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Abstract

Weighted essentially nonoscillatory (WENO) schemes are a popular class of nu-
merical methods for solving hyperbolic conservation laws. Since WENO schemes are
designed to deal with problems with both complicated solution structures and discon-
tinuities / sharp gradient regions, their sophisticated nonlinear properties and high-
order accuracy require more operations than many other schemes. The methodology
of hybrid methods is an effective approach to decrease the computational costs and
dissipation errors of WENO schemes and achieve better resolution. One of the key
components for the success of hybrid WENO schemes is the application of a robust
and efficient troubled-cell indicator, which detects the computational cells where the
solution loses regularity. Recently, troubled-cell indicators based on artificial neural
networks (ANNs) have been developed in the literature, which have the advantage of
less dependence on tunable parameters and being more robust than many traditional
troubled-cell indicators, and such ANN based troubled-cell indicators have been ap-
plied to hybrid finite difference WENO schemes effectively. Motivated by these works,
in this paper we develop a hybrid finite volume WENO method with an ANN based
troubled-cell indicator for solving hyperbolic conservation laws. While the finite dif-
ference WENO schemes are more efficient than the finite volume WENO schemes for
multidimensional problems on uniform grids, the finite volume WENO schemes have
the advantage such as being flexible and easy to apply on nonuniform grids. We in-
troduce an ANN based troubled-cell indicator by constructing a multilayer perceptron
(MLP) model, one of the most common ANN models. The third-order WENO scheme
is focused in this paper. Extensive numerical experiments for solving various scalar
equations with both convex and non-convex cases, and the Euler systems of equations
on uniform and nonuniform grids of one-dimensional (1D) and two-dimensional (2D)
domains, are performed to show the accuracy and nonlinear stability of the proposed
hybrid finite volume WENO scheme with the MLP troubled-cell indicator. Significant
accuracy improvement and computational-cost saving over the original WENO scheme
are observed. Numerical experiments and comparisons with the widely-used KXRCF
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indicator also show the good performance of the MLP troubled-cell indicator. Although
the MLP troubled-cell indicator is trained on uniform grids, it performs very well on
nonuniform grids obtained by randomly perturbing uniform grids.

Key Words: Hybrid WENO methods, Finite volume methods, Multilayer percep-
tron, Artificial neural network, Troubled-cell indicator, Nonuniform grids, Hyperbolic
conservation laws

1 Introduction

High-order accuracy numerical methods for solving hyperbolic conservation laws re-
quire careful considerations due to the possible development of discontinuities in nu-
merical solution of the partial differential equations (PDEs) as time evolves. Without
a proper treatment, spurious oscillations in numerical solution may appear, which lead
to nonlinear instability of the simulation. One popular class of high-order accuracy
numerical methods for solving the PDEs whose solutions may contain discontinuities
and complex structures is the class of weighted essentially non-oscillatory (WENO)
schemes. The first WENO scheme was constructed in [33]. In [20], the finite difference
WENO schemes were developed to solve multi-dimensional problems efficiently with
third-order and fifth-order accuracy, and a general framework of designing smooth-
ness indicators and nonlinear weights for arbitrary order accuracy was provided. The
main idea of the WENO schemes is to form a weighted combination of several lo-
cal reconstructions based on different sub-stencils for the final WENO reconstruction.
These combination coefficients are called nonlinear weights, which depend on the lin-
ear weights chosen to achieve high-order accuracy in smooth regions, and the smooth
indicators that measure the smoothness of reconstructed polynomials in the relevant
sub-stencils. WENO schemes have been studied extensively in the literature. For
example, to deal with complex domain geometries, WENO schemes on unstructured
meshes were developed in e.g. [2, 11, 17, 34, 51, 63, 64, 67]. High-order WENO
schemes were applied in efficiently solving steady-state problems of hyperbolic PDEs
(e.g. [57, 32, 18]), coupled with exponential integrators for solving stiff convection-
diffusion-reaction PDEs (e.g. [21, 35, 58]), and implemented on sparse grids for ef-
ficiently solving high dimensional problems [68, 52, 37]. Efforts have been made to
simplify the schemes or improve the accuracy and efficiency of high-order WENO
schemes. Strategies include modifying the reconstruction stencils and the linear or
nonlinear weights, modifying the smoothness indicators, using different approximation
functions, etc., see e.g. [29, 15, 5, 67, 66, 3, 28, 19].

Since WENO methods are designed to tackle difficult problems whose solutions
often have both complicated structures and discontinuities / sharp gradients, the
schemes’ sophisticated nonlinear properties and high-order accuracy require more com-
putational costs than many other schemes, and they could be too dissipative for some
problems. One of the effective approaches to decrease the computational costs and dis-
sipation errors of WENO schemes and achieve better resolution is to construct a hybrid
scheme. The hybrid WENO schemes combine a WENO reconstruction in stencils where
the solution is non-smooth, with a high-order reconstruction of linear scheme in stencils
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where the solution is smooth. See e.g. [39, 8, 7, 31, 30, 55, 65]. A key component in
the design of a hybrid WENO scheme is to detect the computational cells where the
solution loses regularity. Such cells are often called “troubled-cells” and the techniques
to identify them are referred to as “shock detectors” or “troubled-cell indicators” in
the literature (see e.g. [23, 40, 41, 54]). In recent years, machine learning methods
have been explored to design effective troubled-cell indicators. Troubled-cell indicators
based on artificial neural networks (ANNs) have the advantage of less dependence on
tunable parameters and being more robust than many traditional troubled-cell indica-
tors. See e.g. [41, 42, 53, 61]. ANN based troubled-cell indicators have been developed
and applied to hybrid finite difference WENO schemes successfully [56, 49, 59]. On
the other hand, while the finite difference WENO schemes have a simple dimension-by-
dimension structure and are more efficient than the finite volume WENO schemes for
solving multidimensional PDEs on uniform grids [47], the finite volume WENO schemes
have the advantage such as being flexible and easy to apply on arbitrary nonuniform
grids.

Motivated by these aforementioned works, in this paper we develop a hybrid finite
volume WENO method with an ANN based troubled-cell indicator for solving hyper-
bolic conservation laws on a general Cartesian mesh. The third-order finite volume
WENO scheme is focused here. However, the methodology proposed in this paper is
expected to be extended to higher-order finite volume WENO methods, which will be
studied in our next research. A multilayer perceptron (MLP) model [43, 16], one of
the most common ANN models, is constructed to obtain an ANN based troubled-cell
indicator. Inspired by [49, 61], we construct the training dataset including various
smooth and non-smooth functions, and numerical solutions of linear advection equa-
tions with discontinuous initial conditions which are solved by the third-order finite
volume WENO scheme. This enables the MLP model to learn the feature of the numer-
ical solutions generated by the third-order finite volume WENO scheme. The training
process is performed offline on uniform grids, and the trained MLP model is added
online as a troubled-cell indicator to form a hybrid finite volume WENO method. Ex-
tensive numerical experiments are performed to study the proposed hybrid scheme,
which include solving various scalar equations with both convex and non-convex cases,
and the Euler systems on uniform and nonuniform grids of 1D and 2D domains. Nu-
merical results verify the desired accuracy and nonlinear stability of the developed
hybrid finite volume WENO scheme with the MLP troubled-cell indicator, and signif-
icant accuracy improvement and computational-cost saving over the original WENO
scheme. Furthermore, we perform extensive numerical comparisons of this MLP indi-
cator with the widely-used KXRCF indicator [23], which show its good performance in
correctly identifying troubled-cells. Numerical results also show that although the MLP
troubled-cell indicator is trained on uniform grids, it performs very well on nonuniform
grids obtained by randomly perturbing uniform grids.

The rest of the paper is presented as following. In Section 2, we review the third-
order finite volume WENO method. In Section 3, the detailed procedure to construct
the MLP model for the troubled-cell indicator is presented. The hybrid finite volume
WENO method with the MLP troubled-cell indicator is described in Section 4. In
Section 5, we review the KXRCF indicator which is used in the numerical comparisons.
Numerical experiments are given in Section 6, and the conclusion remarks are provided
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in the last section.

2 Third-order finite volume WENO method

In this section, we briefly review the third-order finite volumeWENOmethod (WENO3)
for hyperbolic conservation laws. The numerical procedures on uniform meshes and
nonuniform meshes are described for both 1D case and 2D case. More details can be
found in e.g. [47, 33, 45].

2.1 One-dimensional case

Consider the 1D hyperbolic equation for the unknown function u(x, t),

ut + f(u)x = 0, (1)

which is defined on the spatial domain Ω = [a, b], with appropriate boundary condition
and the initial condition u(x, 0) = u0(x). f(u) is the flux function. The spatial
domain is partitioned by a mesh a = x1/2 < x3/2 < · · · < xN+1/2 = b. Denote the
computational cells as Ii = [xi−1/2, xi+1/2], i = 1, · · · , N . The center of the cell Ii
is xi, where xi = (xi−1/2 + xi+1/2)/2. The mesh sizes are ∆xi = xi+1/2 − xi−1/2,
i = 1, · · · , N . We integrate the equation (1) over the cell Ii to obtain

dūi(t)

dt
= − 1

∆xi

(
f(ui+1/2)− f(ui−1/2)

)
, 1 ≤ i ≤ N. (2)

Here ūi =
1

∆xi

∫
Ii
u(x, t)dx is the cell average of the solution u(x, t) in the cell Ii. A

monotone numerical flux h is used to approximate the flux f in the equation (2), e.g.,
the popular Lax-Friedrichs flux

f̂i+1/2 = h(u−
i+1/2, u

+
i+1/2) =

1

2
[f(u−

i+1/2) + f(u+
i+1/2)− α(u+

i+1/2 − u−
i+1/2)], (3)

where α = maxu |f ′(u)| is a constant. u+
i+1/2 and u−

i+1/2 are computed using the third-

order WENO reconstructions based on the cell average values in the relevant stencils.
With the Lax-Friedrichs flux and the WENO reconstructions, the finite volume scheme
to approximate the equation (2) is

dūi(t)

dt
= − 1

∆xi

(
f̂i+1/2 − f̂i−1/2

)
. (4)

In the following we review the third-order WENO reconstruction procedure. Given
the cell average values ūi for each cell Ii, i = 1, · · · , N , the third-order WENO recon-
structions for u−

i+1/2 and u+
i−1/2 are

u−
i+1/2 = w0u

(0)
i+1/2 + w1u

(1)
i+1/2,

u+
i−1/2 = w̃0u

(0)
i−1/2 + w̃1u

(1)
i−1/2.

(5)
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Here, we have

u
(0)
i+1/2 =

1

2
ūi +

1

2
ūi+1,

u
(1)
i+1/2 = −1

2
ūi−1 +

3

2
ūi,

u
(0)
i−1/2 =

3

2
ūi −

1

2
ūi+1,

u
(1)
i−1/2 =

1

2
ūi−1 +

1

2
ūi

(6)

on a uniform grid. On nonuniform grids, the coefficients in (6) are not constants
anymore. They depend on the mesh sizes of the stencil and are pre-computed as in

[47]. The explicit formulae to calculate u
(r)
i+1/2 and u

(r)
i−1/2, r = 0, 1, are

u
(0)
i+1/2 =

(
∆xi+1

∆xi+1 +∆xi

)
ūi +

(
∆xi

∆xi+1 +∆xi

)
ūi+1,

u
(1)
i+1/2 =

(
− ∆xi

∆xi +∆xi−1

)
ūi−1 +

(
1.0 +

∆xi

∆xi +∆xi−1

)
ūi,

u
(0)
i−1/2 =

(
1.0 +

∆xi

∆xi+1 +∆xi

)
ūi −

(
∆xi

∆xi+1 +∆xi

)
ūi+1,

u
(1)
i−1/2 =

(
∆xi

∆xi +∆xi−1

)
ūi−1 +

(
∆xi−1

∆xi +∆xi−1

)
ūi.

(7)

In the formulas (5), w0, w1 and w̃0, w̃1 are called nonlinear weights in the WENO
methods, which are defined as

wr =
αr

α1 + α2
, αr =

dr
(ϵ+ βr)2

, r = 0, 1, (8)

and

w̃r =
α̃r

α̃1 + α̃2
, α̃r =

d̃r
(ϵ+ βr)2

, r = 0, 1. (9)

βr is the smoothness indicator for the (k − 1)-th (here, k = 2) degree reconstruction
polynomial pr associated with the small stencil Sr = {Ii−r, Ii−r+1}, while dr, d̃r are
called the optimal linear weights. The smoothness indicator is defined as

βr =

k−1∑
l=1

∫ xi+1/2

xi−1/2

∆x2l−1
i

(
dlpr(x)

dxl

)2

dx. (10)

The explicit formulae on uniform grids for β0 and β1 are

β0 = (ūi+1 − ūi)
2,

β1 = (ūi − ūi−1)
2,

(11)
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and on nonuniform grids, they are

β0 = 4.0

(
∆xi

∆xi+1 +∆xi

)2

(ūi+1 − ūi)
2,

β1 = 4.0

(
∆xi

∆xi +∆xi−1

)2

(ūi − ūi−1)
2.

(12)

The optimal linear weights on uniform grids are

d0 =
2

3
, d1 = 1.0− d0 =

1

3
,

d̃0 =
1

3
, d̃1 = 1.0− d̃0 =

2

3
,

(13)

and on nonuniform grids, they are

d0 =
∆xi +∆xi−1

∆xi+1 +∆xi +∆xi−1
, d1 = 1.0− d0 =

∆xi+1

∆xi+1 +∆xi +∆xi−1
,

d̃0 =
∆xi−1

∆xi+1 +∆xi +∆xi−1
, d̃1 = 1.0− d̃0 =

∆xi+1 +∆xi

∆xi+1 +∆xi +∆xi−1
.

(14)

Lastly, ϵ is a small positive number chosen to avoid the denominator becoming 0. It is
taken to be 10−6 in all our numerical tests.

2.2 Two-dimensional case

Consider the 2D hyperbolic equation for u(x, y, t),

ut + f(u)x + g(u)y = 0, (15)

which is defined on the spatial domain Ω = [a, b] × [c, d], with appropriate boundary
condition and the initial condition u(x, y, 0) = u0(x, y). f(u) and g(u) are the flux
functions. We partition the domain by the computational cells Iij = [xi−1/2, xi+1/2]×
[yj−1/2, yj+1/2] for 1 ≤ i ≤ N and 1 ≤ j ≤ M , where a = x1/2 < x3/2 < · · · <
xN+1/2 = b, and c = y1/2 < y3/2 < · · · < yM+1/2 = d. The center of the cell Iij is
(xi, yj), where xi = (xi−1/2 + xi+1/2)/2 and yj = (yj−1/2 + yj+1/2)/2. The grid sizes
are ∆xi = xi+1/2 − xi−1/2, i = 1, · · · , N , and ∆yj = yj+1/2 − yj−1/2, j = 1, · · · ,M .
Using the cell averages of the function u(x, y, t),

ūij =
1

∆xi∆yj

∫
Iij

u(x, y, t)dxdy, i = 1, · · · , N ; j = 1, · · · ,M, (16)

the finite volume scheme for the 2D problem (15) is formulated as:

dūij(t)

dt
= − 1

∆xi

(
f̂i+ 1

2 ,j
− f̂i− 1

2 ,j

)
− 1

∆yj

(
ĝi,j+ 1

2
− ĝi,j− 1

2

)
. (17)

The numerical flux f̂i+ 1
2 ,j

is defined by

f̂i+ 1
2 ,j

=
∑
α

wαh
(
u−
i+ 1

2 ,yj+βα∆yj
, u+

i+ 1
2 ,yj+βα∆yj

)
, (18)
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for approximating the integration in y:

1

∆yj

∫ y
j+1

2

y
j− 1

2

f(u(xi+ 1
2
, y, t))dy,

where the function h is a monotone numerical flux and here we use the Lax-Friedrichs
flux as in (3). βα and wα are Gaussian quadrature nodes and weights. The numerical
flux ĝi,j+ 1

2
is defined similarly by

ĝi,j+ 1
2
=

∑
α

wαh
(
u−
xi+βα∆xi,j+

1
2

, u+
xi+βα∆xi,j+

1
2

)
, (19)

for approximating the integration in x:

1

∆xi

∫ x
i+1

2

x
i− 1

2

g(u(x, yj+ 1
2
, t))dx.

Since for a n-point Gaussian quadrature, the approximation is exact for polynomials
of degree 2n− 1 or less, a two-point Gaussian quadrature is sufficient for the WENO3
scheme here. We use the two-point Gaussian quadrature with the nodes βα = ± 1

2
√
3

and the weights wα = 1
2 , α = 0, 1.

To compute the WENO reconstruction values at the Gaussian points u±
i+ 1

2 ,yj+βα∆yj

for f̂i+ 1
2 ,j

and u±
xi+βα∆xi,j+

1
2

for ĝi,j+ 1
2
, we adopt the dimension by dimension proce-

dure as in [45]. This procedure involves two one-dimensional reconstructions described
in the previous subsection, each one to remove a one-dimensional cell average in one
of the two spatial directions. That is, we first perform a one-dimensional WENO re-
construction in the y-direction (or x-direction), in order to get the one-dimensional
cell averages in the x-direction (or y-direction), i.e., the line averages of the numerical
solutions at the cell boundaries,

u±
i,j+ 1

2

≈ 1

∆xi

∫ x
i+1

2

x
i− 1

2

u(x, y±
j+ 1

2

, t)dx (or u±
i+ 1

2 ,j
≈ 1

∆yj

∫ y
j+1

2

y
j− 1

2

u(x±
i+ 1

2

, y, t)dy).

Then we perform another one-dimensional WENO reconstruction using these one-
dimensional cell averages in the x-direction (or y-direction), to obtain the final re-
constructed point values at the Gaussian points. Note that the optimal linear weights
in 2D finite volume WENO schemes may have negative values, as discussed in [45]. In
such case, the splitting technique in [45] provides one way to resolve it.

Remark 1 For the cases of systems, the third-order finite volume WENO method is
applied in a component by component fashion. We make the reconstruction using the
scalar WENO3 procedure for each of the components of u separately to obtain the left
and right values at a cell interface. The Lax-Friedrichs flux is then used to form the
scheme (4) or (17). This component-wise version of WENO scheme for solving a system
of equations is simple and cost effective. It works well when the order of accuracy is
not high, such as the third-order scheme considered in this paper. However, when a
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WENO scheme with higher order of accuracy is used, which will be studied in our
future work, the more costly, but more robust characteristic-wise implementation will
be adopted [47].

3 A multilayer perceptron troubled-cell indicator

In this section, we describe the procedure to construct the MLP model for the troubled-
cell indicator.

3.1 The MLP model

An artificial neural network method is a class of machine learning methods that consists
of nonlinear functions with parameterizable coefficients. Multiple simple processing
units, which are called neurons, are combined together into a large parallel distributed
neural network system [14]. Each of these neurons is available to store knowledge
during learning processes. Given an input vector of data v, a neural network maps
it to an output ŷ = f(v,Θ), where Θ is a collection of learnable parameters. The
links to connect input and output of neural networks are multiple hidden layers of
neurons. The vector of output of a previous hidden layer uk−1 is taken as the input of
the current hidden layer. These connecting links to obtain the output vector uk of the
current hidden layer, denoted by a mapping Lk, are defined as

uk = Lk(uk−1) = ϕ(wT
k u

k−1 + bk). (20)

The mapping Lk is characterized by the parameters including the weights wk ∈ Θ
and the bias bk ∈ Θ which are stored in a matrix and a vector respectively, and
an activation function ϕ(z) which is a scalar function. The activation function ϕ is
applied element-wise to each element of the computed vector wT

k u
k−1 + bk, to obtain

the vector uk. Combining multiple hidden layers, for example K layers, we have the
network output

ŷ = LK(· · · (L2(L1(v)))). (21)

Among various neural network models, we focus on the multilayer perceptron
(MLP) model, which was introduced by Rosenblatt in 1958 [43]. It is one of the
simplest and the most common deep neural network models, and consists of an input
layer, one or more hidden layers, and an output layer. Adjacent layers in a MLP model
are fully connected, so that every node in each layer of the network is connected to
every other node in the adjacent layers. Properties of the MLP’s universal approxima-
tion to nonlinear functions were discussed in e.g. [10, 16]. A properly trained MLP
model is able to detect different types of smooth functions and discontinuities, and
has a straightforward architecture which contributes to its low cost of training and
computational procedure compared to other more complex neural network models, for
example, convolution neural networks (CNNs) [26]. Motivated by [49] where the CNN
is used to develop a troubled-cell indicator for finite difference WENO schemes, and the
approaches in [41, 61, 4, 59] where the MLP is used to help distinguish nonsmooth and
smooth regions in discontinuous Galerkin methods or finite difference WENO schemes,
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Figure 1: Diagram of the constructed MLP model architecture with an input layer, a
normalization layer, four hidden layers, and an output layer.

here we construct a MLP based troubled-cell indicator and obtain a third-order hy-
brid finite volume WENO scheme. Fig. 1 displays the diagram of the MLP model we
construct, which consists of an input layer to take a five-dimensional input data, a
normalization layer to standardize the input, four fully connected hidden layers, and
an output layer to predict a probability value. In the following, the detailed procedure
is described.

3.2 Dataset

As the design of training and validation data is crucial in training neural network
models, we first describe how the dataset for the network training of this MLP model
is generated. For a target cell Ii, the input dataset contains a combination of cell
average values and point values of functions in this cell and its neighbors. Specifi-
cally, similar to [41], the generated input dataset for the MLP model here is vi =
(ūi−1, ūi, ūi+1, u

−
i+1/2, u

+
i−1/2) ∈ R5,∀i. For the neural network training, we follow a

supervised learning procedure [27]. That is, the exact output results are included in
the dataset so that the model has a baseline knowledge of the correct output results.
During the network training, the model maps the input dataset to the predicted output
results, which are compared with these exact outputs. The loss function of the model
is minimized in the supervised learning such that accurate predictions are made for the
general data. In the MLP model training here for a troubled-cell indicator, the output
represents the probability about the smoothness of the solution function on a target
cell. Hence we generate the exact output dataset where the output is labeled either 0
if a function on the target cell Ii has a singularity or 1 if the function on the target
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cell Ii is smooth.
The input dataset is composed of two types of data: function values from canonical

functions and numerical solutions from the finite volume WENO3 scheme, which are
summarized in Table 1. As in [61, 4], the type I training data are function values
from piecewise functions such as step functions and trigonometric functions, which are
smooth or contain discontinuities. The neural network learns different scenarios of
smooth and nonsmooth functions. For a function used to generate the type I training
data, we randomly pick a point in the domain as the center of the target cell Ii and
a mesh size h using uniform distributions, such that the target cell Ii and its two
neighboring cells Ii−1 and Ii+1 are inside the domain. Three cell average values ūi−1,
ūi, ūi+1 and two cell boundary values u−

i+1/2, u
+
i−1/2 are computed, which serve as the

input training data for the target cell Ii in this domain and one of the samples in the
input dataset. Note that for the absolute value functions and the step functions, we
only include the samples of nonsmooth cases (i.e., the function has a singularity on one
of the cells Ii−1, Ii, Ii+1) in the dataset. Via this way, enough data of nonsmooth cases
are provided to the neural network to learn such that the model is more accurate in
identifying troubled-cells.

The type II training data are numerical solutions of the WENO3 scheme solving
the linear advection equation ut + aux = 0 with various initial conditions of piecewise
functions, as in [49, 61]. The impact of the numerical method on the structure of
the solution, for example controlling numerical oscillations near a discontinuity or the
smearing caused by the numerical viscosity, is taken into consideration. The model
learns the feature of the numerical solutions of the finite volume WENO3 scheme
from the type II data. The procedure to generate the data is presented here. For
an advection coefficient a randomly selected from the uniform distribution U [−1, 1],
we first generate the piecewise smooth initial condition u0(x) of the linear advection
equation ut + aux = 0 as follows:

1. Randomly select 4 locations for the discontinuities of u0(x) in the domain [−1, 1]
using the uniform distribution, to divide the domain into 5 subdomains.

2. Within the most left and the most right subdomains, the initial condition u0(x)
is set to be 0. Within each of the other three subdomains, the initial condition

u0(x) is created using random Fourier series a0+
∑Nf

n=1(an cos(nx)+ bn sin(nx)),
where Nf is randomly picked from the discrete uniform distribution U{1, 6}. The
Fourier coefficients a0, an and bn are randomly selected from the standard normal
distribution N(0, 1).

Using the periodic boundary condition, we apply the third-order finite volume WENO
scheme in Section 2.1 on a grid with the number of computational cells N = 320, to
solve the equation. The numerical solution is calculated for Nt time steps, where Nt

is chosen from the discrete uniform distribution U{1, 10}. At the final time T , we collect
the data from the numerical solution for each cell Ii: vi = (ūi−1, ūi, ūi+1, u

−
i+1/2, u

+
i−1/2),

which provides one of the samples for the type II data of the neural network’s input
dataset. In the type II data, the exact output data is collected based on the exact
solution u(x, T ) = u0(x− aT ). Namely, if the exact solution has a discontinuity in the
target cell Ii, the output data is labeled 0, otherwise if the exact solution is smooth on
Ii, the output is labeled 1.
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Training dataset

u(x) Domain Varied parameters # of samples

a|x| [−0.5, 0.5] a ∈ U [1, 10] 3200
ul1x<a + ur1x>a [−1, 1] (ul, ur) ∈ U [−4, 4], 10240

a ∈ U [−0.56, 0.56]

sin(kπx) [0, k4 ] k ∈ U [1, 25] 20480

(
∑2

n=0 bn,l sin(nπx) + cn,l cos(nπx))1x<a [−1, 1] (bn,·, cn,·) ∈ U [−5, 5] 4480

+(
∑2

n=0 bn,r sin(nπx) + cn,r cos(nπx))1x>a a ∈ U [−0.56, 0.56]
tanh(kx) [−1, 1] k ∈ U [5, 30] 4480

k sin(2πx) cos(3πx) sin(4πx) [0, 1] k ∈ U [0.2, 2] 4480
k sin4(πx) [0, 1] k ∈ U [0.5, 3] 4480

Numerical solutions of ut + aux = 0 [−1, 1] a ∈ U [−1, 1] 16640

Table 1: Functions and numerical solutions used to generate training data. U represents a
uniform distribution. 1(·) represents an indicator function.

3.3 Network architecture

In this section, we describe the architecture of the MLP neural network model shown in
Fig. 1. The MLP model takes a 5-dimensional input vector v. Following the procedure
in [61], let vl denote the l-th element in the input vector. We normalize the generated
data vl, l = 1 . . . 5 before feeding it into the hidden layers of the model as the following

ṽl =
vl − µ

σ
, (22)

where µ and σ are respectively the mean and the standard deviation of the elements
of all data v in the dataset. The dataset is randomly split into a training set and a
validation set with 8 : 2 proportion.

In the MLP model, aside from an input layer, a normalized input layer, and an
output layer, there are four hidden layers that contain 128, 64, 32, and 16 neurons
sequentially. Since there are no existing universal rules on choosing number of neurons
for deep learning models, here we follow the practice in [61] in setting up these numbers
of neurons. Note that fewer number of neurons in the subsequent layers than the
previous layers could be more cost-effective in training classification problems, as shown
in [56]. As suggested in [13], the weights of the model are randomly initialized using

the Xavier normal distribution N (0, std2w) with stdw =
√

2
nj+nj+1

, and the biases are

randomly initialized using the uniform distribution U [−stdb, stdb] with stdb =
√

1
nj
.

Here nj is the number of incoming neurons of the current layer and nj+1 is the number
of outgoing neurons of the current layer. For example, nj and nj+1 are 5 and 128
respectively for the first hidden layer, and 128 and 64 respectively for the second
hidden layer, and so forth in the model. Within each hidden layer except the first
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hidden layer, Leaky Rectified Linear Unit (Leaky ReLU)

ϕ(z) =

{
z, if z ≥ 0,

0.01z, otherwise
(23)

is used as the activation function [36]. For the first hidden layer, hyperbolic tangent
function Tanh is used as the activation function. The output layer has a single neuron.
For the output layer, Sigmoid

ϕ(z) =
1

1 + e−z
(24)

is used as the activation function since the output is a value of probability ranging
from 0 to 1 [44]. The output value of the neural network represents the predicted
probability that the function on a target cell is smooth. The difference between this
predicted probability value ŷ and the referenced label y (the exact indication about
the smoothness of the function on the target cell) in the output dataset is measured
by a loss function. Note that the goal of training a model is to minimize the loss
function and an appropriate loss function should be chosen. Here the output is a
binary classification on whether the function on a cell is smooth or not, so the Binary
Cross Entropy (BCELoss)

− 1

Sb

Sb∑
i=1

(yi log(ŷi) + (1− yi) log(1− ŷi)) (25)

is used as the loss function [9]. ŷi is the model output for the input sample vi, yi
is the reference label for the input sample vi, and Sb is the mini-batch size, which is
the number of samples utilized in one iteration of the training or validation procedure.
Note that the training or validation dataset is divided into several mini batches. If
the number of samples of the entire dataset is not an integer multiple of mini-batch
size, the last mini-batch will contain the remaining samples as a smaller batch. The
mini-batch size Sb = 500 is used for this MLP model here. To update the weights and
bias parameters of the MLP model by minimizing the loss function, we use the Adam
optimizer [22] with the learning rate η = 0.0001 and the weight decay rd = 0.00008. It
is a variation of stochastic gradient descent and has been commonly used in training
neural network models since its introduction, due to its fast convergence and good
performance for a trained model not to overfit and to make accurate predictions on
new data that are not in the training dataset. We choose the epoch number epo = 100,
so every sample of the dataset is fed to the model for 100 times and the learnable
parameters of the model are updated. The final MLP model obtained after the whole
training and validation procedure has 98.79% accuracy on the training data and 96.95%
accuracy on the validation data. This indicates that the obtained MLP model is not
overfitted on the training dataset and gives good predictions on the whole dataset.
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4 The hybrid finite volume WENO3 scheme with
the MLP troubled-cell indicator

In this section, we describe the hybrid finite volume WENO3 scheme with the MLP
troubled-cell indicator, which is called the WENO3-MLP scheme in this paper. This
hybrid scheme is based on the finite volume WENO3 scheme in Section 2 and the MLP
model obtained in Section 3. The WENO3-MLP scheme for a 1D problem is described
as follows:

1. Define two hyper-parameters: the probability threshold P and the parameter Nb

related to the size of the buffer zone (see Remark 2 for discussions on the buffer
zone). In our simulations, the default choice is P = 0.9, Nb = 3.

2. Use the PDE’s initial condition u0(x) to generate the initial input data of the
neural network

vi = (ū
(0)
i−1, ū

(0)
i , ū

(0)
i+1, u

−,(0)
i+1/2, u

+,(0)
i−1/2)

for all i. Here the initial values on cell boundary points u
−,(0)
i+1/2, u

+,(0)
i−1/2 are directly

evaluated using the initial condition u0(x).

3. In the current time step and the current stage of the third-order TVD Runge-
Kutta (TVD-RK3) [48] time evolution, for every target cell Ii, i = 1, 2, · · · : feed
the neural network input data into the MLP model to obtain the output Pi,
where Pi represents the probability that the numerical solution on the cell Ii is
considered as smooth, and a larger value of Pi informs that the numerical solution
on the cell Ii is more likely to be smooth.

4. For i = 1, 2, · · · :
(a) If any of the probability outputs for the target cell Ii and its neighboring cells

in the buffer zone {Ii−Nb+k, k = 0, 1, · · · , 2Nb} is less than the threshold
value P (i.e. if Pl < P for any l ∈ {i − Nb + k, k = 0, 1, · · · , 2Nb}), the
WENO3 reconstruction (5) is applied for computing the numerical values
u−
i+1/2 and u+

i−1/2 on the cell boundaries of Ii.

(b) Else, the third-order linear reconstruction (i.e., replace the nonlinear weights
in (5) by the linear weights) is applied for computing the numerical values
u−
i+1/2 and u+

i−1/2 on the cell boundaries of Ii.

Denote the obtained reconstruction values u−
i+1/2, u+

i−1/2 by u−,∗
i+1/2, u+,∗

i−1/2 for

the convenience of description in the following step.

5. For i = 1, 2, · · · : compute the Lax-Friedrichs numerical flux (3) and the spatial
discretization in the finite volume scheme (4), and use the TVD-RK3 scheme to

obtain the new cell average value ū
(new)
i at the next stage of TVD-RK3. For all

i, form the neural network input data (ū
(new)
i−1 , ū

(new)
i , ū

(new)
i+1 , u−,∗

i+1/2, u
+,∗
i−1/2) and

use it to do the WENO3-MLP reconstruction (the steps 3 and 4) again to update
the cell boundary values u−,∗

i+1/2, u+,∗
i−1/2, which provide accurate cell boundary

values in the neural network input data for the next stage of TVD-RK3 and

are named as u
−,(new)
i+1/2 , u

+,(new)
i−1/2 . It is found in the numerical experiments that
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this additional WENO3-MLP reconstruction is necessary for obtaining smaller
numerical errors and uniform accuracy orders of the proposed hybrid scheme,
which is emphasized further in the following Remark 3.

6. Use the neural network input data (ū
(new)
i−1 , ū

(new)
i , ū

(new)
i+1 , u

−,(new)
i+1/2 , u

+,(new)
i−1/2 ) ob-

tained in the step 5 and repeat the steps 3 to 5 for the next stage of the TVD-RK3
scheme, and finish the computation of the current time step.

7. Repeat the steps 3 to 6 until the final time T is reached.

Remark 2 The buffer zone is used in the WENO3-MLP scheme for applying the
WENO reconstructions on the troubled-cells identified by the neural network and their
neighboring cells. It is a small neighborhood of a target cell which includes the target
cell and the neighboring cells of the target cell. The size of a buffer zone is preset. If
any cell in the buffer zone of a target cell is indicated as a troubled-cell, then WENO3
reconstruction is applied on that target cell. This approach of using buffer zones
has been proposed to achieve better nonlinear stability in developing various hybrid
schemes for hyperbolic conservation laws, including both the traditional methods (e.g.
[7, 8, 55]) and the methods using the neural network models (e.g. [49, 56]).

Remark 3 We emphasize the importance of the additional WENO3-MLP recon-
struction in Step 5 of the WENO3-MLP scheme described above, for accurate indication
of troubled-cells by the MLP model. In the numerical experiments (Example 6.1.1 and
Example 6.1.2) of Section 6, we compare the numerical results of the scheme with and
without doing the additional WENO3-MLP reconstruction in Step 5. It is verified that
more accurate numerical solutions and uniform convergence orders are obtained if such
additional WENO3-MLP reconstruction is used in the scheme. Also, it is shown in
the numerical results that this additional reconstruction has very little impact on the
computational cost of the whole simulation.

The same MLP model, which is trained on 1D data, is directly applied in the
dimension by dimension reconstruction procedure for two-dimensional problems. This
is similar to the approaches in [61, 56]. It is different from the neural network based
troubled-cell indicators for which the models to solve two-dimensional problems are
separately trained on 2D data [41, 42, 53]. With the default hyper-parameters P = 0.9
and Nb = 3 and the initial condition u0(x, y), we follow the similar procedure of Step
2 in the WENO3-MLP scheme for 1D problems to generate the neural network input
data vx

ij and vy
ij of the x-direction and the y-direction respectively for the MLP model

to solve a 2D problem, which are

vx
ij = (ūi−1,j , ūij , ūi+1,j , u

−
i+1/2,j , u

+
i−1/2,j),

vy
ij = (ūi,j−1, ūij , ūi,j+1, u

−
i,j+1/2, u

+
i,j−1/2)

for all i, j. Here u−
i+1/2,j , u

+
i−1/2,j and u−

i,j+1/2, u
+
i,j−1/2 are line averages of the numerical

solutions at the cell boundaries. Perform Step 3 and Step 4 of the WENO3-MLP
algorithm for 1D problems, in both the x-direction and the y-direction to reconstruct
line average values, and these values at the Gaussian quadrature points in the numerical
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fluxes f̂ and ĝ in (18) and (19). Then, similar to Step 5 in the 1D algorithm, we
form the 2D finite volume scheme (17) and march one stage of the TVD-RK3 scheme
to obtain the new cell average values at the next stage. An additional WENO3-
MLP reconstruction is performed to reconstruct and update line average values at cell
boundaries u±

i+1/2,j , u±
i,j+1/2 for all i, j, to provide accurate line average values at the

cell boundaries in the input data of the MLP model for the next stage of TVD-RK3
scheme, as that in Step 5 of the 1D algorithm. Repeat the procedure for the next
stages to finish the computation of the current time step, and march forward until the
final time T is reached.

Similarly, for the cases of systems, this third-order hybrid finite volume WENO
method is applied in a component by component fashion.

5 The KXRCF troubled-cell indicator

In this section, we briefly review one of the most popular traditional troubled-cell
indicators in the literature, the KXRCF indicator proposed in [23]. The KXRCF
indicator has been shown in [40, 31] to be one of the best performed troubled-cell
indicators. To study the proposed MLP troubled-cell indicator in this paper, we carry
out extensive numerical tests to compare the KXRCF indicator with the MLP troubled-
cell indicator in the next section. In general, for the target cell Ii, the KXRCF indicator
value κi of a third-order scheme is defined as

κi =

∣∣∣∫∂I−
i
(uh|Ii − uh|Inb,i

)ds
∣∣∣

h
3
2 |∂I−i |∥uh∥Ii

, (26)

where h is the radius of the circumscribed circle in the cell Ii, ∂I
−
i is the inflow portion

of the cell boundary, Inb,i is the neighbor of Ii on the side of ∂I−i , and |∂I−i | is the
length (area) of ∂I−i . uh is the numerical solution. For a 1D problem, the norm ∥uh∥Ii
in the denominator is based on the cell average value on Ii [23, 40]. For a 2D problem,
the KXRCF indicator value κij of the target cell Iij is formulated as

κij =

∣∣∣∫∂I−
ij
(uh|Iij − uh|Inb,ij

)ds
∣∣∣(

(∆xi

2 )2 + (
∆yj

2 )2
) 3

4 |∂I−ij |∥uh∥Iij
, (27)

where ∂I−ij is the inflow portion of the cell boundary of Iij , Inb,ij are neighboring cells

sharing the edges ∂I−ij , and |∂I−ij | is the length of ∂I−ij . uh is the numerical solution,
and the norm in the denominator here is the maximum norm taken at the integration
quadrature points [23, 40]. The integral in the numerator of (27) is computed by first
evaluating the absolute value of the difference of the line averages on two sides for each
of the edges in ∂I−ij , and multiplying it with the length of the corresponding edge, then

summing up these values over all edges of ∂I−ij . The target cell Ii (or Iij) is marked
“smooth” if κi ≤ 1 (or κij ≤ 1), or “troubled” if κi > 1 (or κij > 1).

We also apply the buffer zone for implementing the KXRCF indicator as that in
[49]. Similar to [49], it is observed that slight oscillations appear near discontinuities
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of a solution in some numerical examples, if the buffer zone is not used. Here for the
consistency, we adopt the same parameter of the buffer zone Nb,κ = 3 for the KXRCF
indicator as that for the MLP troubled-cell indicator. The KXRCF troubled-cell in-
dicator is utilized to form a hybrid WENO3 scheme via simply adding a calculation
of the indicator values and an if statement before computing the reconstruction val-
ues on target cells’ boundaries. Namely, for the target cell Ii in a 1D problem, if
κi > 1 or κi−1 > 1 or κi+1 > 1 or κi−2 > 1 or κi+2 > 1 or κi−3 > 1 or κi+3 > 1,
the WENO3 scheme is applied for the reconstructions on this target cell; otherwise,
the third-order linear scheme is used for the reconstructions. For a 2D problem, the
dimension by dimension procedure is adopted. Hence, for the target cell Iij , the same
if statement with the conditions for the cells in the buffer zone to determine troubled-
cells as that in a 1D problem is used in the reconstructions for each spatial direction.
For example in the x-direction, if κij > 1 or κi−1,j > 1 or κi+1,j > 1 or κi−2,j >
1 or κi+2,j > 1 or κi−3,j > 1 or κi+3,j > 1, the WENO3 scheme is applied for the
reconstructions of the x-direction for this target cell; otherwise, the third-order linear
scheme is used.

6 Numerical experiments

In this section, we solve a series of 1D and 2D numerical examples on both uniform
grids and nonuniform grids using the proposed WENO3-MLP scheme, and compare it
with the classical finite volume WENO3 scheme described in Section 2 and the hybrid
WENO3 scheme using the KXRCF troubled-cell indicator in Section 5. The accuracy
orders for solving problems with smooth solutions, the ability to handle oscillations for
problems with nonsmooth solutions, and computational cost of these different schemes
are compared. In the comparison of the MLP troubled-cell indicator and the KXRCF
troubled-cell indicator, we show the cells being flagged as troubled-cells by each of
these indicators. The CFL number is taken to be 0.5 in all tests. One of the advantage
properties of the finite volume method is its flexibility on different grids rather than
only uniform grids. To show that, we solve these examples on both uniform and
nonuniform grids. For the 1D problems of testing accuracy orders of the schemes, the
setup of the nonuniform grids and their refinements is as the following:

1. Denoting N as the number of computational cells, we start with N = 20 for the
base grid whose nonuniform grid points are perturbed from the corresponding
uniform grid points xi by x̂i = xi+ δi. δi is a random number in [−ch, ch], where
c is a constant chosen to adjust the perturbation strength and h is the uniform
grid size with N = 20.

2. A coarse nonuniform mesh is refined in a uniform way such that the numerical ac-
curacy orders of the schemes observed in the mesh refinement study approximate
the schemes’ theoretical accuracy order well. In the implementation, we take the
center of two neighboring grid points of a coarse mesh as the newly added grid
point of the refined mesh in the next level, while all grid points of the coarse
mesh are still kept as the grid points of the refined mesh. So, the grid sizes of a
refined mesh are exactly one half of the coarser one of its last level.
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In general, for a problem without the need of mesh refinement, we randomly perturb
the grid points of a uniform grid in the range [−ch, ch] directly to obtain the nonuniform
grid. The setup for a 2D nonuniform grid is similar to the 1D cases. For all i, j, the
grid points xi in the x-direction and yj in the y-direction of a uniform grid are randomly
perturbed independently by random numbers δx,i ∈ [−chx, chx] and δy,j ∈ [−chy, chy]
respectively. c is the constant chosen to adjust the perturbation strength, and hx, hy

are the grid sizes of the uniform grid in the x-direction and the y-direction respectively.
In this paper, numerical experiments are conducted using different values of c for all
examples. Since the numerical results using different values of c are consistent and
similar conclusions are drawn, only the results using the nonuniform grids with c = 0.4
are shown in this section, to save spaces. As an illustration, Fig. 2 shows examples of
the 1D and 2D nonuniform grids with c = 0.4 for the domain [0, 2π] with N = 20, and
for the domain [0, 2π]2 with N ×N = 20× 20 respectively.

In this paper, we use the Python programming language and the same coding style
to implement all schemes for solving all numerical examples, so that fair comparisons
are performed for the proposed hybrid finite volume WENO3-MLP scheme and the
other two numerical schemes. The Python programming language is chosen here to
be consistent with the implementation of neural network model using the PyTorch
package [38]. We are aware that other programming languages may also be used for the
implementation, e.g. Fortran, C++, etc., and different compiler optimization flagging
strategies and certain coding styles in which all arrays are vectorized for instance can
be utilized to improve the efficiency of simulations. This is one of the interesting topics
to be explored further in our next research.

6.1 Numerical examples with smooth solutions

Example 6.1.1 1D and 2D linear advection equations

(a) 1D case. We solve the 1D linear advection equation

ut + ux = 0 (28)

on both uniform grids and nonuniform grids, with the initial condition u0(x) = sin(x)
and periodic boundary conditions. The computational domain is [0, 2π] and the final
time T = 1.0. Table 2 shows the accuracy table on uniform grids. It is observed that
even on quite coarse meshes, the third-order accuracy has been achieved for both L1

and L∞ errors of the WENO3-MLP scheme and the hyrid WENO3 with the KXRCF
indicator, whereas very refined mesh such as N = 320 has to be used to observe
the third-order accuracy for the classical WENO3 scheme. We record and compare
the computational costs (in seconds) of different schemes. It is observed that when
the meshes are relatively coarse (N = 20, 40, 80), the WENO3-MLP takes more CPU
time to compute the solution than the classical WENO3, due to the fact that the
initialization of the neural network model takes majority of the whole simulation time
in the WENO3-MLP. It is also due to the fact that the WENO3-MLP mis-identifies
some of the cells as troubled-cells and the WENO3 procedure is used for these cells
on which the solution is smooth. However when the meshes get more refined, the
WENO3-MLP identifies all cells correctly as smooth cells (i.e., the cells which are not
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Figure 2: Examples of 1D and 2D nonuniform grids with c = 0.4. Top: a 1D nonuniform
grid on [0, 2π] with the number of cells N = 20; bottom: a 2D nonuniform grid on [0, 2π]2

with the number of cells N ×N = 20× 20.
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.30798e-02 6.90951e-02 0.76
40 9.64676e-04 4.580 3.21088e-03 4.428 0.83
80 3.87302e-05 4.639 8.75042e-05 5.197 0.93
160 4.69101e-06 3.045 7.36734e-06 3.570 1.19
320 5.86146e-07 3.001 9.20718e-07 3.000 2.39
640 7.32561e-08 3.000 1.15070e-07 3.000 6.77

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.98265e-02 6.90947e-02 0.04
40 7.63167e-03 1.997 2.65716e-02 1.379 0.13
80 1.85271e-03 2.042 1.07448e-02 1.306 0.49
160 3.75398e-04 2.303 3.49914e-03 1.619 1.85
320 4.19162e-05 3.163 6.25910e-04 2.483 7.23
640 2.59471e-06 4.014 3.83734e-05 4.028 28.86

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.38059e-03 3.74229e-03 0.03
40 2.99600e-04 2.990 4.71162e-04 2.990 0.08
80 3.75368e-05 2.997 5.89043e-05 3.000 0.26
160 4.69101e-06 3.000 7.36734e-06 2.999 0.94
320 5.86146e-07 3.001 9.20718e-07 3.000 3.55
640 7.32561e-08 3.000 1.15070e-07 3.000 14.14

Table 2: Example 6.1.1, 1D linear advection equation with the initial condition u0 = sin(x)
on uniform grids, and the smooth solution at T = 1.0. L1 errors, L∞ errors, numerical
accuracy orders, and CPU time in seconds.

troubled-cells) so that only the linear scheme is used, which leads to much less CPU
time than the WENO3 reconstruction procedure. It is observed that the WENO3-
MLP is more than three times faster and more than four times faster than the classical
WENO3 at N = 320 and N = 640 respectively. In the comparison with the WENO3
with the KXRCF indicator, we see that the numerical errors of the WENO3 with
KXRCF indicator are smaller than those of the classical WENO3 for all Ns, and the
same as those of the WENO3-MLP when the meshes are relatively refined. It is also
noted that the WENO3-MLP requires much less computational time on refined meshes
compared to the WENO3 with the KXRCF indicator, which requires additional costs to
evaluate the indicator value κi. For example, on the mesh with N = 640, the WENO3-
MLP is more than two times faster than the WENO3 with the KXRCF indicator. To
highlight Remark 3 in Section 4 where the importance of the additional WENO3-MLP
reconstruction in Step 5 of the WENO3-MLP scheme is emphasized, here we show the
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N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.75434e-02 6.90952e-02 0.74
40 3.20905e-03 3.101 2.17636e-02 1.667 0.81
80 5.86812e-04 2.451 7.25628e-03 1.585 0.97
160 9.97840e-05 2.556 2.06976e-03 1.810 1.46
320 9.66993e-06 3.367 3.11337e-04 2.733 3.29
640 6.08078e-07 3.991 1.53343e-05 4.344 9.91

Table 3: Example 6.1.1, 1D linear advection equation with the initial condition u0 = sin(x)
on uniform grids, and the smooth solution at T = 1.0. WENO3-MLP scheme without the
additional WENO3-MLP reconstruction for updated cell boundary values u−i+1/2, u

+
i−1/2 in

the neural network input data. L1 errors, L∞ errors, numerical accuracy orders, and CPU
time in seconds.

numerical results at T = 1.0 on uniform grids using the same WENO3-MLP scheme
without the additional WENO3-MLP reconstruction for updated cell boundary values
u−
i+1/2, u

+
i−1/2 in the neural network input data. The numerical results are shown

in Table 3. It is verified that without such additional WENO3-MLP reconstruction,
numerical errors on all grids are larger than those of the WENO3-MLP scheme reported
in Table 2, and the third-order accuracy is observed only when the mesh is quite refined.
The CPU times on most of the grids are larger than those reported in Table 2 for the
WENO3-MLP, because more cells are mis-identified as troubled-cells on which the
more costly WENO3 reconstruction scheme is used instead of the linear scheme. It is
shown in this example that the additional WENO3-MLP reconstruction for obtaining
updated cell boundary values in the neural network input data improves the accuracy
of the MLP model for indication of the troubled-cells, and actually makes the whole
WENO3-MLP scheme more efficient. Similar results are obtained on nonuniform grids
with c = 0.4. Table 4 shows the results of the accuracy, convergence orders, and
computational costs of these three schemes. The similar advantages of the WENO3-
MLP scheme to those on uniform grids are observed. Note the computational times
on nonuniform grids are longer than the computational times on uniform grids for the
same N and the same numerical scheme. It is caused by the smaller time step sizes,
which are determined by the CFL condition and the fact that the smallest mesh size
mini ∆xi is smaller on the nonuniform grids than ∆x on the uniform grids.

(b) 2D case. We solve the 2D linear advection equation

ut + ux + uy = 0, (29)

with the initial condition u0(x, y) = sin(x + y) and periodic boundary conditions, on
the computational domain [0, 2π]2. The equation is solved on both the uniform grids
and the nonuniform grids using these three different schemes. The final time T = 1.0.
The L1 and L∞ errors, accuracy orders and computational times are reported in Table
5 and Table 6. On uniform grids, results in Table 5 show that the third-order accuracy
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.49528e-02 8.25621e-02 0.86
40 1.78005e-03 3.809 8.48559e-03 3.282 1.07
80 5.32923e-05 5.062 1.21674e-04 6.124 1.26
160 6.37260e-06 3.064 1.49104e-05 3.029 1.92
320 8.06644e-07 2.982 1.85535e-06 3.007 4.87
640 1.01473e-07 2.991 2.31763e-07 3.001 14.91

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 3.19540e-02 8.25618e-02 0.09
40 8.37963e-03 1.931 3.34905e-02 1.302 0.32
80 2.15248e-03 1.961 1.30396e-02 1.361 1.19
160 4.61886e-04 2.220 4.64923e-03 1.488 4.61
320 5.94138e-05 2.959 1.00469e-03 2.210 18.10
640 3.88689e-06 3.934 8.33568e-05 3.591 71.69

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.69500e-03 5.00773e-03 0.07
40 3.81686e-04 2.820 7.70200e-04 2.701 0.19
80 4.97924e-05 2.938 1.09005e-04 2.821 0.65
160 6.37260e-06 2.966 1.49104e-05 2.870 2.31
320 8.06644e-07 2.982 1.85535e-06 3.007 8.99
640 1.01473e-07 2.991 2.31763e-07 3.001 34.64

Table 4: Example 6.1.1, 1D linear advection equation with the initial condition u0 = sin(x)
on nonuniform grids with c = 0.4, and the smooth solution at T = 1.0. L1 errors, L∞
errors, numerical accuracy orders, and CPU time in seconds.
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is achieved at very coarse meshes using the WENO3-MLP scheme, while using the
classical WENO3 scheme, very refined meshes with N = 320 and N = 640 have to be
used to reach the third-order accuracy for L1 errors and L∞ errors respectively. On
the computational time of these schemes, we observe alike behavior as in the 1D case.
Due to the model initialization, It takes a little more CPU times for the WENO3-
MLP scheme than the other two schemes on relatively coarse meshes. As N becomes
larger, the WENO3-MLP scheme is almost five times faster than the classical WENO3
scheme at N = 640. Comparing the numerical results of WENO3-MLP with those
of WENO3 with the KXRCF indicator, we observe that both methods achieve the
third-order accuracy on coarse meshes. Along with the mesh refinement, the L1 and
L∞ numerical errors of WENO3-MLP and WENO3 with the KXRCF indicator are
similar, and the WENO3-MLP scheme is more efficient in terms of computational
time. Observations of the numerical results on the nonuniform grids are similar to
these on the uniform grids. On the nonuniform grids with c = 0.4, the L1 and L∞
numerical errors, accuracy orders and CPU times of these three different schemes are
reported in Table 6, which shows the advantages of WENO3-MLP scheme. Similar to
the 1D case, the CPU times of the computations on the nonuniform grids for the same
N and the same numerical scheme are longer than those on the uniform grids, since
the time step sizes determined by the CFL condition are smaller on the nonuniform
grids than those on the uniform grids.

Example 6.1.2 1D and 2D Burgers’ equations

(a) 1D case We solve the 1D Burgers’ equation

ut +

(
u2

2

)
x

= 0 (30)

on both uniform and nonuniform grids. The initial condition is u0(x) = 1 + 0.5 sin(x),
and the equation is solved by these three schemes on the domain [0, 2π] with periodic
boundary conditions. The final time T = 1.0 when the solution is still smooth. The
L1 and L∞ numerical errors, accuracy orders and the CPU times of the three schemes
on uniform grids are reported in Table 7. Similar to the example 6.1.1, we are able
to obtain the third-order accuracy of the WENO3-MLP scheme for both the L1 and
the L∞ numerical errors quickly on coarse meshes of these successively refined grids.
However, for the classical WENO3 scheme, the third-order accuracy is reached at very
refined meshes such as the grid with N = 320. Both the WENO3-MLP scheme and
the WENO3 with KXRCF indicator accurately identify all cells as smooth on refined
meshes, and their numerical errors are almost the same. On the computational costs,
when the meshes are coarse, the computational speed of the WENO3-MLP scheme is
slower than the other two schemes due to the MLP model initialization and some mis-
identifications of the troubled-cells. However, on more refined meshes, the WENO3-
MLP scheme is more efficient than the other two schemes. On the mesh with N = 640,
it is more than four times faster than the classical WENO3 scheme. Note that the
WENO3 scheme with KXRCF indicator is more expensive than the WENO3-MLP
scheme on refined meshes due to the additional calculations of the indicator values κi
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 4.39767e-02 1.08863e-01 10.82
40 2.67914e-03 4.037 1.22072e-02 3.157 48.24
80 8.17696e-05 5.034 1.86980e-04 6.029 179.48
160 9.38821e-06 3.123 1.47366e-05 3.665 958.64
320 1.17233e-06 3.001 1.84148e-06 3.000 6858.05
640 1.46517e-07 3.000 2.30149e-07 3.000 54635.53

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 5.51482e-02 1.08704e-01 8.14
40 1.44273e-02 1.935 4.45928e-02 1.286 63.44
80 3.53941e-03 2.027 1.67952e-02 1.409 515.02
160 7.01823e-04 2.334 5.55569e-03 1.596 4026.48
320 8.24321e-05 3.090 1.05262e-03 2.400 32454.42
640 5.22756e-06 3.979 7.42802e-05 3.825 258986.24

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 4.78004e-03 7.44467e-03 3.09
40 6.00535e-04 2.993 9.41788e-04 2.983 18.45
80 7.50860e-05 3.000 1.17924e-04 2.998 124.35
160 9.38091e-06 3.001 1.47366e-05 3.000 924.00
320 1.17233e-06 3.000 1.84148e-06 3.000 7296.82
640 1.46517e-07 3.000 2.30149e-07 3.000 56497.32

Table 5: Example 6.1.1, 2D linear advection equation with the initial condition u0 =
sin(x + y) on uniform grids, and the smooth solution at T = 1.0. L1 errors, L∞ errors,
numerical accuracy orders, and CPU time in seconds.

22



WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 4.61634e-02 1.14949e-01 34.52
40 3.50861e-03 3.718 1.83381e-02 2.648 110.15
80 1.03974e-04 5.077 4.45698e-04 5.363 364.67
160 1.13823e-05 3.191 3.11577e-05 3.838 1774.46
320 1.44893e-06 2.974 4.18558e-06 2.896 13225.04
640 1.82860e-07 2.986 5.48604e-07 2.932 101508.27

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 5.72797e-02 1.23107e-01 18.03
40 1.64631e-02 1.799 5.35985e-02 1.120 137.84
80 4.18887e-03 1.975 2.25882e-02 1.247 1088.37
160 9.25559e-04 2.178 8.32115e-03 1.441 8825.30
320 1.32770e-04 2.801 2.25021e-03 1.887 71086.71
640 9.66571e-06 3.780 2.80673e-04 3.003 565822.64

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 4.44972e-03 8.99429e-03 6.67
40 6.36454e-04 2.806 1.33311e-03 2.754 36.58
80 8.70057e-05 2.871 2.33311e-04 2.514 243.78
160 1.13520e-05 2.938 3.11550e-05 2.905 1871.81
320 1.44893e-06 2.970 4.18558e-06 2.896 13353.93
640 1.82860e-07 2.986 5.48604e-07 2.932 105338.73

Table 6: Example 6.1.1, 2D linear advection equation with the initial condition u0 =
sin(x + y) on nonuniform grids with c = 0.4, and the smooth solution at T = 1.0. L1

errors, L∞ errors, numerical accuracy orders, and CPU time in seconds.
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.64964e-02 5.74768e-02 0.83
40 1.00734e-03 4.034 6.20006e-03 3.213 0.86
80 6.81860e-05 3.885 6.14000e-04 3.336 1.01
160 8.61419e-06 2.985 7.91393e-05 2.956 1.51
320 1.07392e-06 3.004 9.89504e-06 3.000 3.30
640 1.34065e-07 3.002 1.23293e-06 3.005 9.78

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.04476e-02 6.12192e-02 0.06
40 5.59372e-03 1.870 1.81828e-02 1.751 0.19
80 1.29446e-03 2.111 6.73150e-03 1.434 0.73
160 2.07298e-04 2.643 1.74755e-03 1.946 2.77
320 1.61104e-05 3.686 1.90709e-04 3.196 10.81
640 1.00917e-06 3.997 8.02618e-06 4.571 43.65

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 3.23937e-03 2.21190e-02 0.04
40 5.10365e-04 2.666 4.02810e-03 2.457 0.14
80 6.81860e-05 2.904 6.14000e-04 2.714 0.49
160 8.61419e-06 2.985 7.91393e-05 2.956 1.75
320 1.07392e-06 3.004 9.89504e-06 3.000 6.73
640 1.34065e-07 3.002 1.23293e-06 3.005 26.63

Table 7: Example 6.1.2, 1D Burgers equation with the initial condition u0 = 1+ 0.5 sin(x)
on uniform grids, and the smooth solution at T = 1.0. L1 errors, L∞ errors, numerical
accuracy orders, and CPU time in seconds.

on all cells. On the mesh with N = 640, the WENO3-MLP scheme is more than two
times faster than the WENO3 scheme with KXRCF indicator. Similar to the example
6.1.1, we also report the numerical results on uniform grids using the WENO3-MLP
scheme without the additional WENO3-MLP reconstruction for updated cell boundary
values u−

i+1/2, u
+
i−1/2 in the neural network input data. Table 8 shows that without this

additional WENO3-MLP reconstruction, the numerical errors are much larger than
the WENO3-MLP scheme’ errors in Table 7, and the desired third-order accuracy
is achieved only when the meshes are very refined. Similar to the linear equation
example, the CPU times on all of the grids are larger than those reported in Table 7
for the WENO3-MLP, because more cells are mis-identified as troubled-cells on which
the more costly WENO3 reconstruction scheme is used instead of the linear scheme.
Again, it is verified in this nonlinear equation example that the additional WENO3-
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N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.83320e-02 6.11408e-02 0.86
40 3.14252e-03 2.544 1.42803e-02 2.098 0.94
80 5.20881e-04 2.593 4.61958e-03 1.628 1.13
160 6.95087e-05 2.906 1.05572e-03 2.130 1.86
320 5.52322e-06 3.654 9.52469e-05 3.470 4.61
640 4.36298e-07 3.662 6.97639e-06 3.771 14.85

Table 8: Example 6.1.2, 1D Burgers’ equation with the initial condition u0 = 1+0.5 sin(x)
on uniform grids, and the smooth solution at T = 1.0. WENO3-MLP scheme without the
additional WENO3-MLP reconstruction for updated cell boundary values u−i+1/2, u

+
i−1/2 in

the neural network input data. L1 errors, L∞ errors, numerical accuracy orders, and CPU
time in seconds.

MLP reconstruction for obtaining updated cell boundary values in the neural network
input data improves the accuracy of the MLP model for indication of the troubled-cells,
and actually makes the whole WENO3-MLP scheme more efficient. On the nonuniform
grids with c = 0.4, the behaviors of these schemes are similar to these on the uniform
grids. Table 9 shows the results of the accuracy, convergence orders, and computational
costs of these three schemes. It is verified that the WENO3-MLP scheme achieves the
desired third-order accuracy quickly in the mesh refinement process, and needs less
computational time than the other two methods on relatively refined meshes. It is also
noted that the computational times are longer on the nonuniform grids than those on
the uniform grids for the same N and the same numerical scheme, since the time step
sizes determined by the CFL condition are smaller on the nonuniform grids.

(b) 2D case We solve the 2D Burgers’ equation

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0 (31)

on both uniform and nonuniform grids. The initial condition is u0(x, y) = 1+0.5 sin(x+
y), and the domain is [0, 2π]2 with periodic boundary conditions. The final time T = 0.3
when the solution is still smooth. The L1 and L∞ numerical errors, accuracy orders
and computational times are reported in Table 10 for these three schemes on uniform
grids. We observe the third-order accuracy is reached quickly in the mesh refinement
process for the WENO3-MLP scheme, while much more refined mesh such as N = 320
has to be used to achieve that for the classical WENO3 scheme. Similar to the 1D case,
the WENO3-MLP scheme mis-identified some smooth cells as troubled-cells on coarse
meshes such as N = 20, so with the addition cost for the neural network initialization,
the computational cost is slightly larger than the classical WENO3 scheme on the grid
with N = 20. However, the WENO3-MLP scheme needs much less CPU time than the
classical WENO3 scheme when the meshes are refined. On the mesh with N = 640, it
is almost five times faster than the classical WENO3 scheme. Also, similar observations
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.86556e-02 4.86616e-02 0.96
40 1.29499e-03 3.849 1.06354e-02 2.194 1.01
80 8.71291e-05 3.894 8.80623e-04 3.594 1.34
160 1.12077e-05 2.959 1.20987e-04 2.864 2.57
320 1.40668e-06 2.994 1.53541e-05 2.978 6.71
640 1.76081e-07 2.998 1.92869e-06 2.993 22.37

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.25577e-02 5.22689e-02 0.13
40 6.63330e-03 1.766 2.13834e-02 1.289 0.46
80 1.51265e-03 2.133 8.49442e-03 1.332 1.74
160 2.68920e-04 2.492 2.50535e-03 1.762 6.84
320 2.50854e-05 3.422 3.60731e-04 2.796 27.12
640 1.61514e-06 3.957 1.83464e-05 4.297 107.16

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 3.90191e-03 2.62982e-02 0.11
40 6.15443e-04 2.664 5.77837e-03 2.186 0.34
80 8.71291e-05 2.820 8.80623e-04 2.714 1.20
160 1.12077e-05 2.959 1.20987e-04 2.864 4.42
320 1.40668e-06 2.994 1.53541e-05 2.978 16.72
640 1.76081e-07 2.998 1.92869e-06 2.993 64.72

Table 9: Example 6.1.2, 1D Burgers’ equation with the initial condition u0 = 1+0.5 sin(x)
on nonuniform grids with c = 0.4, and the smooth solution at T = 1.0. L1 errors, L∞
errors, numerical accuracy orders, and CPU time in seconds.
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.49964e-02 5.78828e-02 4.76
40 6.13649e-04 4.611 2.79462e-03 4.372 12.35
80 4.18358e-05 3.875 1.87973e-04 3.894 55.39
160 5.22144e-06 3.002 2.35723e-05 2.995 407.94
320 6.52136e-07 3.001 2.93904e-06 3.004 3052.25
640 8.14606e-08 3.001 3.66911e-07 3.002 24099.23

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.87090e-02 6.06548e-02 3.82
40 4.14211e-03 2.175 1.57149e-02 1.948 29.49
80 8.82609e-04 2.231 4.90531e-03 1.680 226.09
160 1.38003e-04 2.677 1.23876e-03 1.985 1801.25
320 1.06056e-05 3.701 1.20669e-04 3.360 14828.44
640 7.48933e-07 3.824 4.82966e-06 4.643 118288.89

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.58898e-03 1.03698e-02 1.39
40 3.35150e-04 2.950 1.48462e-03 2.804 8.57
80 4.18358e-05 3.002 1.87973e-04 2.981 55.39
160 5.22144e-06 3.002 2.35723e-05 2.995 404.55
320 6.52136e-07 3.001 2.93904e-06 3.004 3164.50
640 8.14606e-08 3.001 3.66911e-07 3.002 24498.46

Table 10: Example 6.1.2, 2D Burgers’ equation with the initial condition u0 = 1+0.5 sin(x+
y) on uniform grids, and the smooth solution at T = 0.3. L1 errors, L∞ errors, numerical
accuracy orders, and CPU time in seconds.

as in the 1D Burgers equation are obtained for a comparison between the results of the
WENO3-MLP scheme and the results of the WENO3 scheme with KXRCF indicator.
The numerical errors of the WENO3 scheme with KXRCF indicator are smaller when
the meshes are coarse, since the KXRCF indicator correctly identifies all smooth cells.
When the meshes are refined, the numerical errors of these two methods are identical,
and the WENO3-MLP scheme is slightly faster on the refined meshes with N = 320
and N = 640. On the nonuniform grids with c = 0.4, the L1 and L∞ numerical errors,
accuracy orders and CPU times of these three different schemes are reported in Table
11, which shows the similar advantages of WENO3-MLP scheme as the observations
on uniform grids. Also similar to the 1D case, the computational times of the 2D case
on the nonuniform grids are longer than those on the uniform grids for the same N
and the same numerical scheme, because the time step sizes which are determined by
the CFL condition are smaller on these nonuniform grids.
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.68199e-02 6.82497e-02 13.69
40 9.42874e-04 4.157 1.07975e-02 2.660 26.15
80 5.65633e-05 4.059 5.14232e-04 4.392 107.48
160 7.43579e-06 2.927 7.39962e-05 2.797 760.88
320 9.50476e-07 2.968 9.35186e-06 2.984 5864.76
640 1.20083e-07 2.985 1.22723e-06 2.930 45548.12

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.97179e-02 6.98374e-02 8.29
40 4.76419e-03 2.049 2.13162e-02 1.712 60.79
80 1.09048e-03 2.127 7.52218e-03 1.503 497.33
160 1.96522e-04 2.472 2.67654e-03 1.491 3908.38
320 1.97392e-05 3.316 5.22376e-04 2.357 31739.28
640 1.42865e-06 3.788 3.41968e-05 3.933 257969.77

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.55798e-03 1.32908e-02 3.01
40 3.94084e-04 2.698 2.51690e-03 2.401 16.83
80 5.65035e-05 2.802 5.14233e-04 2.291 110.49
160 7.43579e-06 2.926 7.39962e-05 2.797 812.58
320 9.50476e-07 2.968 9.35186e-06 2.984 6051.74
640 1.20083e-07 2.985 1.22723e-06 2.930 48429.11

Table 11: Example 6.1.2, 2D Burgers’ equation with the initial condition u0 = 1+0.5 sin(x+
y) on nonuniform grids with c = 0.4, and the smooth solution at T = 0.3. L1 errors, L∞
errors, numerical accuracy orders, and CPU time in seconds.
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Example 6.1.3 1D Euler system of equations We solve the one-dimensional
Euler system of equations

∂

∂t

 ρ
ρu
E

+
∂

∂x

 ρu
ρu2 + p
u(E + p)

 = 0, (32)

where ρ is the density, u is the velocity, p is the pressure and E = p/(γ − 1) + 1
2ρu

2

is the total energy. γ is the ratio of specific heat, with γ = 1.4 for air. Consider
the computational domain [0, 2π] with periodic boundary conditions, and the initial
conditions ρ0 = 1 + 0.2 sin(x), u0 = 1, and p0 = 1. The exact solution of the density
is ρ(x, t) = 1 + 0.2 sin(x− t). These three schemes (WENO3-MLP, classical WENO3,
and WENO3 with KXRCF indicator) are applied for solving the equations till the final
time T = 2.0 on both uniform and nonuniform grids. We report the numerical results
on uniform grids, including the L1 and L∞ errors, numerical accuracy orders of these
three schemes for the density ρ, and their CPU times in Table 12. It is observed that
the WENO3-MLP scheme yields identical numerical errors as the WENO3 scheme with
KXRCF indicator, since both methods have correctly identified all smooth cells. Both
schemes achieve the third-order accuracy quickly on coarse meshes of these successively
refined grids, and much smaller L1 and L∞ errors than the classical WENO3 scheme.
Comparing the CPU times of the classical WENO3 scheme and the WENO3-MLP
scheme, we see similar behavior as in the scalar-equation cases. On the coarsest mesh
with N = 20, due to the neural network model’s initialization, the WENO3-MLP
scheme takes a little more CPU times than the classical WENO3 scheme does. However,
when the meshes are refined, the WENO3-MLP scheme is much faster. On the grid
with N = 320, the WENO3-MLP scheme is more than four times faster than the
classical WENO3 scheme. On the grid with N = 640, the WENO3-MLP scheme
is almost five times faster. Similarly, although the WENO3 scheme with KXRCF
indicator is faster than the WENO3-MLP scheme on coarse meshes with N = 20 and
N = 40, it is slower than the WENO3-MLP scheme on more refined meshes. On the
grid with N = 640, the WENO3-MLP scheme is more than two times faster than the
WENO3 scheme with KXRCF indicator. On the nonuniform grids with c = 0.4, the
numerical results are shown in Table 13, which includes the L1 and L∞ numerical
errors, numerical accuracy orders of these three schemes for the density ρ, and CPU
times. We observe similar performances of the three schemes on the nonuniform grids
to those on the uniform grids for this example. Also, similar to the scalar-equation
examples, the computational times on the nonuniform grids are longer than those on
the uniform grids for the same N and the same numerical scheme because of the smaller
time step sizes for simulations on the nonuniform grids.

Example 6.1.4 2D Euler system of equations We solve the two-dimensional
Euler system of equations:

∂

∂t


ρ
ρu
ρv
E

+
∂

∂x


ρu

ρu2 + p
ρuv

u(E + p)

+
∂

∂y


ρv
ρuv

ρv2 + p
v(E + p)

 = 0, (33)
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.11336e-04 3.79572e-04 0.76
40 2.43791e-05 3.116 4.58692e-05 3.049 1.32
80 2.98225e-06 3.031 5.76940e-06 2.991 2.84
160 3.70701e-07 3.008 7.23836e-07 2.995 7.58
320 4.62495e-08 3.003 9.06858e-08 2.997 23.83
640 5.77707e-09 3.001 1.13486e-08 2.998 83.30

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.08910e-02 2.45275e-02 0.53
40 4.08327e-03 1.415 9.43978e-03 1.378 1.85
80 1.04787e-03 1.962 3.08868e-03 1.612 6.60
160 4.26152e-05 4.620 2.48180e-04 3.638 25.99
320 1.40605e-06 4.922 1.08241e-05 4.519 100.06
640 7.82800e-08 4.167 3.38345e-07 5.000 404.75

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 2.11336e-04 3.79572e-04 0.36
40 2.43791e-05 3.116 4.58692e-05 3.049 1.04
80 2.98225e-06 3.031 5.76940e-06 2.991 3.37
160 3.70701e-07 3.008 7.23836e-07 2.995 11.91
320 4.62495e-08 3.003 9.06858e-08 2.997 45.25
640 5.77707e-09 3.001 1.13486e-08 2.998 172.46

Table 12: Example 6.1.3, 1D Euler system of equations with the initial condition ρ0 =
1 + 0.2 sin(x), u0 = 1, and p0 = 1 on uniform grids, and the smooth solution at T = 2.0.
L1 errors, L∞ errors, numerical accuracy orders of three schemes for the density ρ, and
CPU times in seconds.
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 4.26307e-04 7.37636e-04 1.33
40 6.02796e-05 2.822 1.23472e-04 2.579 2.64
80 8.04390e-06 2.906 1.74796e-05 2.820 6.29
160 1.04291e-06 2.947 2.24846e-06 2.959 17.23
320 1.32627e-07 2.975 3.01634e-07 2.898 54.07
640 1.67135e-08 2.988 3.80080e-08 2.988 195.10

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.30306e-02 3.01462e-02 1.27
40 4.11116e-03 1.664 1.23309e-02 1.290 4.50
80 1.09660e-03 1.907 3.95008e-03 1.642 16.65
160 1.16034e-04 3.240 5.41672e-04 2.866 65.25
320 2.50577e-06 5.533 1.98510e-05 4.770 249.93
640 1.55730e-07 4.008 7.08836e-07 4.808 1000.67

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 4.26307e-04 7.37636e-04 0.84
40 6.02796e-05 2.822 1.23472e-04 2.579 2.49
80 8.04390e-06 2.906 1.74796e-05 2.820 8.04
160 1.04291e-06 2.947 2.24846e-06 2.959 28.90
320 1.32627e-07 2.975 3.01634e-07 2.898 106.64
640 1.67135e-08 2.988 3.80080e-08 2.988 405.42

Table 13: Example 6.1.3, 1D Euler equations with the initial condition ρ0 = 1+0.2 sin(x),
u0 = 1, and p0 = 1 on nonuniform grids with c = 0.4, and the smooth solution at T = 2.0.
L1 errors, L∞ errors, numerical accuracy orders of three schemes for the density ρ, and
CPU times in seconds.
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where ρ is the density, u is the x-directional velocity, v is the y-directional velocity,
p is the pressure and E = p/(γ − 1) + 1

2ρ(u
2 + v2) is the total energy. γ is the ratio

of specific heat, and γ = 1.4 for air. Consider the computational domain [0, 2π]2 with
periodic boundary conditions, and the initial condition ρ0 = 1+0.2 sin(x+y), u0 = 0.7,
v0 = 0.3, and p0 = 1. The exact solution of density is ρ(x, y, t) = 1+0.2 sin(x+y−2t).
We solve the system of equations with the final time T = 0.3 on both uniform and
nonuniform grids. Table 14 shows the L1 and L∞ numerical errors, numerical accuracy
orders of the WENO3-MLP scheme, the classical WENO3 scheme, and the WENO3
scheme with KXRCF indicator on the uniform grids for the density ρ, and their CPU
times. Again, the WENO3-MLP scheme yields much smaller numerical errors than
those of the classical WENO3 scheme, and has similar numerical errors to those of
the WENO3 scheme with KXRCF indicator. It is found that the neural network
model in the WENO3-MLP scheme correctly identifies all smooth cells on the grids
with N = 40 or larger, which leads the WENO3-MLP scheme to be able to reach
the desired 3rd-order accuracy quickly during the mesh refinement. Furthermore, the
WENO3-MLP scheme needs much less computational time than the classical WENO3
scheme on all grids. For example, on the grid with N = 640, the WENO3-MLP scheme
is about five times faster than the classical WENO3 scheme. It is also faster than the
WENO3 scheme with KXRCF indicator on the grids with N = 40 or larger. On the
nonuniform grids with c = 0.4, the numerical results are reported in Table 15, from
which the similar observations to those on the uniform grids are obtained for these
three numerical schemes.

6.2 Numerical examples with nonsmooth solutions

Example 6.2.1 1D linear advection equation We consider the 1D linear
advection equation (28) with nonsmooth solution. The equation is solved on both
uniform and nonuniform grids with the discontinuous initial condition

u0 =



10(x− 0.2), if 0.2 < x ≤ 0.3

10(0.4− x), if 0.3 < x < 0.4

1, if 0.6 < x < 0.8

100(x− 1)(1.2− x), if 1.0 < x < 1.2

0, otherwise.

(34)

The computational domain is [0, 1.4], and periodic boundary conditions are applied.
The equation is solved till the final time T = 1.4. Fig. 3 presents the numerical
solutions of the classical WENO3 scheme, the WENO3-MLP scheme, and the WENO3
scheme with KXRCF indicator on both the uniform grid and the nonuniform grid
with the number of computational cells N = 160. The reference solution is provided
using the exact solution of the equation. In this example, the size of buffer zones
is taken as Nb = 7 and Nb,κ = 7 for the WENO3-MLP scheme and the WENO3
scheme with KXRCF indicator respectively, which are increased from the default value
Nb = Nb,κ = 3 in the other examples, because the numerical experiment shows that the
larger buffer zones have a better coverage of the transition regions near discontinuities
here and make the WENO3-MLP scheme more stable. This observation is consistent

32



WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 1.05886e-03 1.58511e-03 8.36
40 9.56576e-05 3.468 1.50791e-04 3.394 44.46
80 1.19536e-05 3.000 1.88063e-05 3.003 287.08
160 1.49177e-06 3.002 2.34882e-06 3.001 2083.33
320 1.86300e-07 3.001 2.93386e-07 3.001 15719.07
640 2.32770e-08 3.001 3.66569e-08 3.001 125350.15

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 6.80181e-03 1.64538e-02 19.78
40 1.55986e-03 2.125 5.25255e-03 1.647 156.24
80 2.92839e-04 2.413 1.57353e-03 1.739 1212.33
160 2.75379e-05 3.411 2.16386e-04 2.862 9844.85
320 1.91191e-06 3.848 1.00506e-05 4.428 78487.71
640 1.23234e-07 3.956 3.60289e-07 4.802 621617.04

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 7.66879e-04 1.19564e-03 7.62
40 9.56576e-05 3.003 1.50791e-04 2.987 46.65
80 1.19536e-05 3.000 1.88063e-05 3.003 306.46
160 1.49177e-06 3.002 2.34882e-06 3.001 2215.55
320 1.86300e-07 3.001 2.93386e-07 3.001 16763.42
640 2.32770e-08 3.001 3.66569e-08 3.001 131254.76

Table 14: Example 6.1.4, 2D Euler system of equations with the initial condition ρ0 =
1+0.2 sin(x+y), u0 = 0.7, v0 = 0.3, and p0 = 1 on uniform grids, and the smooth solution
at T = 0.3. L1 errors, L∞ errors, numerical accuracy orders of three schemes for the
density ρ, and CPU time in seconds.
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WENO3-MLP

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 8.90705e-04 1.74243e-03 17.25
40 1.10518e-04 3.011 2.95386e-04 2.560 86.27
80 1.56916e-05 2.816 5.00372e-05 2.562 562.01
160 2.10862e-06 2.896 7.08265e-06 2.821 4047.49
320 2.72805e-07 2.950 9.79135e-07 2.855 30823.17
640 3.46733e-08 2.976 1.33509e-07 2.875 241026.07

Classical WENO3

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 7.75540e-03 2.34874e-02 45.77
40 1.82499e-03 2.087 7.58974e-03 1.630 331.64
80 3.73134e-04 2.290 2.39292e-03 1.665 2680.40
160 4.69420e-05 2.991 6.04227e-04 1.986 21335.99
320 3.48530e-06 3.752 5.25303e-05 3.524 173557.89
640 2.38769e-07 3.868 2.28757e-06 4.521 1391268.17

WENO3 with KXRCF

N L1 error L1 order L∞ error L∞ order CPU time (s)

20 7.50626e-04 1.79105e-03 16.56
40 1.10518e-04 2.764 2.95386e-04 2.600 89.42
80 1.56916e-05 2.816 5.00372e-05 2.562 622.69
160 2.10862e-06 2.896 7.08265e-06 2.821 4288.19
320 2.72805e-07 2.950 9.79135e-07 2.855 33048.76
640 3.46733e-08 2.976 1.33509e-07 2.875 264312.77

Table 15: Example 6.1.4, 2D Euler system of equations with the initial condition ρ0 =
1 + 0.2 sin(x + y), u0 = 0.7, v0 = 0.3, and p0 = 1 on nonuniform grids with c = 0.4, and
the smooth solution at T = 0.3. L1 errors, L∞ errors, numerical accuracy orders of three
schemes for the density ρ, and CPU time in seconds.
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Figure 3: Example 6.2.1, numerical solutions of three schemes for the 1D linear equation
with discontinuous initial condition. The time T = 1.4. Number of computational cells
N = 160. Left: uniform grid; right: nonuniform grid with c = 0.4.

with the results reported in the hybrid finite difference scheme [49]. Fig. 3 shows that
the WENO3-MLP scheme has a better resolution than the other two schemes in this
example, although there are some slight under-shoots in its solution, especially on the
uniform grid.

We compare the troubled-cells marked by theWENO3-MLP scheme and theWENO3
with KXRCF indicator on the nonuniform grid at different times t = 0.05, t = 0.1,
t = 0.3, and t = 1.4. The results are reported in Fig. 4, which shows that the non-
smooth regions of the solution are captured well by both schemes in the time evolutions.
In the figure, the values of 1−P of all computational cells are shown for the WENO3-
MLP scheme, where the values of P are the outputs of the MLP model. A dashed
cutoff line 1− threshold of P = 0.1 is included in the plots. So if the 1− P value of a
cell is above the dashed cutoff line, this cell is indicated to be a troubled-cell. Similarly,
for the convenience of comparison, the indicator values κi of the WENO3 scheme with
KXRCF indicator are re-scaled by a factor of 10 in the figure, and a dashed cutoff line
1/10 = 0.1 is also included in the plots. So if the κi/10 value of a cell is above the
dashed cutoff line, this cell is indicated to be a troubled-cell. Fig. 4 clearly shows that
the MLP model flags much less troubled-cells than the KXRCF indicator, which makes
the hybrid WENO3-MLP scheme less dissipative, sharper in resolution and more effi-
cient than the hybrid WENO3 with KXRCF indicator, although more dissipations in
the hybrid WENO3 with KXRCF indicator provide stronger stability.

Example 6.2.2 1D and 2D Burgers’ equations

(a) 1D case We solve the 1D Burgers’ equation (30) with the initial condition
u0(x) = 1 + 0.5 sin(x) and periodic boundary conditions on the domain [0, 2π]. Both
the uniform grid and the nonuniform grid are used, and the equation is solved till the
final time T = 6.0 when the shock wave has formed in the solution. Comparisons
of numerical solutions computed by the classical WENO3, the WENO3-MLP, and
the WENO3 with KXRCF indicator on the uniform grid and the nonuniform grid
with c = 0.4 are shown in Fig. 5. Three numerical methods properly capture the

35



0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

1
−

P U

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

k
a
p

p
a
/1

0

U

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

1
−

P U
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

k
a
p

p
a
/1

0

U

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

1
−

P U

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

k
a
p

p
a
/1

0

U

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

1
−

P U

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.0 0.5 1.0

X

k
a
p

p
a
/1

0

U

Figure 4: Example 6.2.1, numerical solutions of the 1D linear equation with nonsmooth
solution and the troubled-cells (i.e., the indicator values are above the dashed cutoff line)
marked byWENO3-MLP andWENO3 with KXRCF indicator on the nonuniform grid with
c = 0.4 and the number of cells N = 160. Blue: numerical solutions; red: corresponding
indicator values for all cells. Left column: WENO3-MLP; right column: WENO3 with
KXRCF indicator; first row: t = 0.05; second row: t = 0.1; third row: t = 0.3; fourth row:
t = 1.4.
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Figure 5: Example 6.2.2, numerical solutions of the 1D Burgers’ equation with the initial
condition u0 = 1 + 0.5 sin(x) at T = 6.0. Number of computational cells N = 160. Left:
uniform grid; right: nonuniform grid with c = 0.4.

shock wave and yield similar results in this example on both the uniform grid and the
nonuniform grid. We also compare the troubled-cells marked by the WENO3-MLP
scheme and the WENO3 with KXRCF indicator. The results on the nonuniform grid
with c = 0.4 at the final time T = 6.0 are reported in Fig. 6. Similar to the previous
example, the KXRCF indicator marks more cells as troubled-cells than the neural
network MLP model, while both hybrid schemes capture the discontinuity location
well and are nonlinear stable.

(b) 2D case We solve the 2D Burgers’ equation (31) with the initial condition
u0(x, y) = 1 + 0.5 sin(x+ y) and periodic boundary conditions on the domain [0, 2π]2.
Both the uniform grid and the nonuniform grid are used, and the equation is solved
till the final time T = 6.0 when the shock waves have developed in the solution. In
Fig. 7, we present the numerical solutions of the classical WENO3, the WENO3-MLP,
and the WENO3 with KXRCF indicator on the grid with number of cells 160 × 160
in the 1D diagonal line x = y of the domain. While the classical WENO3 scheme
and the hybrid WENO3 with KXRCF indicator provide almost identical results, we
observe that the numerical solution of the WENO3-MLP scheme is slightly closer to
the exact solution near the shock transition location on both the uniform grid and
the nonuniform grid with c = 0.4. The results of comparing the troubled-cells marked
by the neural network indicator and the KXRCF indicator on the nonuniform grid are
reported in Fig. 8. The consistent observation with the 1D case is observed. Much more
troubled-cells are marked by the KXRCF indicator than the WENO3-MLP scheme.

Example 6.2.3 1D Buckley-Leverett equation We consider the 1D Buckley-
Leverett equation

ut +

(
4u2

4u2 + (1− u)2

)
x

= 0, (35)

where the flux is non-convex. The computational domain is [−1, 1], and periodic bound-
ary conditions are applied. The initial condition is u0 = 1 in [−0.5, 0], and u0 = 0
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Figure 6: Example 6.2.2, numerical solutions of the 1D Burgers’ equation and the troubled-
cells (i.e., the indicator values are above the dashed cutoff line) marked by WENO3-MLP
and WENO3 with KXRCF indicator on the nonuniform grid with c = 0.4 at the time
T = 6.0. Number of computational cells N = 160. Blue: numerical solutions; red:
corresponding indicator values for all cells. Left: WENO3-MLP; right: WENO3 with
KXRCF indicator.
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Figure 7: Example 6.2.2, numerical solutions of the 2D Burgers’ equation with the initial
condition u0 = 1+0.5 sin(x+y) at T = 6.0. 1D-cut plot in the x = y diagonal line. Number
of cells N ×N = 160× 160. Left: uniform grid; right: nonuniform grid with c = 0.4.
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Figure 8: Example 6.2.2, numerical solutions of the 2D Burgers’ equation and the troubled-
cells (i.e., their indicator values are above the dashed cutoff line) marked by the WENO3-
MLP and the WENO3 with KXRCF indicator on the nonuniform grid with c = 0.4 at
the time T = 6.0. Number of cells N × N = 160 × 160. Blue: numerical solutions; red:
corresponding indicator values for all cells. Left: WENO3-MLP; right: WENO3 with
KXRCF indicator.
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Figure 9: Example 6.2.3, numerical solutions of 1D Buckley-Leverett equation at T = 0.4.
Number of cells N = 80. Left: on uniform grid; right: on nonuniform grid with c = 0.4.

elsewhere. We compute the solution till the final time T = 0.4 with N = 80 on both
the uniform grid and the nonuniform grid with c = 0.4. The solution of this example
has rarefaction wave, shock wave and contact discontinuity. We present the compar-
isons of the numerical solutions of the WENO3-MLP scheme, the classical WENO3
scheme and the WENO3 with KXRCF indicator scheme in Fig. 9. It shows that the
numerical solutions of all three schemes agree well and are comparable. Here the ref-
erence solution is calculated using the classical WENO3 scheme on a very refined grid
with N = 5120. In Fig. 10, we compare the number of troubled-cells marked by the
WENO3-MLP scheme and the WENO3 with KXRCF indicator scheme. Again, the
WENO3 with KXRCF indicator marks more cells as troubled-cells than the neural net-
work MLP model. Both hybrid WENO3 schemes capture the discontinuity locations
well and are nonlinear stable for this problem with a non-convex flux.
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Figure 10: Example 6.2.3, numerical solutions of the 1D Buckley-Leverett equation and
the troubled-cells (i.e., the indicator values are above the dashed cutoff line) marked by
WENO3-MLP and WENO3 with KXRCF indicator on the nonuniform grid with c = 0.4
at T = 0.4. Number of computational cells N = 80. Blue: numerical solutions; red:
corresponding indicator values for all cells. Left: WENO3-MLP; right: WENO3 with
KXRCF indicator.

Example 6.2.4 2D Riemann problem Consider the 2D Riemann problem of
the equation (31) with the piecewise constant initial condition

u0 =


−1.0, if x > 0.5, y > 0.5,

−0.2, if x < 0.5, y > 0.5,

0.5, if x < 0.5, y < 0.5,

0.8, if x > 0.5, y < 0.5.

(36)

For this problem, we are interested in the computational domain [0, 1]2. Following the
approach in [1], we solve the equation till the final time T = 0.5 on a larger region
[−0.5, 1.5]2 with the periodic boundary conditions, so that the numerical solution in
the domain [0, 1]2 is unaffected by the boundary conditions. Both the uniform grids
and the nonuniform grids with N = 160 and N = 320 are used. Here we present the
contour plots of the numerical solutions on the nonuniform grids in Fig. 11, since the
observations on numerical results on the uniform grids are similar and they are omitted
to save space. Comparing the numerical solutions in Fig. 11 which are obtained using
the WENO3-MLP, the classical WENO3, and the WENO3 with KXRCF indicator, we
see that all these three methods yield comparable results. In Fig. 12, we compare the
troubled-cells identified in the WENO3-MLP scheme and the WENO3 scheme with
KXRCF indicator, on the 320×320 nonuniform grid at different times t = 0.2, t = 0.4,
and T = 0.5. Similar to the 1D examples, it is observed that more cells are marked as
troubled-cells by the KXRCF indicator than those by the MLP model.

Example 6.2.5 2D KPP problem We consider the 2D KPP problem [24]

ut + (sinu)x + (cosu)y = 0, (37)
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Figure 11: Example 6.2.4, numerical solutions of 2D Riemann problem on nonuniform grid
with c = 0.4 at T = 0.5, 30 equally spaced contour lines from u = −0.95 to u = 0.75. Top
row: WENO3-MLP; middle row: classical WENO3; bottom row: WENO3 with KXRCF
indicator. Left column: number of cells N ×N = 160× 160; right column: number of cells
N ×N = 320× 320. 41
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Figure 12: Example 6.2.4, numerical solutions of 2D Riemann problem and troubled-
cells (in color red) marked by WENO3-MLP and WENO3 with KXRCF indicator on the
nonuniform grid with c = 0.4. Number of cells N × N = 320 × 320. Contour plots of
numerical solutions are drawn with 30 equally spaced contour lines from u = −0.95 to
u = 0.75. First row: contour plots for numerical solutions of WENO3-MLP; second row:
troubled-cells marked by WENO3-MLP; third row: contour plots for numerical solutions of
WENO3 with KXRCF indicator; last row: troubled-cells marked by WENO3 with KXRCF
indicator. Left to right: at t = 0.2, at t = 0.4, at T = 0.5.
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which has the non-convex flux. The equation is solved on both the uniform grid and
the nonuniform grid with the initial condition

u0 =

{
14π/4, if x2 + y2 < 1,

π/4, otherwise.
(38)

The computational domain is [−2, 2]2 with periodic boundary conditions. Since the
observations of numerical results are similar on the uniform grids and the nonuniform
grids, we only show contour plots of the numerical solutions at T = 1.0 on the nonuni-
form grids with N = 160 and N = 320 in Fig. 13. Comparable numerical results
are obtained for the WENO3-MLP scheme, the classical WENO3 scheme, and the
WENO3 scheme with KXRCF indicator. We compare the troubled-cells marked by
the WENO3-MLP scheme and the WENO3 scheme with KXRCF indicator, on the
320× 320 nonuniform grid at different times t = 0.4, t = 0.8, and T = 1.0. The results
are reported in Fig. 14. As the previous examples, the WENO3-MLP scheme marks
fewer troubled-cells than the WENO3 with KXRCF indicator does, while comparable
numerical results are obtained for both schemes.

Example 6.2.6 Lax problem We solve the Lax problem [25] on the computa-
tional domain [−5, 5]. Both the uniform grid and the nonuniform grid are used. The
problem is the 1D Euler system of equations (32) with the initial condition

(ρ0, u0, p0) =

{
(0.445, 0.698, 3.528) if − 5 ≤ x < 0,

(0.5, 0, 0.571) if 0 ≤ x ≤ 5.
(39)

All of the density, velocity and pressure in the initial condition are discontinuous, and
the solution of this problem contains a left-moving rarefaction wave, an intermediate
contact discontinuity, and a right-spreading shock wave from discontinuities in the
initial condition. The outflow boundary conditions are applied. The exact Riemann
solver in [50] is used for computing the reference solution. The problem is solved till
the final time T = 1.3 on the grids with N = 100. In this example, similar to Example
6.2.1, the size of buffer zones is taken as Nb = Nb,κ = 7 for the WENO3-MLP and
the WENO3 with KXRCF indicator, which is increased from the default value in the
other examples for better stability of the simulation. Fig. 15 reports the numerical
solutions of three schemes for the density ρ on both the whole computational domain
and an enlarged portion near the contact discontinuity. It shows that comparable
numerical results are obtained for these three different numerical methods, and verifies
the nonlinear stability of the proposed WENO3-MLP hybrid finite volume scheme.
Fig. 16 reports the comparison of troubled-cells marked by the WENO3-MLP scheme
and the WENO3 scheme with KXRCF indicator on the nonuniform grid. Again, we
observe that more cells are marked as troubled-cells by the WENO3 scheme with
KXRCF indicator than those by the WENO3-MLP scheme.

Example 6.2.7 Double Mach reflection We solve the “double Mach reflec-
tion” problem [6]. Consider the 2D Euler system of equations (33) on the computational
domain [0, 4]× [0, 1]. A reflecting wall lies at the bottom of the computational domain
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Figure 13: Example 6.2.5, numerical solutions of the 2D KPP problem on the nonuniform
grids with c = 0.4 at T = 1.0, 30 equally spaced contour lines from u = 1.0 to u = 10.8. Top
row: WENO3-MLP; middle row: classical WENO3; bottom row: WENO3 with KXRCF
indicator. Left column: number of cells N ×N = 160× 160; right column: number of cells
N ×N = 320× 320. 44
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Figure 14: Example 6.2.5, numerical solutions of 2D KPP problem and troubled-cells (in
color red) marked by WENO3-MLP and WENO3 with KXRCF indicator on the nonuni-
form grid with c = 0.4. Number of cells N × N = 320 × 320. Contour plots are drawn
with 30 equally spaced contour lines from u = 1.0 to u = 10.8. First row: contour plots for
WENO3-MLP; second row: troubled-cells marked by WENO3-MLP; third row: contour
plots for WENO3 with KXRCF indicator; last row: troubled-cells marked by WENO3 with
KXRCF indicator. Left to right: at t = 0.4, at t = 0.8, at T = 1.0.
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Figure 15: Example 6.2.6, numerical solutions of the Lax problem for the density at T = 1.3.
Number of computational cells N = 100. Top row: uniform grid; bottom row: nonuniform
grid with c = 0.4. Left column: the whole computational domain; right column: an
enlarged portion near the contact discontinuity.
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Figure 16: Example 6.2.6, numerical solutions of the density for the Lax problem and
troubled-cells (i.e., the indicator values are above the dashed cutoff line) marked by
WENO3-MLP and WENO3 with KXRCF indicator on the nonuniform grid with c = 0.4
at T = 1.3. Number of computational cells N = 100. Blue: numerical solutions; red: cor-
responding indicator values for all cells. Left: WENO3-MLP; right: WENO3 with KXRCF
indicator.
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for 1
6 ≤ x ≤ 4. Initially a right-moving Mach 10 shock is positioned at x = 1

6 , y = 0,
and makes a 60◦ angle with the x-axis. At the bottom of the computational domain,
the reflective boundary condition is used from x = 1

6 to x = 4, and the exact post-
shock condition is imposed from x = 0 to x = 1

6 . The top boundary is set to describe
the exact motion of the Mach 10 shock. Prescribed exact post-shock inflow and free
outflow boundary conditions are used for the left and right boundaries respectively.
The initial condition of the double Mach reflection problem is

(ρ0, u0, v0, p0) =

{
(8, 8.25 cos(π/6),−8.25 sin(π/6), 116.5) if x < 1

6 + y√
3
,

(1.4, 0, 0, 1) if x ≥ 1
6 + y√

3
.

(40)

We solve the problem till the final time T = 0.2 on both the uniform grid and the
nonuniform grid with Nx×Ny = 960×240 computational cells. Since the observations
of numerical results are similar on the uniform grid and the nonuniform grid, we only
show the results on the nonuniform grid to save spaces. Fig. 17 shows the contour
plots of numerical solutions on the nonuniform grid with c = 0.4 for the density in
the domain [0, 3] × [0, 1]. Comparable numerical results are observed for these three
different numerical schemes. We also compare troubled-cells identified by the WENO3-
MLP scheme and the WENO3 scheme with KXRCF indicator on the nonuniform grid,
and the results are reported in Fig. 18. It is observed that more cells are marked as
troubled-cells by the KXRCF indicator, which is consistent with the results of the other
examples in this paper.

Example 6.2.8 Rayleigh-Taylor instability Rayleigh-Taylor instability hap-
pens on an interface between fluids with different densities when an acceleration is
directed from the heavy fluid to the light fluid. The instability has a fingering nature,
with bubbles of light fluid rising into the ambient heavy fluid and spikes of heavy fluid
falling into the light fluid [12, 46, 60, 62]. This is a standard benchmark problem to test
the resolution of high-order schemes. More small structures in the numerical solutions,
which are driven by the numerical viscosity of the scheme, indicate smaller numerical
viscosity and higher resolution of the scheme. We solve the problem on the computa-
tional domain [0, 1

4 ] × [0, 1]. Initially the interface is at y = 1
2 . The heavy fluid with

density ρ = 2 is below the interface, and the light fluid with density ρ = 1 is above the
interface with the acceleration in the positive y-direction. The pressure p is continuous
across the interface, and a small perturbation is given to the y-direction fluid speed.
The initial condition of the Rayleigh–Taylor instability problem is formulated as

(ρ0, u0, v0, p0) =


(2, 0,−0.025c′ · cos(8πx), 1 + 2y) if 0 ≤ y <

1

2
,

(1, 0,−0.025c′ · cos(8πx), 3
2
+ y) if

1

2
≤ y ≤ 1,

(41)

where the speed of sound c′ =
√

γp
ρ and the ratio of specific heat γ = 5

3 . Reflective

boundary conditions are imposed for the left and right boundaries. At the top bound-
ary, the flow values are set as (ρ, u, v, p) = (1, 0, 0, 2.5), and at the bottom boundary,
the flow values are set as (ρ, u, v, p) = (2, 0, 0, 1). We solve the 2D Euler system of
equations (33) with the source terms ρ added the right hand side of the third equation
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Figure 17: Example 6.2.7, density contours of the numerical solutions for the double Mach
reflection problem on the nonuniform grid with c = 0.4, in the domain [0, 3]× [0, 1] at T =
0.2. 30 equally spaced contour lines from ρ = 1.5 to ρ = 21.0. Number of computational
cells Nx × Ny = 960 × 240. Top: WENO3-MLP ; middle: classical WENO3; bottom:
WENO3 with KXRCF indicator.
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Figure 18: Example 6.2.7, troubled-cells (in color red) marked by the WENO3-MLP scheme
and the WENO3 scheme with KXRCF indicator for the double Mach reflection problem
on the nonuniform grid with c = 0.4, in the domain [0, 3] × [0, 1] at T = 0.2. Number of
computational cells Nx ×Ny = 960 × 240. Left: troubled-cells marked by WENO3-MLP;
right: troubled-cells marked by WENO3 with KXRCF indicator.

and ρv added to the right hand side of the fourth equation. The simulations are run
till the final time T = 1.95 on both the uniform grid and the nonuniform grid with
Nx ×Ny = 240 × 960 computational cells. Numerical results are reported in Fig. 19.
The top row of Fig. 19 shows density contours with 30 equally spaced contour lines
using these three different numerical schemes on the uniform grid. We observe more
small structures in the numerical solution of the WENO3-MLP scheme, whereas the
WENO3 scheme with KXRCF indicator produces similar numerical solution to that of
the classical WENO3 scheme. Troubled-cells identified by the WENO3-MLP scheme
and the WENO3 scheme with KXRCF indicator on the uniform grid are shown in the
left two pictures of Fig. 20. Similar to the previous examples, more cells are marked
as troubled-cells by the WENO3 scheme with KXRCF indicator. On the nonuniform
grid with c = 0.4, we have consistent observations with those on the uniform grid, as
shown at the bottom row of Fig. 19. Comparable numerical solutions are obtained for
the classical WENO3 scheme and the WENO3 scheme with KXRCF indicator, while
WENO3-MLP scheme generates more small structures and shows a better resolution.
Troubled-cells identified by the WENO3-MLP scheme and the WENO3 scheme with
KXRCF indicator on the nonuniform grid are shown in these two pictures of the right
side in Fig. 20. Less cells are identified as troubled-cells by the WENO3-MLP scheme,
than those marked by the WENO3 scheme with KXRCF indicator. Hence the linear
scheme is used on a larger region in the WENO3-MLP hybrid scheme than that in
the other hybrid scheme (the WENO3 scheme with KXRCF indicator), which leads to
smaller numerical viscosity and higher resolution.

7 Concluding remarks

Motivated by recent development in applying ANN based troubled-cell indicators to
designing hybrid finite difference WENO schemes, in this paper we develop a third-
order hybrid finite volume WENO method with a MLP troubled-cell indicator for
solving hyperbolic conservation laws. The method is designed on general Cartesian
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Figure 19: Example 6.2.8, density contours of the numerical solutions for the Rayleigh-
Taylor instability problem on the uniform grid and the nonuniform grid with c = 0.4
at T = 1.95, 30 equally spaced contour lines from ρ = 0.9 to ρ = 2.35. Number of
computational cells Nx × Ny = 240 × 960. Top row: on uniform grid; bottom row: on
nonuniform grid with c = 0.4. Left column: WENO3-MLP; middle column: classical
WENO3; right column: WENO3 with KXRCF indicator.

50



X

Y

0.00 0.10 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X

Y

0.00 0.10 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X

Y

0.00 0.10 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X

Y

0.00 0.10 0.20

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Figure 20: Example 6.2.8, troubled-cells (in color red) marked by the WENO3-MLP scheme
and the WENO3 scheme with KXRCF indicator for the Rayleigh-Taylor instability problem
on the uniform grid and the nonuniform grid with c = 0.4 at T = 1.95. Number of
computational cells Nx × Ny = 240 × 960. Pictures from left to right: troubled-cells
marked by WENO3-MLP on uniform grid; troubled-cells marked by WENO3 with KXRCF
indicator on uniform grid; troubled-cells marked by WENO3-MLP on nonuniform grid with
c = 0.4; troubled-cells marked by WENO3 with KXRCF indicator on nonuniform grid with
c = 0.4.
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meshes including arbitrary nonuniform grids, without the grid-restriction of finite dif-
ference WENO schemes. Extensive numerical examples, including scalar equations
with both convex and non-convex fluxes and the Euler systems of equations on uni-
form and nonuniform grids of 1D and 2D domains, are solved by the proposed new
method to show its desired third-order accuracy and nonlinear stability. Numerical
experiments verify significant accuracy improvement and computational-cost saving of
the proposed new scheme over the original third-order finite volume WENO scheme,
which is consistent with the property of the existing hybrid WENO methods in the
literature. Moreover, comparisons of the MLP troubled-cell indicator developed in
this paper with the widely-used KXRCF troubled-cell indicator show that the MLP
troubled-cell indicator accurately identifies the troubled-cells and marks less troubled-
cells for problems with nonsmooth solutions, which leads to a larger computational
domain covered by the linear scheme, hence more efficient computations for the hybrid
finite volume WENO scheme. It is also verified that the MLP troubled-cell indica-
tor performs very well on arbitrary nonuniform grids, although it is trained offline on
uniform grids.

We focus on the third-order scheme in this paper to explore the methodology of
developing hybrid finite volume WENO method on general Cartesian meshes with an
ANN based troubled-cell indicator. However, the approach proposed here is expected
to have the potential to be further extended to higher-order schemes and unstructured
triangular meshes. In the numerical experiments, the WENO3-MLP scheme shows
comparable resolution to the other two schemes in some examples, and much higher
resolution in solving the typical benchmark problem of testing resolution for high-order
schemes [46, 62], the Rayleigh-Taylor instability problem. Note that there have been
extensive efforts in the literature to achieve better resolution for high-order WENO
schemes, for example, by designing new smoothness indicators, new nonlinear weights,
more effective troubled-cell indicators for hybrid schemes, etc. Although it is not the
goal of this paper to design a hybrid WENO scheme with a better resolution than
the existing methods in the literature, they will be very interesting and important
topics to improve the hybrid finite volume WENO scheme proposed in this paper for
higher-order accuracy and higher resolution, and to compare the new hybrid methods
more comprehensively with other hybrid schemes with different troubled-cell indicators.
These future work will be carried out in our next research.
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