlinear system of m
equations are needed at each grid point. The system (2.10) can be written in a
form of fixed point iteration:

wj =
∆t

2(1 + λ)
F(wj) +

λ

2(1 + λ)
(wj+1 + wj−1) +

Gn
j

1 + λ
, (2.12)

where wj ∈ Rm, 1 ≤ j ≤ N . When ∆t
2(1+λ) ≪ 1, ∆t

2(1+λ)F is likely to be a contractive

mapping [15] which ensures convergence of a fixed point iteration. We also imple-
ment a Newton’s method [14, 15] to solve the system (2.12) in addition to the fixed
point iteration.

2.3. Implementations of the multi-grid FAS method in CN-MG. In this
subsection, we explain in detail the implementations of solving Eq. (2.10) using the
FAS method [3]. As mentioned in the Section 2.2, a nonlinear system Eq. (2.10)
with (m × N) unknowns has to be solved at each time step. The system can be
rewritten in the general form

Au = f (2.13)

where A is a linear or nonlinear operator, u = (u1;u2; · · · ;uN ), and uj ∈ Rm, 1 ≤
j ≤ N . Let Ωh denote the grid with grid size h, the total length of the domain
divided by N . If N = 2k for some integer k, Ω2h then represents a coarse grid
imbeded in Ωh with grid size 2h. The two-grid FAS method for solving system
(2.13) is outlined here:

1. Relax ν1 times on Ahuh = fh on Ωh with intial guess vh.
2. Restrict the current approximation and its fine-grid residual to the coarse grid

Ω2h: r2h = I2h
h (fh −Ah(vh)) and v2h = I2h

h vh.
3. Solve the coarse-grid problem A2h(u2h) = A2h(v2h) + r2h.
4. Compute the coarse-grid approximation to the error: e2h = u2h − v2h.
5. Interpolate the error approximation up to the fine grid and correct the current

fine-grid approximation: vh ← vh + Ih
2he

2h.
6. Relax ν2 times on Ahvh = fh on Ωh with intial guess vh.

where I2h
h and Ih

2h are restriction and interpolation operators, and the superscript
h or 2h indicates the operators or variables on the corresponding grid. The number
of relaxations ν1, ν2 are chosen depending on the problem for the best efficiency.

Furthermore, if N = 2L, there is a series of grids {Ω2lh, l = 0, · · · , L}, and the two-
grid FAS can be applied to multi-grid by imbedding the two-grid scheme within
itself. More detials about the various implemetation of the multi-grid scheme can
be found in [3].

In step 1, 3 and 6, one needs to use Gauss-Seidel relaxation scheme for the
nonlinear system G(u) = 0 where G = (g1; g2; · · · ; gN ), gj ∈ Rm, 1 ≤ j ≤ N . Let
uk = (uk

1 ;uk
2 ; · · · ;uk

N ) denote the k-th step during the iteration, the Gauss-Seidel
relaxation can be outlined as

k = 0;
Given a initial guess for u0;
While ||uk − uk−1|| > ε or k = 0

k = k + 1;
for l = 1 to N

solve gl(u
k
1 , · · · , uk

l−1, u
k
l , uk−1

l+1 · · · ;u
k−1
N ) = 0 for uk

l ;
end

end
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In the inner part of the above loop, one needs to solve a nonlinear system at each
grid point with m unknowns and m equations. We use either Newton’s method or
a fixed point iteration [14, 15] to solve this system. For example, Eq. (2.12) is of a
form convenient for a fixed point iteration.

3. Numerical Results. In this section, we will compare the accuracy and effi-
ciency of IIF2 and CN-MG when they are applied to a test reaction-diffusion system
and a morphogen system in developmental biology.

3.1. A Test Problem. First, we test both algorithms for a one-dimensional reaction-
diffusion system with known analytical solutions. The equations are

ut = d uxx − a u + v (3.14)

vt = d vxx − b v

on (0, π
2 ) with boundary conditions

ux(0, t) = 0, vx(0, t) = 0, u(
π

2
, t) = 0, v(

π

2
, t) = 0.

The exact solutions of the system are

u(x, t) =
(

e−(a+d)t + e−(b+d)t
)

cos(x) , v(x, t) = (a− b) e−(b+d)t cos(x).

Table 3.1. Error, order of accuracy, and CPU time for a diffusion
dominated case: (a, b, d) = (0.1, 0.01, 1).

CN-MG IIF2
∆t L∞ error order CPU time ∆t L∞ error order CPU time

0.04 1.09E-04 - 0.16 1 2.73E-05 - 0.009
0.02 2.67E-05 2.02 0.31 0.5 6.40E-06 2.09 0.017
0.01 6.27E-06 2.09 0.57 0.25 1.19E-06 2.42 0.033
0.005 1.16E-06 2.43 1.02 0.125 1.07E-07 3.48 0.065

Because the reaction terms in Eq. (3.14) are linear, the nonlinear systems in
IIF2 can be solved analytically. Similarly, in CN-MG the analytical solution of the
local nonlinear system is constructed at each level of the multi-grid method during
every time step. In CN-MG, the tolerance for convergence of the multi-grid solver
is taken as 10−10.

For the spatial discretization on the Laplacian operator, we use a second-order
central difference with a consistent approximation on the no-flux boundary condition
at x = 0. In all the numerical experiments, the spatial grid is set to be fine enough
such that the errors are dominated by those from the time integration. From the
numerical tests, it is found N = 512 is sufficient, and all the results presented for
the test problem are based on N = 512. The errors between the numerical solutions
and the exact solutions are evaluated at t = 1. The calculations are performed on
Opteron CPUs of 1.4GHz and 1GB memory, and the CPU time are presented with
a unit of second in this paper.

To study how both algorithms behave under different situations, we examine
several sets of parameters (a, b, d) in equation (3.14). First, we take (a, b, d) =
(0.1, 0.01, 1), a diffusion dominated case. In IIF2 the time integration of the diffusion
term should be exact when the reaction term is zero, i.e. a = b = 0. In CN-MG,
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however, the time integration is only treated approximately. Therefore, for the case
with relatively small reactions we expect IIF2 have better accuracy than CN-MG.
This is the case as seen in Table (3.1). In IIF2 very small errors are achieved even
for a ∆t as large as one. In contrast, it takes ∆t = 0.02 for CN-MG to reach an
error of the same size. Overall, the CN-MG needs time steps that are a factor of 50
times smaller than IIF2 to achieve the same accuracy. Consequently, IIF2 is much
more efficient than CN-MG for a diffusion-dominated case.

Next, a reaction dominated case (a, b, d) = (2, 1, 10−3) is considered. In this case,
the two methods produce similar errors using the same ∆t, as demonstrated in Table
(3.2). Because the errors are dominated by approximation of the reaction terms in
this case, the two methods with a similar treatment on reactions are expected to
have similar accuracy. However, CN-MG usually takes less CPU time than IIF2 to
achieve the same level of accuracy since all IF and ETD type of schemes (see Eq.
(2.4)), including IIF2, need a global matrix-vector multiplication of order of N2 at
each time step. In IIF2, the CPU time is doubled when ∆t is halved, as expected,
while the CPU time for CN-MG increases slower than linear as seen in Table (3.2).
It is observed that the multi-grid method in CN-MG needs a smaller number of
iteration to converge for a smaller time-step. In the CN-MG implementation, we
always use the solution at the previous time step as the initial guess for the multi-
grid iteration. As a result, a smaller ∆t results in a better initial guess, consequently
a smaller number of iterations. Of course, this initial guess can be improved if one
uses extrapolation through the solutions at previous time steps.

Table 3.2. Error, order of accuracy, and CPU time for a reaction
dominated case: (a, b, d) = (2, 1, 0.001).

CN-MG IIF2
∆t L∞ error order CPU time L∞ error order CPU time

0.04 1.94E-04 - 0.06 1.93E-04 - 0.20
0.02 4.84E-05 2.00 0.09 4.83E-05 2.00 0.40
0.01 1.21E-05 2.00 0.13 1.21E-05 2.00 0.80
0.005 3.02E-06 2.00 0.23 3.02E-06 2.00 1.63

Lastly, we study (a, b, d) = (100, 1, 10−3), which is a reaction dominated case
with stiff reaction. In Table (3.3), the overall behavior of IIF2 and CN-MG is
similar to the reaction dominated case shown in Table (3.2). Because both schemes
are unconditionally stable, they exhibit second order of accuracy even for relatively
large ∆t similar to the non-stiff cases. However, the magnitude of errors for both
schemes are larger (around a factor of 25) than the non-stiff case in Table (3.2)
because of a much larger coefficient in front of the reaction term: a = 100, compared
to a = 2 in Table (3.2).

3.2. A Morphogen System. In this section, we apply both IIF2 and CN-MG to a
system of nonlinear reaction-diffusion equations arising from modeling morphogen
gradients in developmental biology. The system, also studied in [21], describes
how Dally-like protein (Dlp) regulates Wingless (Wg) morphogen distribution in an
imaginal disc of Drosophila [10, 12].
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Table 3.3. Error, order of accuracy, and CPU time for a stiff
reaction case: (a, b, d) = (100, 1, 0.001).

CN-MG IIF2
∆t L∞ error order CPU time L∞ error order CPU time

0.04 4.87E-03 - 0.06 4.89E-03 - 0.21
0.02 1.22E-03 2.00 0.10 1.21E-03 2.00 0.41
0.01 3.04E-04 2.00 0.16 3.03E-04 2.00 0.81
0.005 7.60E-05 2.00 0.25 7.58E-05 2.00 1.63

In the model, [L], [LR], [N∗] and [LN∗] denote the concentration of Wg, Wg-D-

fz2 (a ligand-receptor complex), the enzymatic modification of Dlp, and the com-
plex produced by interaction between Wg and the enzymatic modification of Dlp

respectively; V̄L and V̄N represent the production rate of L and N∗ respectively;
{Kon, Jon}, {Koff , Joff}, and {Kdeg, Jdeg} denote binding rates, off rates, and
degradation rates respectively. The interaction relationship among those compo-
nents is illustrated in [21].

The three diffusive species [L], [N∗] and [LN∗] are assumed with the same diffu-
sion coefficient D. The total amount of receptor D-fz2, denoted by R0, is assumed
fixed [19]. The mid-point of the Wg production region, the dorsal-ventral bound-
ary, is denoted as −d̄ ([16, 17]) while the edge of the imaginal wing disc in the
dorsal-ventral direction is denoted as Xmax. The governing equations for the four
quantities in (−d̄, Xmax) then have the following form [21]:

∂[L]

∂T
= D

∂2[L]

∂X2
−Kon[L] · (R0 − [LR])

+ Koff [LR]− Jon[L] · [N∗] + (Joff + Jdeg)[LN∗] + V̄L(X),(3.15)

∂[LR]

∂T
= Kon[L] · (R0 − [LR])− (Koff + Kdeg)[LR], (3.16)

∂[LN∗]

∂T
= D

∂2[LN∗]

∂X2
+ Jon[L] · [N∗]− (Joff + Jdeg)[LN∗], (3.17)

∂[N∗]

∂T
= D

∂2[N∗]

∂X2
− Jon[L] · [N∗] + Joff [LN∗] + V̄N (X). (3.18)

The boundary conditions at X = −d̄ are

∂[L]

∂X
(T,−d̄) = 0,

∂[LN∗]

∂X
(T,−d̄) = 0,

∂[N∗]

∂X
(T,−d̄) = 0.

The boundary conditions at X = Xmax are

L(T,Xmax) = 0, [LN∗](T,Xmax) = 0, [N∗](T,Xmax) = 0.

In the Wg production region [−d̄, 0],

V̄L(X) = vL,

where vL is a constant. In x ∈ (0,Xmax), VL(x) = 0. Because Dlp is produced
everywhere, V̄N (x) = vN in (−d̄, Xmax) with vN as a constant.

We use a same set of parameters given in [21]: Xmax = 0.02 cm; d̄ = 0.00125 cm;
D = 8.5×10−7 cm2/s; Kon = 0.12 s−1µM−1; Koff = 1.0×10−5 s−1; Kdeg = 5×10−4

s−1; Jon = 285 s−1µM−1; Joff = 4 × 10−6 s−1; Jdeg = 0.54 s−1; vL = 8 × 10−4
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s−1µM; vN = 2× 10−3 s−1µM. The solutions of the system was presented in [21].
Here we mainly compare the efficiency of IIF2 and CN-MG.

The implementation of CN-MG is similar to that for the linear system described
above, except that a nonlinear system of four unknowns in a form of (2.12) needs
to be solved at each grid point during each time step. Here, we use two different
approaches to solve the local small nonlinear system at each grid point: a fixed point
iteration or a Newton method. In both nonlinear solvers, the iteration tolerance is
taken as 10−10. In the Newton solver, LAPACK is used to solve the linear system
involving the Jacobian.

Table (3.4) displays the CPU time of CN-MG (with either a fixed point or a
Newton method) and IIF2, in which a fixed point iteration method [21] is used
to solve the local nonlinear system. As seen in the table, when the time step size
is too large, both IIF2 and CN-MG with a fixed point iteration do not converge,
but CN-MG with a Newton solver converges. Various numerical tests suggest that
this is not due to the stability condition since both methods are unconditionally
stable. It is found that the fixed point iteration, which usually is efficient and easy
to implement, is sensitive to its initial guess for convergence. When the size of time
step is large, the solution at its previous time step, which is used as the initial guess
for the fixed point iteration of (2.12) at its current step, is not as good as the case
for a smaller time step. This is also the case for IIF2. As a result, the fixed point
iteration procedure does not converge at some time during the course of temporal
update in either IIF2 or CN-MG. In contrast, the CN-MG with a Newton solver
seems to be more robust, and it converges for all time steps tested in Table (3.4).

Although the CN-MG with a Newton solver is robust in terms of convergence, it
takes the most CPU time among all three implementations as seen in Table (3.4).
For the cases with convergent solutions, the CN-MG with a fixed point iteration
usually takes less CPU time than IIF2. When N is doubled, the CPU time for
IIF2 increases by a factor of four because in any IF and ETD method the exact
treatment of diffusion leads to matrix-vector multiplications with an order of N2

computational complexity [21]. This is not the case for CN-MG, in which the
dominated cost comes from solving the nonlinear systems. When N is doubled in
both CN-MG methods, the CPU time increases only by a factor of two to three
depending on the size of time steps. Clearly, all three implementations can be
improved if better nonlinear solvers and better initial guesses are incorporated for
the iterative methods.

Table 3.4. CPU time (seconds) for IIF2 and CN-MG for a mor-
phogen system up to T = 1800; ”NC” stands for no convergence of
the method.

CN-MG (fixed point) CN-MG (Newton) IIF2
∆t N = 64 N = 128 N = 64 N = 128 N = 64 N = 128

2× 10−1 NC NC 32.61 94.61 NC NC
1× 10−1 2.95 9.82 39.66 135.37 NC NC
5× 10−2 5.36 18.17 71.74 245.77 7.78 27.03
2× 10−2 11.94 25.93 153.83 363.35 19.61 65.90
1× 10−2 23.31 48.92 294.52 670.12 39.54 131.49
5× 10−3 45.55 91.24 557.08 1171.54 78.02 268.67
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4. Conclusion. In this paper, we have presented an unconditionally stable scheme
of second order for the stiff reaction diffusion equations. In this method, the dif-
fusion and reaction terms are treated implicitly using the Crank-Nicholson scheme,
and the nonlinear system arising from such implicit approximation is solved by a
nonlinear multi-grid method. Through numerical simulations of a test problem and
a nonlinear system arising from modelling morphogen gradients in developmental
biology, we have compared this fully implicit method (CN-MG) with a semi-implicit
integration factor method (IIF2). It was found that both methods are accurate and
robust. For diffusion-dominated systems, the IIF2 method clearly has better perfor-
mance because of its exact treatment of diffusion; For reaction-dominated systems,
the CN-MG and the IIF2 have similar accuracy for time steps of the same size;
however CN-MG is more efficient when the spatial mesh size is small. This is due
to a relatively more expensive calculation on the diffusion terms in IIF2 compared
to a simple implicit approximation on diffusions in CN-MG. Because both methods
handle reactions in a similar fashion, the advantage of IIF2 is significant only when
the diffusion term is large enough.
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