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returns in the cross-section. Across ten well-known stock anomalies, abnormal returns are
realized only among stocks experiencing large NAT. Exploiting Regulation SHO, which
facilitated short selling for a random group of stocks, we present causal evidence that NAT
has stronger return predictability among stocks facing greater limits to arbitrage. We also
find large returns for anomalies that arbitrageurs chose to exploit despite capital constraints
during the 2007–09 financial crisis. We confirm our findings using daily data. (JEL G11,
G23)

Received September 1, 2016; editorial decision May 28, 2018 by Editor Andrew Karolyi.
Authors have furnished an Internet Appendix, which is available on the Oxford University
Press Web site next to the link to the final published paper online.

We are grateful to Andrew Karolyi (the Executive Editor) and an anonymous referee for valuable advice. We
thank Charles Cao, Roger Edelen, Samuel Hanson, Johan Hombert (Paris conference discussant), Byoung-
Hyoun Hwang (AFA discussant), Hagen Kim, Weikai Li (CICF discussant), Bing Liang, Jeffrey Pontiff, Marco
Rossi, Kalle Rinne (Luxembourg conference discussant), Thomas Ruf (EFA discussant), Clemens Sialm, Sorin
Sorescu, Zheng Sun, Robert Stambaugh, Wei Wu, Jianfeng Yu, and seminar and conference participants at
McMaster University, Miami University, Texas A&M University, University of Hawaii, University of Notre
Dame, the 2015 European Finance Association Meeting in Vienna, the 4th Luxembourg Asset Management
Summit, 2015 Macquarie Global Quantitative Research Conference in Hong Kong, the 2016 American Finance
Association Annual Meeting in San Francisco, the 8th Annual Hedge Fund Research Conference in Paris, the
2016 China International Conference in Finance in Xiamen, and the 2016 Financial Management Association
Meeting in Las Vegas for helpful discussions and comments. Chen acknowledges financial support from the
Republic Bank Research Fellowship at Texas A&M University. Da acknowledges financial support from the
Zych Family Fellowship at the Notre Dame Institute for Global Investing. We are responsible for all remaining
errors. Supplementary data can be found on The Review of Financial Studies Web site. Send correspondence
to Yong Chen, Department of Finance, Mays Business School, Texas A&M University, College Station, TX
77843–4218; telephone: (979) 845–3870. E-mail: ychen@mays.tamu.edu.

© The Author(s) 2018. Published by Oxford University Press on behalf of The Society for Financial Studies.
All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
doi:10.1093/rfs/hhy097

D
ow

nloaded from
 https://academ

ic.oup.com
/rfs/advance-article-abstract/doi/10.1093/rfs/hhy097/5086321 by Kresge Law

 Library user on 22 O
ctober 2018

https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhy097#supplementary-data
https://academic.oup.com/rfs/article-lookup/doi/10.1093/rfs/hhy097#supplementary-data


[08:32 12/9/2018 RFS-OP-REVF180097.tex] Page: 2 1–39

The Review of Financial Studies / v 00 n 00 2018

Arbitrageurs play a crucial role in modern finance. Textbooks describe
arbitrageurs as entities that, by simultaneously taking long and short positions
in different assets, help eliminate mispricing and restore market efficiency.
As a result, their trading pins down the expected return on these assets,
according to the arbitrage pricing theory (APT) of Ross (1976). On the other
hand, investors’ behavioral biases and agency frictions may lead to persistent
mispricing when arbitrageurs face limits to arbitrage (e.g., De Long et al. 1990;
Shleifer and Vishny 1997).1 Relative to theoretical development, however, our
understanding about arbitrage activity from empirical research is still rather
limited.

One major challenge in studying arbitrage activity empirically has been
the lack of data on arbitrageurs.2 However, as hedge funds emerged as
institutionalized arbitrageurs and the data of their stock holdings became
available in recent years, a series of papers has inferred the long side of arbitrage
trading by investigating hedge fund stock holdings (e.g., Brunnermeier and
Nagel 2004; Griffin and Xu 2009; Cao et al. 2018). Meanwhile, since short
positions are involved in arbitrage trades, several studies track the short side of
arbitrage trading by examining short-selling activity on stocks (e.g., Boehmer,
Jones, and Zhang 2008; Hanson and Sunderam 2014; Hwang, Liu, and Xu
forthcoming).

In this paper, we propose a measure of net arbitrage trading against a stock by
combining hedge fund holdings as the proxy for the long side with short interest
as the proxy for the short side. Intuitively, combining the two sides provides a
complete view about arbitrage trading that usually involves both long and short
positions. The advantage of our measure, however, goes beyond adding up the
effects from the two sides. Arbitrageurs may disagree on the value of a stock,
so that the same stock is bought by some arbitrageurs and sold short by others.
Moreover, a correctly priced stock may be purchased by some arbitrageurs
while sold short by others for hedging purposes.3 Thus, as long as the correlation
between the two sides is not –1 (which is confirmed in our empirical analysis),
our measure based on the net position—that is, the difference between the
two sides—differs from the summation of the effects from the two sides and
represents a more accurate proxy for arbitrage trading.4 Based on this measure,

1 See Gromb and Vayanos (2010) for a survey of theoretical development in the literature on limits to arbitrage.

2 The type of arbitrageurs we are interested in is those, as described in the APT, who take long and short positions
in well-diversified portfolios with similar risk exposures but different expected returns. It is different from pure
arbitrage, in which assets in long and short positions have identical cash flows.

3 For example, a correctly priced value stock with poor recent returns may be bought by a value trader and
simultaneously shorted by a momentum trader to hedge his respective long-short strategies. Similarly, a stock
may be sold short to hedge against a convertible bond purchase. In such cases, simultaneous increases in both
long and short sides do not necessarily indicate disagreement (i.e., differences of opinion) among arbitrageurs
about the value of the stock as described in Miller (1977). Our measure, however, captures net arbitrage trading
on the stock.

4 Our analysis also helps explain the puzzling relation documented in Boehmer, Huszar, and Jordan (2010) that
heavily traded stocks with low short interest subsequently experience significantly positive abnormal returns.
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we attempt to better understand the information content of arbitrage activity, in
particular, the interaction between arbitrage trading, stock anomalies, and the
role of limits to arbitrage. We discuss this interaction in detail in the form of
hypothesis development in Section 1, and those hypotheses guide our empirical
analysis.

For the empirical analysis, we first combine hedge fund holdings and short
interest at the stock level over the period 1990–2015. To capture quarterly
variations in arbitrage activity relative to the trend, we define abnormal hedge
fund holdings (AHF) and abnormal short interest (ASI) as their values in a
quarter minus their moving averages in the past four quarters. Then, we measure
net arbitrage trading, denoted NAT, as the difference between AHF and ASI to
capture the trade imbalance of arbitrageurs. For example, an NAT of 1% on a
stock means that arbitrageurs, as a group, have purchased an additional 1% of
the stock (as the percentage of total number of shares outstanding) during the
quarter relative to their past average.

Our analysis provides six sets of results. First, we show that NAT significantly
predicts future stock returns. Stocks in the highest NAT quintile outperform
those in the lowest quintile by 0.73% per month (t-value = 8.56) in the next
quarter. The return spread declines over time to 0.40% per month (t-value =
4.43) in the second quarter, further down to 0.17% per month (t-value = 1.90)
in the third quarter, and then becomes insignificant in the subsequent quarters
within two years. The return predictability of NAT remains significant in the first
two quarters even on a risk-adjusted basis, suggesting that NAT is informative
about mispricing. This return predictability holds in a battery of robustness
checks, including Fama-MacBeth cross-sectional regressions controlling for
other return predictors and double sorting on AHF and ASI. Importantly, this
return predictability does not reverse in the long run, suggesting that it is not
due to temporary price pressure caused by arbitrage trading.

Second, we examine the relation between NAT and stock anomalies. Our
tests cover ten well-known anomalies: book-to-market ratio, gross profitability,
operating profit, return momentum, market capitalization, asset growth,
investment growth, net stock issues, accrual, and net operating assets. We
find striking evidence that abnormal returns are driven by anomaly stocks
traded by arbitrageurs. Specifically, we define an anomaly stock to be traded by
arbitrageurs if it is in the long portfolio and recently bought by arbitrageurs (i.e.,
its NAT belongs to the top 30%), or if it is in the short portfolio and recently sold
short by arbitrageurs (i.e., its NAT belongs to the bottom 30%). On average, this
subset of anomaly stocks exhibits significant return spreads (between the long
and the short leg) of 0.88% (t-value = 7.95), 0.60% (t-value = 5.46), 0.41%
(t-value = 4.04), and 0.32% (t-value = 3.25) per month during the first, second,

Their finding is not surprising if we focus on net arbitrage trading because stocks with low short interest, on
average, experience net purchases from arbitrageurs. Hence, combining the two sides of arbitrage activity provides
insights that cannot be obtained from either side alone.
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third, and fourth quarters, respectively. In sharp contrast, the rest of the anomaly
stocks earn return spreads less than 0.15% per month over the same quarters. We
confirm this pattern using a single comprehensive mispricing measure (MISP)
constructed by Stambaugh, Yu, and Yuan (2015). Among “mispriced” stocks,
those traded by arbitrageurs earn much higher returns than the rest in the next
four quarters. The strong return predictability of NAT in both the entire cross-
section and anomaly stocks suggests that the market is not always efficient
and the arbitrageurs are indeed effective in detecting mispricing. The fact
that NAT predicts return beyond a quarter suggests that arbitrage trading does
not eliminate mispricing completely and instantaneously, consistent with the
existence of limits to arbitrage (Shleifer and Vishny 1997).

Our third set of results describes two channels through which mispricing is
eliminated and arbitrage profit is realized. One is the release of fundamental
information, and the other is related to “copycat trading.” Specifically, we find
that a disproportionately large portion of arbitrage profit takes place around
earnings announcements in the next two quarters when fundamental cash flow
information is released to the public. In addition, other types of institutional
investors (e.g., mutual funds, banks, insurance companies) subsequently trade
in the same direction as arbitrageurs, further facilitating price convergence.
Interestingly, other institutional investors trade in the opposite direction to
arbitrageurs in the contemporaneous quarter and start to follow arbitrageurs
with a lag of at least one quarter, consistent with a pattern of copycat trading.

Fourth, NAT allows us to directly test an important implication of limits
to arbitrage: when arbitrage is more difficult, arbitrage trading should reveal
more severe mispricing, all else being equal. We adopt Regulation SHO as
an instrument for limits to arbitrage in the cross-section, following Chu,
Hirshleifer, and Ma (2017). During the period from May 2005 to August 2007,
Regulation SHO relaxed short-sale constraints for a randomly selected group of
“pilot” stocks.5 As such, pilot stocks face reduced limits to arbitrage relative to
non-pilot stocks. By measuring arbitrage trading directly, we examine the causal
effect of limits to arbitrage on arbitrage activity, which in turn affects anomaly
returns and market efficiency. Based on NAT, we confirm that pilot stocks are
sold short more often than non-pilot stocks in the pilot period, even though these
stocks are otherwise indistinguishable in terms of stock characteristics. More
importantly, we show that NAT identifies more mispriced stocks among the
non-pilot stock sample than among the pilot stock sample, and the difference
is concentrated on the short leg and during the pilot period.

Fifth, we link aggregate limits to arbitrage to NAT and stock anomalies.
Examining the NAT of anomaly stocks, we find significant withdrawal of

5 From the Russell 3000 index, Regulation SHO removed short-sale price tests (i.e., uptick rule for NYSE/AMEX
and bid price test for Nasdaq) for a random set of about 1,000 pilot stocks that were included as every third stock
ranked by trading volume. This exemption of the short-sale price tests for pilot stocks lasted from May 2, 2005,
to August 6, 2007. See Diether, Lee, and Werner (2009) for a detailed description of Regulation SHO and the
pilot program.
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arbitrage capital during the financial crisis of 2007–09, consistent with Ben-
David, Franzoni, and Moussawi (2012) and Nagel (2012). As a novel result, we
show that during the crisis when arbitrage capital was constrained in general,
those anomalies to which arbitrageurs chose to allocate their scarce capital
realized high future abnormal returns.

Finally, we confirm our main results using daily data during the period from
June 2006 to March 2011. We estimate NAT at a daily frequency by combining
daily security lending data with daily trading records of a subset of hedge funds.
The daily frequency of data provides statistical power even though the tests
are performed over a relatively short sample period. We show that daily NAT
significantly predicts stock returns both in the full sample and among anomaly
stocks up to a month. In addition, daily NAT predicts more overpricing among
non-pilot stocks during the pilot period.

Our paper contributes to a growing literature that examines arbitrage activity
by hedge fund holdings and short-selling activity.6 Using data on hedge fund
holdings, Brunnermeier and Nagel (2004) and Griffin et al. (2011) show that,
during the tech bubble period, hedge funds rode with the bubble and destabilized
the market. Further, Griffin and Xu (2009) find weak predictive power of
changes in hedge fund ownership for future stock returns, while Agarwal
et al. (2013) document strong return predictability of hedge fund “confidential
holdings.” Sias, Turtle, and Zykaj (2016) show that shocks to hedge fund
demand can predict stock returns. Cao et al. (2018) find that, compared with
other types of institutional investors, hedge funds tend to hold and purchase
undervalued stocks, and undervalued stocks with larger hedge fund ownership
realize higher returns subsequently.

Focusing on the short side, several papers document that stocks with higher
short-selling activity realize lower returns (e.g., Asquith and Meulbroek 1995;
Desai et al. 2002; Boehmer, Jones, and Zhang 2008).7 Using institutional
ownership to proxy for stock loan supply, Asquith, Pathak, and Ritter (2005)
find that, for small stocks with high short interest, low institutional ownership is
associated with negative returns, revealing the effect of short-sale constraints on
stock prices. Nagel (2005) finds that short-sale constraints help explain cross-
sectional stock return anomalies. Drechsler and Drechsler (2016) find that the
short-rebate fee is informative about overpricing and arbitrage trades.

To the best of our knowledge, our paper is the first to combine information
on both long and short sides to study the relation between arbitrage trading,
anomalies, and limits to arbitrage. Our measure of net arbitrage trading provides

6 There exist other proxies for arbitrage trading in the literature. For example, Lou and Polk (2015) infer arbitrage
activity from the comovement of stock returns.

7 There are theoretical arguments about why short sales or short-sale constraints should be related to stock returns.
Miller (1977) argues that, in the presence of heterogeneous beliefs, binding short-sale constraints prevent stock
prices from fully reflecting negative opinions of pessimistic traders, leading to overpricing and low subsequent
returns. Diamond and Verrecchia (1987) show that given their high costs (e.g., no access to proceeds), short sales
are more likely to be informative.
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substantial value over examining either hedge fund holdings or short interest
alone and presents a more complete view about the effect of arbitrage activity
on the returns on stocks, especially anomaly stocks.8 Indeed, NAT not only
predicts stock returns but facilitates our investigation of the source of arbitrage
profit. Most importantly, when using this measure to study stock anomalies, we
find strong evidence supporting the notion that arbitrage trading is informative
about mispricing. Therefore, our analysis sheds new light on how arbitrageurs
operate in stock markets and how their trading affects stock prices.

Recently, exploiting regulatory changes to short selling, Chu, Hirshleifer, and
Ma (2017) show that limits to arbitrage affect the correction of mispricing. To
the extent that arbitrageurs are crucial in correcting mispricing, our paper fills
in the important element by examining arbitrage trading directly. For example,
one novel hypothesis and finding of our paper is that, in the presence of limits
to arbitrage, a larger NAT reveals more severe mispricing. In addition, Hwang,
Liu, and Xu (forthcoming) find that relaxation of short-sale constraints in Hong
Kong is associated with increased hedge fund purchases of underpriced stocks,
which highlights the important role of short positions in hedging arbitrage
risks. In our paper, the NAT measure is designed to capture the trade imbalance
between the long side and the short side of arbitrage activity.

1. Hypothesis Development

In this section, we develop our main hypotheses for empirical analysis. Through
testing these hypotheses based on the measure of net arbitrage trading, we
attempt to better understand the interaction between arbitrage trading, stock
anomalies, and the role of limits to arbitrage in the stock market.

First, it is well known that if the stock market is efficient and information
is fully and instantaneously incorporated into stock prices, arbitrageurs’
trades should not be systematically related to future stock returns (Fama
1970). Similarly, even if the market is not efficient but arbitrageurs are
uninformed about stock mispricing, arbitrage trading still does not predict
future stock returns. Thus, in the scenario of an efficient market or uninformed
arbitrageurs, the NAT measure should not be related to future stock returns in
the cross-section.

However, if the market has inefficiencies and arbitrageurs possess skills to
correctly identify mispricing, then arbitrage trading will be informative about
future stock returns. More specifically, stocks heavily bought by arbitrageurs are
expected to outperform those heavily shorted by arbitrageurs on a risk-adjusted
basis in the future. Since such return difference is not caused by temporary
price pressure, this return predictability arising from superior information will

8 Jiao, Massa, and Zhang (2016) find that opposite changes in hedge fund holdings and short interest predict stock
returns. Different from their paper, we focus on the interaction between arbitrage trading, stock anomalies, and
limits to arbitrage.
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not reverse and arbitrage trading should have a permanent price impact. As
such, we form our first hypothesis about the return predictability with informed
arbitrageurs.

Hypothesis 1 (Informed arbitrageurs). NAT should positively predict
future stock returns above and beyond temporary price pressure, if the stock
market has inefficiencies and arbitrageurs are informed about mispricing.

Next, we argue that an investigation of anomaly stocks can shed light on
what stock-level information arbitrageurs may use to detect mispricing. If
arbitrageurs simply rely on the same set of anomaly stock characteristics
(e.g., book-to-market ratio, operating profit), then arbitrage trading should
have no additional return predictability among stocks with similar anomaly
characteristics.9 Otherwise, return predictability of arbitrage trading among
stocks with similar anomaly characteristics suggests that not all anomaly stocks
are “created equal” and that arbitrageurs use information other than common
stock characteristics to detect mispricing. This rationale leads to our second
hypothesis.

Hypothesis 2 (Arbitrage in anomalies). Within the set of stocks that have
similar anomaly characteristics, NAT should positively predict future stock
returns above and beyond temporary price pressure if arbitrageurs use
information other than common stock characteristics.

Since collecting and processing information in financial markets involves
costs for arbitrageurs (Grossman and Stiglitz 1980), the return predictability
of arbitrage trading should also reflect arbitrage costs. If arbitrage costs
are negligible, informed arbitrageurs will trade quickly against mispricing
until mispricing is eliminated almost instantaneously. In reality, however,
arbitrageurs often face substantial costs in the forms of transaction costs, short-
sale constraints, limited arbitrage capital, noise trader risk, and synchronization
risk (e.g., De Long et al. 1990; Pontiff 1996; Shleifer and Vishny 1997; Abreu
and Brunnermeier 2002). These frictions, which impose limits to arbitrage,
impede arbitrageurs from quickly correcting mispricing. As a result, the
correction to mispricing will occur with a delay as fundamental information
is released to the market gradually or during specific information events
(such as earnings announcements), or when other investors start to trade
in the same direction as arbitrageurs perhaps after learning about arbitrage
trading. Considering the existence of limits to arbitrage and the consequent
delay in the correction to mispricing, we develop our third hypothesis
as follows.

9 Section 2.3 and the Appendix contain detailed discussions of these stock anomalies that the previous literature
has documented to predict future returns in the cross-section.
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Hypothesis 3 (Presence of limits to arbitrage). The predictive power of
NAT for future stock returns should be “long lasting” in the presence of limits
to arbitrage.

Finally, limits to arbitrage vary across stocks and over time, and such variation
is expected to reveal the extent of mispricing. Mispriced stocks with small limits
to arbitrage are relatively easy for arbitrageurs to trade and will thus yield less
abnormal profit, since even small price deviation from fundamental values will
be exploited by arbitrageurs. In doing so, arbitrage trading corrects mispricing.
On the other hand, large frictions impose substantial costs to arbitrageurs
and deter arbitrage trading. Hence, we hypothesize that, when a stock faces
great limits to arbitrage yet arbitrageurs, as a group, still choose to trade it
heavily, the stock is likely to be severely mispriced and the potential arbitrage
profit outweighs the arbitrage costs. This intuition leads to the following novel
hypothesis.

Hypothesis 4 (Limits to arbitrage in the cross-section and over time). All
else being equal, the predictive power of NAT for future stock returns should
be stronger among mispriced stocks that face greater limits to arbitrage, and
during times when arbitrage capital is more constrained.

Testing Hypothesis 4 in the cross-section requires a stock-level measure
of limits to arbitrage that deter arbitrage trading but do not affect ex ante
mispricing. It is empirically difficult, however, to separate limits to arbitrage and
ex ante mispricing, since both of them are often proxied in previous research
by the same stock characteristics, such as size and volatility. In our paper,
we use Regulation SHO as an instrument of limits to arbitrage at the stock
level, following Chu, Hirshleifer, and Ma (2017). During the period from May
2005 to August 2007, Regulation SHO reduced short-sale constraints for a
randomly selected group of pilot stocks. As a result, for two equally overpriced
stocks, the non-pilot stock faces greater limits to arbitrage than the pilot stock,
while these stocks could otherwise be identical due to the random nature of the
pilot stock assignment. Hypothesis 4 predicts that overpriced non-pilot stocks
sold short by arbitrageurs will experience larger underperformance than similar
overpriced pilot stocks during the pilot period. For underpriced stocks, however,
no significant difference should be observed between pilot and non-pilot stocks
during the pilot period. Similarly, no significant difference should be observed
between the two groups of stocks outside the pilot period.

Limits to arbitrage also vary over time. For example, Ben-David, Franzoni,
and Moussawi (2012) and Nagel (2012) provide evidence that arbitrage
capital was severely constrained during the 2007–09 financial crisis. Our NAT
measure allows us to directly examine how such important limits to arbitrage
affect various anomalies differently. Specifically, Hypothesis 4 predicts that
anomalies exploited by arbitrageurs during the crisis, despite their capital
constraints, should perform particularly well in the near future.
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2. Data and Sample Construction

2.1 Hedge fund holdings
For the long side, we employ the data on hedge fund stock holdings following
Cao et al. (2018). The data are constructed by manually matching the Thomson
Reuters 13F institutional holdings data with a comprehensive list of hedge
fund company names. The list of hedge fund company names is compiled
from six hedge fund databases, namely TASS, HFR, CISDM, Bloomberg,
Barclay Hedge, and Morningstar. Under the Securities Exchange Act of 1934,
all institutional investors, including hedge fund management companies, with
investment discretion over $100 million are required to report their stock
holdings to the Securities and Exchange Commission (SEC) through quarterly
Form 13F filings in which stock positions greater than 10,000 shares or
$200,000 in market value are subject to disclosure.

Since the 13F holdings data do not indicate which institutions are hedge
fund companies, we identify hedge fund companies through the following
three steps. First, 13F institutions are matched with the list of hedge fund
company names. Second, among the matched institutions, we assess whether
hedge fund management is indeed their primary business. We check whether
they are registered with the SEC. Before the Dodd-Frank Act, registering with
the SEC was not required for hedge fund companies unless they simultaneously
conducted non-hedge-fund businesses such as mutual fund management.
Following Brunnermeier and Nagel (2004), we include those unregistered
with the SEC as pure-play hedge funds in our sample. If the adviser was
registered with the SEC and filed Form ADV, we follow Brunnermeier and
Nagel (2004) and Griffin and Xu (2009) to include it in our sample only
if the following two criteria are both satisfied: over 50% of its investment
is listed as “other pooled investment vehicle” (including private investment
companies, private equity, and hedge funds) or over 50% of its clients are
high-net-worth individuals, and the adviser charges performance-based fees.
Finally, to address the concern that some hedge fund companies may not
report to a database because of the voluntary nature, we manually check
the company website and other online sources for each of the unmatched
13F institutions to decide whether it is a hedge fund company. Over the
sample period 1990–2015, our sample covers 1,494 hedge fund management
companies.

For each stock in our sample, we compute its quarterly hedge fund holdings
(HF) as the ratio between the number of shares held by all hedge fund companies
at the end of the quarter and the total number of shares outstanding. If the stock
is not held by any hedge fund company, its HF is set to zero. We define abnormal
hedge fund holdings (AHF) as the current quarter HF minus the average HF in
the past four quarters. Though AHF is correlated with change in hedge fund
ownership from the one quarter to the next, it better captures quarterly variations
in arbitrage activity relative to the trend.
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2.2 Short interest
For the short side, short interest data, as a commonly used proxy for short-
selling activity, are obtained from the Compustat Short Interest file, which
reports monthly short interest for stocks listed on the NYSE, AMEX, and
NASDAQ. Because the Compustat Short Interest file only started coverage on
NASDAQ stocks from 2003, we follow the literature to supplement our sample
with short interest data on NASDAQ prior to 2003 obtained from the exchange.
The data have been used in several previous studies to examine the impacts of
short interest on stock prices (e.g., Asquith, Pathak, and Ritter 2005; Hanson
and Sunderam 2014).

For each stock in our sample, we compute its quarterly short interest (SI) as
the ratio between the number of shares sold short at the end of the quarter and
the total number of shares outstanding. If the stock is not covered by our short
interest files, its SI is set to zero. Similar to AHF, we define abnormal short
interest (ASI) as SI in the current quarter minus the average SI in the past four
quarters.

2.3 Stock anomalies
When examining the relation between arbitrage trading and stock anomalies, we
consider ten well-known return anomalies largely following Fama and French
(2008) and Stambaugh, Yu, and Yuan (2012).

The first anomaly is book-to-market ratio. Rosenberg, Reid, and Lanstein
(1985) and Fama and French (1993) document that stocks with high book-
to-market ratio on average have high future returns, even after adjusting for
market risk based on the capital asset pricing model (CAPM) (Sharpe 1964).
The second anomaly is operating profit. Fama and French (2015) show that
firms’ operating profits are positively related to their future stock returns. The
third anomaly is gross profitability. Novy-Marx (2013) shows that firms with
higher gross profit have higher future returns. The fourth anomaly is return
momentum (Jegadeesh and Titman 1993). In our setting, at the end of each
quarter, we compute stock returns in the past twelve months by skipping the
immediate month prior to the end of the quarter, divide the stocks into winners
and losers, and then hold them in the next quarter. The fifth anomaly is market
capitalization. Banz (1981) and Fama and French (1993) show a negative
relation between firm size and expected stock return even after adjusting for
market risk. The sixth anomaly is asset growth. Cooper, Gulen, and Schill
(2008), Fama and French (2015), and Hou, Xue, and Zhang (2015) show that
firms with higher growth rates of assets have lower future returns. The seventh
anomaly is investment growth. Xing (2008) finds a negative relation between
firm investment and expected stock return. The eighth anomaly is net stock
issues. Ritter (1991), Loughran and Ritter (1995), and Fama and French (2008)
find that larger net stock issues are associated with lower future returns. The
ninth anomaly is accrual. Sloan (1996) and Fama and French (2008) find a
negative association of accrual with future stock returns. Finally, the tenth
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(a) (b)

Figure 1
Sample coverage in the number of stocks and market capitalization
Panel (a) plots the number of stocks that have positive values of hedge fund holdings (HF), that have positive
values of short interest (SI), that have positive values of both HF and SI, and the total number of stocks in our
sample at the end of each quarter, respectively. Hedge fund holdings (HF) is defined as the ratio between the
number of shares held by hedge funds and the number of shares outstanding. Short interest (SI) is defined as
the ratio between the number of shares shorted and the number of shares outstanding. Panel (b) plots market
capitalization of these firms as a fraction of total market capitalization of the CRSP universe over time. Our
sample excludes stocks with share price less than $5 and market capitalization below the 20th percentile size
breakpoint of NYSE firms. The sample period is from 1990:Q1 to 2015:Q4.

anomaly is net operating assets. Hirshleifer et al. (2004) show that firms with
larger operating assets tend to have lower expected returns.

For each of the anomalies, we construct quintile portfolios at the end of each
quarter. We then compute monthly long-minus-short portfolio return spreads
for the next quarter. Details of the anomaly constructions are provided in the
Appendix.

2.4 Sample description and the net arbitrage trading measure
We start our sample in 1990, as hedge fund holdings and short interest were
sparse before then.10 For our base sample, we exclude stocks with share price
less than $5 and market capitalization below the 20th percentile size breakpoint
of NYSE firms for two reasons. First, hedge fund companies only need to report
stock positions greater than 10,000 shares or $200,000 in market value, and
thus their holdings of small and penny stocks may be underestimated. Second,
excluding these stocks alleviates concerns about market microstructure noises.
(As shown later, our inference is robust to alternative sample filters.)

Figure 1 depicts the cross-sectional coverage of hedge fund holdings and
short interest over time. As shown in Figure 1(a), the number of stocks in the
sample starts around 1,600 in 1990, reaches a peak of 2,200 during the tech
bubble, and then levels off to 1,400 at the end of the sample period. The coverage
of hedge fund holdings was relatively small at the beginning. In the year of
1990, only 1,000 out of the 1,600 stocks in our sample have positive hedge
fund ownership. However, the hedge fund holdings coverage has increased

10 Prior to 1990, the aggregate hedge fund holdings and short interest, as fractions of the total market capitalization
of the CRSP universe, were both less than 1% on average.
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rapidly, and since 2000, most of the stocks have both hedge fund ownership
and short interest. Figure 1(b) plots the market capitalization coverage of hedge
fund holdings and short interest. Stocks with positive hedge fund ownership
account for more than 90% of the Center for Research in Security Prices (CRSP)
universe we cover in terms of market capitalization.

Panel A of Table 1 summarizes the cross-sectional distributions of our main
variables. We find HF to have a slightly higher mean than SI (4.66% vs. 3.80%).
AHF and ASI have similar distributions. Compared with HF and SI, AHF and
ASI are less persistent. We measure NAT as the difference between AHF and
ASI.11 Across the stocks, NAT has a mean value close to zero and a first-order
autocorrelation of 0.53 at a quarterly frequency.

Panel B of Table 1 reports cross-sectional correlations among the variables.
The correlation between HF and SI across stocks is 22.39%, far from −1. As
expected, NAT is positively correlated with AHF while negatively correlated
with ASI. These correlations indicate that net arbitrage trading is quite different
from arbitrage activity on either the long or the short side alone, as well as the
simple summation of both sides. Thus, it is important to examine net arbitrage
trading based on both long and short sides.

Figure 2 plots value-weighted averages of hedge fund holdings minus short
interest (HFSI, in solid line) and the net arbitrage trading (NAT, in dotted line)
over time. NAT captures the trade imbalance of arbitrageurs. An aggregate
NAT of 1% (−1%) means that arbitrageurs, as a group, have purchased (sold)
an additional 1% of the market during the recent quarter relative to the average
of the previous four quarters. Aggregate NAT fluctuates between −1% and 1%
for most of the time. One particularly low value of NAT occurred in late 2008
when arbitrageurs fled the market due to capital constraints.

2.5 Return predictability of net arbitrage trading
In this subsection, we test Hypothesis 1 about whether arbitrage trading is
informative about future stock returns by examining the return predictive power
of NAT in the cross-section. We first use a portfolio sorting approach. Given our
quarterly data, we form portfolios of stocks at the end of each quarter and track
their returns in subsequent quarters. Specifically, at the end of each quarter, we
sort stocks by their NAT values and assign them into quintile portfolios. Then,
for each portfolio, we track its excess return (relative to the risk-free rate)

11 As with other proxies for arbitrage activity, our measure of net arbitrage trading may contain measurement
errors. First, long positions of hedge funds that do not meet the 13F filing requirement are omitted in the sample,
which understates the long side. Nonetheless, because such funds tend to be small, the underestimation should
not be severe. Second, the short interest data cover not only short sales by hedge funds but those by other short
sellers like individual investors and institutional investors. However, hedge funds constitute the main body of
short sellers, while other investors represent only a small fraction of short interest. In addition, hedge funds may
hold non-U.S. stocks (e.g., emerging market stocks) that can be hard to short sell. As a result, hedge funds on
average show a long bias, rather than perfectly balancing out long and short positions. Nonetheless, since our
study focuses on the cross-section of U.S. stocks, our inference will not be systematically biased by the earlier
mentioned imperfections in measuring arbitrage activity.
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Table 1
Summary statistics

Panel A: Distribution

Mean P5 P25 P50 P75 P95 STD AR1

HF 4.66 0.48 1.46 3.06 6.15 14.81 4.79 0.75
SI 3.80 0.40 1.20 2.50 4.90 12.30 4.00 0.69
HFSI 0.90 −7.70 −1.50 0.50 2.70 10.60 5.40 0.73
AHF 0.20 −3.00 −0.60 0.00 0.80 4.00 2.10 0.52
ASI 0.20 −2.50 −0.60 0.00 0.70 3.70 1.90 0.47
NAT 0.00 −4.90 −1.10 0.00 1.10 4.80 2.90 0.53
% of CRSP 79.68 67.37 70.14 82.00 88.30 94.25 9.64 n.a.

Panel B: Correlation

SI HFSI AHF ASI NAT BM GP OP MOM MC AG IK NS AC NOA MISP

HF 22.39 67.79 37.92 6.75 21.78 −2.79 3.87 1.86 7.26 −19.67 6.62 5.51 7.66 −0.72 4.41 9.58
SI −54.00 4.27 44.24 −29.43 −9.47 6.72 2.06 −3.55 −19.85 17.34 10.67 10.01 2.26 6.56 18.77
HFSI 28.12 −27.63 41.02 4.90 −1.64 0.49 8.50 −3.49 −7.40 −3.30 −0.79 −2.38 −1.33 −5.44
AHF 8.26 65.16 1.21 0.49 0.10 2.39 −3.12 −1.39 −0.45 −1.60 −0.42 −0.41 −0.17
ASI −66.73 −3.56 0.39 −0.42 −1.61 −4.57 5.40 3.76 2.17 1.02 1.86 6.06
NAT 3.45 0.21 0.46 2.33 0.85 −4.85 −3.04 −2.71 −0.91 −1.58 −4.18

This table presents summary statistics for the following variables: hedge fund holdings (HF), defined as the ratio between the number of shares owned by hedge funds and the number
of shares outstanding; short interest (SI), defined as the ratio between the number of shares shorted and the number of shares outstanding; the difference between HF and SI (HFSI);
abnormal hedge fund holdings (AHF), defined as the percentage change of current HF from the average HF in the previous four quarters; abnormal short interest (ASI), defined as the
percentage change of current SI from the average SI in the previous four quarters; and net arbitrage trading (NAT), defined as the difference between AHF and ASI. Panel A reports
the distribution including mean, median, and the 5th, 25th, 75th, and 95th percentiles; standard deviation (STD); and first-order autocorrelation (AR1). At the end of each quarter,
we first compute the variables across stocks, and then take the average across quarters. The percentage of CRSP represents the total market capitalization of the sample stocks as a
percentage of the market capitalization of the CRSP universe. In each quarter, we exclude firms with market capitalization below the 20th percentile size breakpoint of NYSE firms.
Panel B presents average correlations between HF, SI, HFSI, AHF, ASI, NAT and stock characteristics over quarters. We consider the following stock characteristics: book-to-market ratio
(BM), gross profitability (GP), operating profit (OP), momentum (MOM), market capitalization (MC), asset growth (AG), investment-to-capital ratio (IK), net stock issues (NS), accrual
(AC), net operating assets (NOA), and the mispricing measure (MISP) of Stambaugh, Yu, and Yuan (2015). All the values are stated in percentage. The sample period is from 1990:Q1 to 2015:Q4.
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Figure 2
Aggregate HFSI and aggregate NAT over time
We plot value-weighted average, across the sample stocks, of HFSI and NAT that are defined as follows. Hedge
fund holdings (HF) is defined as the ratio between the number of shares held by hedge funds and the number
of shares outstanding. Short interest (SI) is defined as the ratio between the number of shares shorted and the
number of shares outstanding. Abnormal hedge fund holdings (AHF) is defined as the percentage change of
HF from its average over the previous four quarters. Abnormal short interest (ASI) is defined as the percentage
change of SI from its average over the previous four quarters. HFSI is the difference between HF and SI. Net
arbitrage trading (NAT) is the difference between AHF and ASI. Both the aggregate HFSI and aggregate NAT
are stated in percentage. The sample period is from 1990:Q1 to 2015:Q4.

computed by equally averaging excess returns of all stocks in the portfolio. We
also adjust for factor exposures with three asset pricing models, namely the
Fama and French (1993) three-factor model including the market factor, a size
factor, and a value factor; the three-factor model augmented with the Carhart
(1997) momentum factor; and the Fama and French (2015) five-factor model,
which expands the three factors with a profitability factor and an asset growth
factor.

Panel A of Table 2 reports the return predictability of NAT. On average,
stocks recently bought by arbitrageurs as a group (NAT-quintile 5) have a
monthly excess return of 1.23% (t-value = 3.67), whereas stocks recently
sold by arbitrageurs (NAT-quintile 1) have a monthly excess return of 0.49%
(t-value = 1.41). The high-minus-low NAT portfolio (NAT-HML) has a monthly
return of 0.73% (t-value = 8.56). After risk adjustment, the portfolio of high
NAT stocks has monthly alphas of 0.40%, 0.47%, and 0.39% from the three
asset pricing models, respectively, whereas the portfolio of low NAT stocks has
monthly alphas of −0.35%, −0.21%, and −0.28%, respectively. Accordingly,
the monthly alphas of the high-minus-low NAT portfolio are 0.75% (t-value =
8.80), 0.68% (t-value = 8.11), and 0.67% (t-value = 7.74), respectively.
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Table 2
Arbitrage trading and stock returns

Panel A: Quintile portfolios formed on NAT

Return and alpha t-value

Ret FF3 FF4 FF5 Ret FF3 FF4 FF5

NAT1 0.49 −0.35 −0.21 −0.28 1.41 −4.17 −2.87 −3.29
NAT2 0.67 −0.07 0.03 −0.11 2.38 −0.87 0.49 −1.44
NAT3 0.79 0.12 0.17 0.03 3.22 1.90 2.65 0.43
NAT4 0.97 0.24 0.28 0.12 3.57 3.86 4.40 2.00
NAT5 1.23 0.40 0.47 0.39 3.67 5.30 6.44 5.05
NAT-HML 0.73 0.75 0.68 0.67 8.56 8.80 8.11 7.74

Panel B: Return spread and t-value in subsequent quarters

Return spread t-value

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4
AHF-HML 0.48 0.16 0.05 0.00 5.24 1.96 0.59 0.05
ASI-HML −0.43 −0.28 −0.24 −0.17 −4.43 −2.76 −2.54 −1.82
NAT-HML 0.73 0.40 0.17 0.07 8.56 4.43 1.90 0.88

(continued)

In panel B of Table 2, we further track the quintile portfolios in the
subsequent four quarters.12 The result in the bottom row shows that excess
returns associated with NAT decrease over time. Excess return of the high-
minus-low NAT portfolio is the largest at 0.73% per month (t-value = 8.56) in
the quarter immediately after portfolio formation, and it then drops to 0.40%
(t-value = 4.43) in the second quarter, further drops to 0.17% (t-value = 1.90)
in the third quarter, and finally drops to almost zero in the fourth quarter. The
decay in alpha corroborates the pattern documented by Di Mascio, Lines, and
Naik (2017) using transaction-level data of institutional investors. As shown in
Figure 3, when we extend the horizon up to two years, there is no significant
return spread beyond the third quarter. Importantly, the absence of return
reversal in the long run suggests that the abnormal return is not driven by
temporary price pressure caused by arbitrage trading.13 For comparison, we
also report the high-minus-low quintile portfolio excess returns on portfolios
sorted on either AHF or ASI. Sorting on either AHF or ASI generates much
smaller return spreads than sorting on NAT. Hence, combining the two sides
of arbitrage trading provides insights that otherwise cannot be obtained from
either side alone.

12 From a practical perspective, it is useful to examine the subsequent quarters since hedge fund holdings are often
reported with a temporal delay averaging about 45 days. In some rare cases, the delay can be as long as a year or
more. Such confidential holdings are usually omitted in the Thomson Reuters 13F holdings data. Agarwal et al.
(2013) show that confidential holdings contain substantial information that predicts stock returns. Hence, our
results about the return predictability of arbitrage trading inferred from the 13F data (along with short interest)
can be somewhat conservative.

13 In fact, for both high- and low-NAT portfolios, their NAT mean-reverts to zero after two quarters. If the return
spread in the first two quarters reflects price pressure from abnormal trading, we would expect a return reversal
beyond the second quarter when abnormal trading disappears.
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Table 2
Continued

Panel C: Double sorting on AHF and ASI

Return and alpha t-value

AHF1 AHF2 AHF3 AHF-HML AHF1 AHF2 AHF3 AHF-HML

Excess return
ASI1 0.86 0.83 1.22 0.36 2.68 3.08 3.76 3.65
ASI2 0.73 0.79 1.14 0.41 2.65 3.43 4.00 4.76
ASI3 0.44 0.58 0.90 0.46 1.27 1.98 2.55 4.75
ASI-HML −0.42 −0.25 −0.32 −4.62 −2.38 −3.11

FF5 alpha
ASI1 0.09 −0.02 0.31 0.22 1.06 −0.26 3.81 2.29
ASI2 −0.04 0.02 0.28 0.33 −0.57 0.29 3.59 3.87
ASI3 −0.34 −0.20 0.15 0.50 −3.60 −2.10 1.79 5.02
ASI-HML −0.44 −0.18 −0.16 −4.76 −1.72 −1.80

Panel D: Fama-MacBeth regressions

Dependent variable = Excess return in the next quarter

AHF 0.114
t-value 4.24
ASI −0.134
t-value −4.45
NAT 0.183
t-value 6.65
Stock characteristics Yes Yes Yes
as control variables
Adj. R2(%) 6.56 6.60 6.59
Obs. 358,396 358,396 358,396

At the end of each quarter, we form stock portfolios based on abnormal hedge fund holdings (AHF), abnormal
short interest (ASI), or net arbitrage trading (NAT) defined as the difference between AHF and ASI, and track
their monthly excess returns (in percentage) in the next quarter as the equal-weighted average of excess returns
on all stocks in each portfolio. We adjust risk exposures using the three factors of Fama and French (1993), the
Fama-French three factors augmented with the Carhart (1997) momentum factor, and the five factors of Fama and
French (2015) that are labeled as FF3, FF4, and FF5, respectively. In each quarter, we exclude firms with market
capitalization below the 20th percentile size breakpoint of NYSE firms. Panel A presents results for the quintile
portfolios formed on NAT. Quintile 5 has the highest value of NAT. HML stands for high-minus-low. Panel B
presents returns in the following four quarters for portfolios formed on AHF, ASI, and NAT, respectively. Panel C
presents results of independent double sorts on AHF and ASI. Panel D presents the results from Fama-MacBeth
regressions of average monthly stock excess return over the next quarter on AHF, ASI, or NAT of the current
quarter. The control variables include book-to-market ratio (BM), gross profitability (GP), operating profit (OP),
momentum (MOM), market capitalization (MC), asset growth (AG), investment growth (IK), net stock issues
(NS), accrual (AC), and net operating assets (NOA). We take the natural logarithms for BM and MC. All the
explanatory variables are winsorized at the 1% and 99% levels and standardized at the end of each quarter. The
t-values in the Fama-MacBeth regressions are based on Newey-West standard errors with four lags. Returns and
alphas are in percent per month. The sample period is from 1990:Q1 to 2015:Q4.

In panel C of Table 2, we address the question of whether NAT simply
combines the return predictive power of AHF and ASI. To gauge the combined
return predictive power, we perform a two-way independent sort on AHF and
ASI. At the end of each quarter, we form tercile portfolios based on AHF
and independently form tercile portfolios based on ASI. Then, nine AHF-ASI
portfolios are taken from the intersections of these two sets of tercile portfolios.
We first notice that the average next quarter excess return of stocks with both
high AHF and high ASI are similar to that of stocks with both low AHF and
low ASI (0.90% vs. 0.86%), confirming that the difference between AHF and
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(a)

(b)

Figure 3
Return spreads of the NAT portfolios
At the end of each quarter, we form quintile portfolios of stocks based on their values of net arbitrage trading
(NAT) and track their monthly excess returns in the next eight quarters (i.e., quarter 1 to quarter 8). Then, we
report the return spread between the portfolio with the highest NAT and the portfolio with the lowest NAT. Figure
(a) reports the spreads of returns and the CAPM alphas, while Figure (b) reports their corresponding t-values.
Returns and alphas are in percent per month. The sample period is from 1990:Q1 to 2015:Q4.

ASI is what really matters. Second, the monthly excess returns are 1.22% for
stocks with high AHF and low ASI, and 0.44% for stocks with high ASI and
low AHF. The corresponding spread of 0.78% measures the combined return
predictive power of AHF and ASI, and the spread remains significant at 0.65%
after the five-factor risk adjustment.

The comparable measure of NAT’s return predictability is the high-minus-
low portfolio average excess return from sorting the same stocks into nine
portfolios using NAT. The corresponding monthly return is 0.85% and remains
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0.81% after the five-factor risk adjustment, which is higher than its counterpart
from the double sort above. (For brevity, the detailed results of the nine-portfolio
sorting are not tabulated in the paper but reported in the Online Appendix.)
Comparing the single sort results to those from the double sort, we conclude
that NAT is a better measure of arbitrage trading, while both AHF and ASI are
incomplete proxies.

Finally, we perform Fama and MacBeth (1973) cross-sectional regressions
to further examine the predictability of NAT, while controlling for other return
predictors identified in the literature. For each quarter, we run a cross-sectional
regression of average monthly excess returns over the next quarter on the end-of-
quarter NAT along with control variables. The control variables include book-
to-market ratio, gross profitability, operating profit, return momentum, market
capitalization, asset growth, investment growth, net stock issues, accrual, and
net operating assets. All the explanatory variables are winsorized at the 1%
and 99% levels and standardized at the end of each quarter. Then, we average
the coefficient estimates over the quarters and compute their t-values based on
Newey and West (1987) standard errors with four lags.

Panel D of Table 2 reports results of the Fama-MacBeth regressions. We
find the regression coefficients on AHF, ASI, and NAT to be all significant with
expected signs, even after controlling for other return predictors. The coefficient
on AHF is 0.11% (t-value = 4.24), while the coefficient on ASI is −0.13%
(t-value = −4.45). The coefficient on NAT is 0.18% (t-value = 6.65). Combining
information in AHF and ASI leads to substantially enhanced forecasting power
for stock returns. The results also suggest that the information possessed by
arbitrageurs, revealed by their trades, goes beyond a simple linear combination
of well-known stock anomalies.

To summarize, both the portfolio sorts and Fama-MacBeth regressions
provide evidence that NAT has predictive power for stock returns. Such
predictive power does not reverse and goes beyond a simple combination of
predictive power from both the long and the short side. These results lend strong
support to Hypothesis 1 that arbitrageurs are informed about mispricing. The
Online Appendix collects additional robustness results. For example, we show
the robustness by including smaller stocks, excluding stocks with zero HF or SI,
using different scaling factors in HF and SI, and examining subsample periods.
Interestingly, replacing hedge fund holdings with institutional ownership takes
away the return predictability. This suggests that hedge funds, presumably
the group of most sophisticated investors, are different from other types of
institutional investors, consistent with the finding of Cao et al. (2018).

3. Net Arbitrage Trading, Stock Anomalies, and Limits to Arbitrage

In this section, we investigate how arbitrage trading interacts with stock
anomalies identified in the existing literature. First, we examine the relation
between arbitrage trading and anomaly returns. Then, we investigate potential
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channels underlying the correction of mispricing. Finally, we examine the
causal effect of limits to arbitrage on the relation between arbitrage trading
and anomaly returns.

3.1 NAT and anomaly returns
We use the measure of net arbitrage trading to shed light on how arbitrage
activity affects anomaly returns. As described in Section 2.3, we examine a set
of ten anomalies, including book-to-market ratio, gross profitability, operating
profit, momentum, market capitalization, asset growth, investment-to-capital
ratio, net stock issues, accrual, and net operating assets. In addition to examining
anomalies individually, we adopt a comprehensive mispricing measure (MISP)
constructed by Stambaugh, Yu, and Yuan (2015).14 Specifically, for each of
the anomalies they examine, stocks are ranked based on that anomaly, with
the higher rank associated with lower average abnormal return. Then, a stock’s
MISP, ranging between 0 and 100, is the average of its percentile rankings
across all the anomalies. Consequently, stocks with high (low) values of MISP
tend to be overpriced (underpriced).

Panel A of Table 3 verifies that the long-minus-short spreads in future
returns averaged across the anomalies are both economically and statistically
significant. The average return spreads are 0.29% (t-value = 4.44), 0.26%
(t-value = 4.17), 0.22% (t-value = 3.58), and 0.20% (t-value = 3.47) per
month during the first, second, third, and fourth quarters, respectively. The
magnitude appears somewhat smaller compared with previous studies, since
we use quintile sorts instead of the more common decile sorts and we exclude
small stocks that are often associated with anomalous returns. The sample
period (1990–2015) is likely to play a role as well, with several anomalies
having small returns during the recent period. Not surprisingly, when we adjust
for loadings on the Fama-French five factors that are constructed on some of
the anomalies, the resulting alpha spreads are smaller than the return spreads,
but still statistically significant.

Next, among stocks in the long- and short-anomaly portfolios, we identify
those traded by arbitrageurs. We classify an anomaly stock to be traded by
arbitrageurs if it is in the long portfolio and recently bought by arbitrageurs
(its NAT belongs to the top 30%), or it is in the short portfolio and recently
sold short (its NAT belongs to the bottom 30%).15 Strikingly, anomaly returns
appear to be completely driven by stocks traded by arbitrageurs. As shown
in panel B of Table 3, this subset of anomaly stocks features return spreads
(between the long and the short legs) of 0.88% (t-value = 7.95), 0.60% (t-value

14 We thank Jianfeng Yu for sharing the data of the mispricing measure.

15 These stocks account for about 30% of both the long and the short portfolios. Alternatively, we consider a less
restrictive classification. Specifically, we classify an anomaly stock to be traded by arbitrageurs if it is in the
long portfolio with a positive NAT, or if it is in the short portfolio with a negative NAT. Our inference remains
unchanged using such a classification.
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Table 3
Net arbitrage trading and stock anomaly returns

Alpha Alpha Alpha
Alpha Alpha Alpha (LMS) (L) (S)

BM GP OP MOM MC AG IK NS AC NOA Avg. (LMS) (L) (S) MISP MISP MISP

Panel A: Return spread of anomaly stocks

Q1 0.28 0.25 0.44 0.23 0.11 0.37 0.25 0.44 0.19 0.37 0.29 0.17 0.02 −0.15 0.54 0.10 −0.44
Q2 0.30 0.20 0.36 0.14 0.17 0.35 0.24 0.36 0.11 0.39 0.26 0.16 0.01 −0.15 0.51 0.08 −0.43
Q3 0.32 0.16 0.33 −0.09 0.10 0.31 0.26 0.33 0.12 0.38 0.22 0.15 0.01 −0.14 0.37 0.02 −0.35
Q4 0.27 0.16 0.34 −0.09 0.04 0.21 0.22 0.33 0.12 0.36 0.20 0.14 0.02 −0.12 0.30 0.04 −0.26

t-value

Q1 1.45 1.79 3.66 0.85 0.60 2.77 2.51 2.83 2.33 2.79 4.44 3.24 0.47 −2.10 4.57 1.72 −4.07
Q2 1.51 1.37 2.96 0.58 0.96 2.62 2.33 2.35 1.36 2.99 4.17 2.89 0.15 −1.95 4.44 1.24 −3.85
Q3 1.67 1.13 2.75 −0.43 0.56 2.31 2.34 2.17 1.56 2.87 3.58 2.50 0.11 −1.70 3.11 0.26 −3.02
Q4 1.49 1.10 2.92 −0.44 0.23 1.67 1.97 2.22 1.44 2.68 3.47 2.57 0.32 −1.46 2.64 0.58 −2.24

Panel B: Return spread of anomaly stocks traded by arbitrageurs

Q1 0.77 1.01 1.05 0.94 0.62 0.98 0.77 1.00 0.64 1.03 0.88 0.71 0.28 −0.43 1.21 0.41 −0.80
Q2 0.72 0.59 0.69 0.52 0.59 0.58 0.51 0.68 0.38 0.73 0.60 0.45 0.13 −0.32 0.89 0.22 −0.67
Q3 0.42 0.57 0.69 0.15 0.07 0.45 0.37 0.59 0.25 0.58 0.41 0.33 0.07 −0.26 0.60 0.08 −0.52
Q4 0.29 0.37 0.51 0.08 0.01 0.37 0.19 0.52 0.24 0.59 0.32 0.26 0.05 −0.21 0.51 0.05 −0.47

t-value

Q1 3.31 5.59 6.23 3.29 2.89 5.68 5.31 5.08 5.23 5.87 7.95 7.31 4.33 −4.62 7.13 4.31 −5.93
Q2 3.03 3.18 4.19 1.93 2.88 3.40 3.44 3.52 3.03 4.23 5.46 4.45 1.83 −3.08 5.40 2.46 −4.89
Q3 1.79 3.26 4.40 0.63 0.33 2.68 2.45 3.18 1.95 3.41 4.04 3.21 0.85 −2.50 3.43 0.75 −3.67
Q4 1.33 1.97 3.25 0.37 0.03 2.30 1.27 2.81 1.94 3.64 3.25 2.50 0.54 −2.00 3.22 0.43 −3.30

Panel C: Return spread of anomaly stocks not traded by arbitrageurs

Q1 0.03 −0.06 0.17 −0.16 −0.05 0.04 −0.02 0.17 −0.05 0.09 0.01 −0.08 −0.10 −0.01 0.21 −0.02 −0.22
Q2 0.09 0.03 0.21 −0.08 0.02 0.22 0.10 0.21 −0.04 0.25 0.10 0.02 −0.05 −0.07 0.31 0.02 −0.28
Q3 0.27 0.02 0.18 −0.23 0.10 0.23 0.20 0.20 0.04 0.29 0.13 0.06 −0.02 −0.08 0.25 −0.01 −0.25
Q4 0.24 0.08 0.26 −0.20 0.07 0.11 0.21 0.24 0.05 0.25 0.13 0.08 0.01 −0.07 0.18 0.05 −0.13

t-value

Q1 0.14 −0.39 1.40 −0.57 −0.28 0.30 −0.21 1.12 −0.58 0.66 0.22 −1.39 −1.92 −0.20 1.81 −0.25 −2.13
Q2 0.49 0.19 1.74 −0.32 0.10 1.70 0.88 1.42 −0.39 1.83 1.71 0.41 −0.74 −0.94 2.73 0.33 −2.51
Q3 1.50 0.10 1.48 −1.06 0.61 1.73 1.73 1.33 0.50 2.04 2.05 0.96 −0.30 −0.99 2.15 −0.09 −2.17
Q4 1.40 0.51 2.18 −0.96 0.39 0.82 1.83 1.61 0.54 1.72 2.22 1.40 0.16 −0.88 1.57 0.66 −1.12

For each stock return anomaly, at the end of each quarter, we construct quintile portfolios and compute monthly portfolio returns in the next four quarters (Q1, Q2, Q3, and Q4). In panel A, we
report the return spread between the long and the short leg of anomaly stocks. The column “Avg.” reports results for a portfolio investing equally in the ten anomalies. Based on the Fama-French
five-factor model, we report alphas for the long-minus-short strategy of the composite portfolios, denoted Alpha(LMS); the long portfolio Alpha(L); and the short portfolio Alpha(S). Similar
analysis based on quintile portfolios is performed to the mispricing measure MISP, where the alphas are denoted Alpha(LMS)MISP, Alpha(L)MISP, and Alpha(S)MISP. Next, at the end of each
quarter, for the long leg, we identify stocks traded by arbitrageurs as those belonging to the NAT group 3 (top 30%), and those not traded by arbitrageurs as those stocks that have middle 40%
values of NAT. Similarly, for the short leg, we identify stocks traded by arbitrageurs as those belonging to the NAT group 1 (bottom 30%), and those not traded by arbitrageurs as those stocks
that have middle 40% values of NAT. We track monthly equal-weighted average returns of these four portfolios. In panel B, we report the return spread between the long and the short leg of
anomaly stocks traded by arbitrageurs. In panel C, we report the return spread between the long and short legs of anomaly stocks not traded by arbitrageurs. We consider the following stock
anomalies: book-to-market ratio (BM), gross profitability (GP), operating profit (OP), momentum (MOM), market capitalization (MC), asset growth (AG), investment growth (IK), net stock
issues (NS), accrual (AC), net operating assets (NOA), and the mispricing measure (MISP). Returns and alphas are in percent per month. The sample period is from 1990:Q1 to 2015:Q4.
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= 5.46), 0.41% (t-value = 4.04), and 0.32% (t-value = 3.25) per month during
the first, second, third, and fourth quarters, respectively. The corresponding
five-factor alphas are 0.71% (t-value = 7.31), 0.45% (t-value = 4.45), 0.33%
(t-value = 3.21), and 0.26% (t-value = 2.50), respectively. Alpha declines over
time during the first year.16 When examining alphas on the long and the short
legs separately, we find that alphas come mostly from the short leg, consistent
with Stambaugh, Yu, and Yuan (2012).

In sharp contrast, the middle 40% of anomaly stocks that are not traded
by arbitrageurs earn much smaller return spreads in the next four quarters.
As shown in panel C of Table 3, none of the return spreads are statistically
significant after the five-factor risk adjustment. This is the case for both the
long and the short legs. The fact that abnormal returns appear only among
anomaly stocks experiencing strong arbitrage trading and decline quickly
during the first year supports the view that arbitrageurs are informative
about stock mispricing. In addition, our results are not driven by one or two
particular anomalies; instead, the pattern is consistent across all the anomalies.
In addition, anomaly stocks traded by arbitrageurs have similar anomaly
characteristics to those not traded by arbitrageurs (see the Online Appendix for
details), suggesting that arbitrageurs trade with information beyond anomaly
characteristics.

The last three columns of Table 3 present results from examining the MISP
measure of Stambaugh, Yu, and Yuan (2015). While mispriced stocks do earn
abnormal returns in the next year, especially from the short side (panel A),
the abnormal returns come mostly from the subset of mispriced stocks that are
traded by arbitrageurs according to our NAT measure (panel B). In contrast,
mispriced stocks that are not traded by arbitrageurs earn much smaller abnormal
returns in the future (panel C).

Taken together, the evidence in this subsection provides strong support for
Hypothesis 2 that not all anomaly stocks are the same and that arbitrageurs
use information other than common stock characteristics to detect mispricing.
This finding applies consistently to all individual anomaly measures as well as
a comprehensive anomaly measure. Our approach based on double sorts of the
anomaly measure and NAT accounts for potential nonlinear relation between
anomaly measures and future returns.

Meanwhile, it is important to note that anomaly stocks traded by arbitrageurs
continue to earn abnormal returns in each of the four quarters after portfolio
formation. We confirm in the Online Appendix that these abnormal returns
cease to be significant after five quarters and do not reverse in the long run.
Thus, such long-lasting abnormal returns support Hypothesis 3 that arbitrage
trading does not correct mispricing immediately and completely in the presence
of limits to arbitrage. We examine the channels contributing to the mispricing

16 This result is also consistent with Akbas et al. (2015), who find that aggregate money flows to the hedge fund
industry attenuate stock return anomalies.
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Table 4
Returns around earnings announcements and changes in non-hedge-fund holdings for anomaly stocks
traded versus not traded by arbitrageurs

Panel A: Returns around earnings announcements Panel B: Changes in non-hedge-fund holdings

Portfolio Ret_EA1 Ret_EA2 Ret_EA3 Ret_EA4 CNHF0 CNHF1 CNHF2 CNHF3 CNHF4

L 0.22 0.17 0.18 0.16 −0.37 0.41 0.91 1.32 1.62
Traded S 0.06 0.07 0.08 0.11 1.36 −0.01 −0.16 −0.26 −0.33

L–S 0.16 0.10 0.10 0.05 −1.73 0.42 1.06 1.59 1.94
(5.12) (3.25) (3.83) (1.78) (−4.00) (4.49) (7.67) (9.86) (10.82)

L 0.12 0.14 0.14 0.16 0.98 0.22 0.30 0.36 0.42
Not traded S 0.12 0.11 0.10 0.11 −0.17 0.22 0.46 0.69 0.88

L–S 0.01 0.04 0.04 0.06 1.16 0.00 −0.16 −0.33 −0.46
(0.39) (2.34) (2.28) (3.29) (7.58) (0.09) (−2.54) (−3.69) (−4.26)

In panel A, for anomaly stocks, we compute their average daily returns over a three-day window around earnings
announcements in the next four quarters. Ret_EA# is average return (in percent per day) around earnings
announcement in the #th quarter after portfolio formation. For each stock anomaly, we examine stocks traded vs.
not traded by arbitrageurs separately, and for the long leg (L) and short leg (S) separately. For the long leg, we
identify stocks traded by arbitrageurs as those belonging to the net arbitrage trading (NAT) group 3 (top 30%),
and those not traded by arbitrageurs as those having the middle 40% values of NAT. For the short leg, we identify
stocks traded by arbitrageurs as those belonging to the NAT group 1 (bottom 30%), and those not traded by
arbitrageurs as those having the middle 40% values of NAT. In panel B, we compute changes in non-hedge-fund
holdings (in percent) in the current and next four quarters. CNHF# is the change in non-hedge-fund holdings in
the #th quarter after portfolio formation. Portfolio-level earnings-announcement-window returns and changes in
non-hedge-fund holdings are averaged across stocks. The statistics are based on a composite portfolio equally
investing in the ten anomalies. We also report the return difference between the long and short legs for the traded
and not-traded groups (Traded L–S and Not Trade L–S). The t-values, reported in parentheses, use Newey-West
standard errors with four lags for the CNHFs. The sample period is from 1990:Q1 to 2015:Q4.

correction and the role of limits to arbitrage in the next two subsections,
respectively.

3.2 Channels of mispricing correction
In the presence of limits to arbitrage, the process of mispricing correction is not
instantaneous but takes time. In this subsection, we document two channels of
mispricing correction: one is the release of fundamental information, and the
other is related to copycat trading.

First, mispricing can be corrected during important information events when
fundamental information about the firm is released to the market. One such
information event is the quarterly earnings announcement. In panel A of Table 4,
we examine the average stock return around earnings announcements (over a
three-day window) across anomaly stocks traded by arbitrageurs and those
not traded. The anomaly stocks purchased by arbitrageurs outperform those
sold by arbitrageurs by 0.16% per day (t-value = 5.12) during the earnings
announcement window in the next quarter t+1, translating to about 3.36%
per month (0.16% × 21 days). This return spread is more than three times
larger than the average traded anomaly stock return spread of 0.88% per month
over the same quarter (as reported in panel B of Table 3), suggesting that the
return spread disproportionately accrues during the earnings announcement
window. The return spread remains at 0.10% per day (t-value = 3.22) over
the three-day window in quarter t +2. Therefore, the evidence supports the
information channel. Recently, Engelberg, McLean, and Pontiff (forthcoming)
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also find much higher anomaly returns realized on earnings announcement days
compared with other times. By examining arbitrage trading directly, we show
that these abnormal returns are mainly associated with anomaly stocks traded
by arbitrageurs.

Second, copycat trading by other investors could also contribute to the
correction of mispricing. Panel B of Table 4 reports, for portfolios of anomaly
stocks traded or not traded by arbitrageurs, the average change in institutional
ownership (excluding hedge fund ownership) in subsequent quarters. We
find that non-hedge-fund institutional investors increase their holdings during
quarters t +1 through t +4 of anomaly stocks purchased by arbitrageurs in
quarter t . They also decrease their holdings of anomaly stocks sold by
arbitrageurs. The differences between the holding changes are highly significant
in the next four quarters. Hedge fund holdings are often reported with a
temporal delay averaging about 45 days. In some rare cases, the delay can be
as long as a year or more. It is therefore not surprising that other investors
copy hedge fund trades with a delay. To obtain a complete picture, we
also look at the average change in non-hedge-fund institutional holdings in
the current quarter t . Interestingly, non-hedge funds appear to trade in the
opposite direction to arbitrage activity, in that anomaly stocks bought (sold)
by arbitrageurs actually experience selling (buying) from non-hedge funds as
a whole. This result highlights the importance to separate hedge funds from
other types of institutional investors. Moreover, given the absence of return
reversal associated with NAT, the opposite trading pattern of hedge funds and
non-hedge funds in the current quarter cannot be attributed to potential “fire
sales” in which hedge funds trade with non-hedge funds rushing to liquidate
assets.

When examining the trading behavior of other types of institutional investors
on anomaly stocks not traded by arbitrageurs, we observe quite a different
pattern. In quarter t , while arbitrageurs do not trade these stocks, other
institutional investors do. As a group, they increase their holdings of anomaly
stocks on the long side and decrease their holdings of anomaly stocks on the
short side, even though these trades do not add value, as evident in panel C
of Table 3. In the next four quarters, they increase their holdings on anomaly
stocks on both sides, more so for those on the short side.

3.3 Causal evidence from Regulation SHO
Our Hypothesis 4 predicts that, faced with limits to arbitrage, arbitrageurs will
choose to trade against mispricing only if the potential profit from exploiting
the mispricing overweighs the arbitrage costs. Thus, all else being equal, the
predictive power of NAT for future stock returns should be stronger among
stocks that impose greater limits to arbitrage.

To test this hypothesis, we need to distinguish between limits to arbitrage and
ex ante mispricing. We exploit Regulation SHO as an instrument for limits to
arbitrage. As noted above, Regulation SHO relaxed short-sale restrictions for a
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Table 5
Causal evidence from Regulation SHO

Panel A: Difference in characteristics between pilot stocks and non-pilot stocks

BM GP OP MOM MC AG IK NS AC NOA

Non-pilot 0.501 0.294 0.648 0.095 3211 0.143 0.208 0.053 −0.009 0.529
Pilot 0.486 0.293 0.633 0.083 3620 0.157 0.226 0.041 −0.002 0.517
Difference 0.016 0.002 0.015 0.012 −409 −0.014 −0.018 0.012 −0.007 0.011
t-value 0.96 0.16 0.41 0.79 −1.47 −0.98 −0.37 1.83 −0.75 0.83

(continued)

random set of pilot stocks, which reduced limits to arbitrage while having little
effect on ex ante mispricing. This feature helps isolate the impact of limits to
arbitrage on arbitrage activity. After we apply the procedures of Diether, Lee,
and Werner (2009) and Chu, Hirshleifer, and Ma (2017) and merge with the
stock anomalies data, our sample contains 650 pilot stocks and 1,425 non-pilot
stocks. We define the pilot period as June 2005–July 2007, and thus the rest of
our sample period includes a pre-pilot period (January 1990–May 2005) and
a post-pilot period (August 2007–December 2015). Motivated by Boehmer,
Jones, and Zhang (2013), we skip the third and fourth quarters of 2008 in the
post-pilot period to mitigate the impact of the financial crisis and the short-
selling ban (and we will take a detailed look at the crisis period in the next
subsection).

We first verify the validity of Regulation SHO as an instrument of limits
to arbitrage. Previous studies (e.g., Diether, Lee, and Werner 2009; Grullon,
Michenaud, and Weston 2015) show that pilot stocks experienced higher short-
selling activity than non-pilot stocks due to Regulation SHO. Consistent with
their results, we find that at the beginning of the pilot period, the average
short interest is 4.80% for pilot stocks and 4.57% for non-pilot stocks, and
the difference is 0.23% (t-value = 2.00). Moreover, there are no pre-trends
of pilot stocks and non-pilot stocks prior to Regulation SHO (see the Online
Appendix for details). As shown in panel A of Table 5, pilot stocks and non-
pilot stocks also do not exhibit significant difference in any of the ten anomaly
characteristics, suggesting that these stocks are otherwise indistinguishable.
Taken together, these results support Regulation SHO as a valid instrument of
limits to arbitrage.

Panel B of Table 5 reports the main results using portfolio sorts. We first
examine the difference between pilot stocks (with smaller limits to arbitrage)
and non-pilot stocks (with greater limits to arbitrage) during the pilot period.
Consistent with Hypothesis 4, the results suggest that the anomaly stocks traded
by arbitrageurs indeed realize higher abnormal returns in the presence of greater
limits to arbitrage. Among non-pilot stocks, the anomaly stocks purchased by
arbitrageurs outperform those sold by arbitrageurs by 0.96% per month (t-value
= 3.20) on a risk-adjusted basis during the pilot period. This alpha spread is
larger than the counterpart, 0.53% per month (t-value = 0.92), associated with
pilot stocks. More importantly, this return difference comes entirely from the
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Table 5
Continued

Panel B: Future returns of pilot vs. non-pilot stocks

Pilot stocks Non-pilot stocks

Portfolio Ret t-value FF5 t-value Portfolio Ret t-value FF5 t-value

Pilot period: June 2005–July 2007
L 0.95 1.54 0.34 1.05 L 0.96 1.58 0.37 1.77

Traded S 0.56 0.72 −0.19 −0.43 S 0.13 0.17 −0.59 −2.01
L–S 0.40 0.78 0.53 0.92 L-S 0.82 2.65 0.96 3.20

L 0.26 0.53 −0.27 −1.29 L 0.65 1.20 0.00 0.01
Not traded S 0.78 1.35 0.05 0.19 S 0.56 0.88 −0.26 −1.04

L–S −0.52 −1.32 −0.33 −0.87 L-S 0.09 0.24 0.26 0.82

Pre-pilot period: January 1990–May 2005
L 2.10 5.67 1.57 6.52 L 2.09 5.65 1.53 6.88

Traded S 0.90 1.71 0.14 0.41 S 0.69 1.28 −0.14 −0.46
L–S 1.21 3.00 1.43 3.69 L-S 1.39 3.99 1.67 5.24

L 1.36 4.66 0.39 2.54 L 1.14 4.05 0.22 2.03
Not traded S 0.93 2.32 0.14 0.56 S 1.04 2.59 0.14 0.84

L–S 0.43 1.48 0.25 0.87 L-S 0.10 0.47 0.08 0.43

Post-pilot period: August 2007–December 2015
L 1.51 3.09 0.23 1.29 L 1.48 2.95 0.19 1.17

Traded S 0.95 1.35 −0.40 −1.38 S 0.76 1.05 −0.53 −1.97
L–S 0.56 1.34 0.64 1.73 L-S 0.72 1.83 0.72 2.30

L 1.26 2.98 0.20 1.31 L 1.17 2.61 −0.01 −0.05
Not traded S 1.03 1.85 −0.12 −0.59 S 1.23 2.07 0.08 0.44

L–S 0.22 0.70 0.31 1.12 L-S −0.05 −0.19 −0.09 −0.37

Panel C: Regression results for the sample period 1990:Q1–2015:Q5

Traded Not traded

Portfolio Non-pilot × Pilot-period t-value Non-pilot × Pilot-period t-value

L 0.14 0.79 0.26 1.16
S −0.32 −1.92 −0.02 −0.08
L–S 0.46 1.90 0.29 0.85

Pilot stocks are the stocks in the Russell 3000 index with short-sale constraints relaxed due to Regulation SHO
during the pilot period. Our sample contains 650 pilot stocks and 1,425 non-pilot stocks. Panel A presents the
difference in the average of anomaly characteristics between pilot stocks and non-pilot stocks at the beginning of
the pilot period. We consider the following anomaly characteristics: book-to-market ratio (BM), gross profitability
(GP), operating profit (OP), momentum (MOM), market capitalization (MC), asset growth (AG), investment
growth (IK), net stock issues (NS), accrual (AC), and net operating assets (NOA). The anomaly characteristics
are reported in their original units (see the Appendix for descriptions of the characteristics). In panel B, we first
form quintile portfolios based on the mispricing measure MISP for pilot stocks and non-pilot stocks separately,
for the pilot period (June 2005–July 2007), the pre-pilot period (January 1990–May 2005), and the post-pilot
period (August 2007–December 2015). We skip the third and fourth quarters of 2008 to mitigate the impact of
the financial crisis and the short-selling ban. The traded stocks are those with high net arbitrage trading (NAT)
among low MISP stocks, or low NAT among high MISP stocks measured at the end of the previous quarter.
The not-traded stocks are those with medium NAT among low MISP stocks, or medium NAT among high MISP
stocks. We use the 20th percentile and the 80th percentile MISP breakpoints to identify low MISP and high
MISP, and the 30th percentile and the 70th percentile NAT breakpoints to identify low, medium, and high NAT.
This definition applies to both the pilot stock group and the non-pilot stock group. Portfolio L (S) stands for
Long (Short). Alphas (FF5) are computed with the Fama-French five factors. Panel C reports the results from
the following panel regression of future stock returns,

ri,t+1 =at +a1×Non-piloti ×Pilot-periodt +a2×Non-pilott +εi,t+1,

where ri,t+1 is the portfolio-level average monthly excess return in the next month for the long leg, the short
leg, or the long-minus-short of the traded and not traded groups. The Non-pilot dummy equals one if a stock is a
non-pilot stock and zero otherwise. The Pilot-period dummy equals one if the time falls within the pilot period
and zero otherwise. at is the time fixed effect. L (S) stands for the long (short) leg. The coefficient of interest,
a1, on the interaction term is reported along with its t-value. Returns and alphas are in percent per month. The
sample period for the panel regression is from 1990:Q1 to 2015:Q4.
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short side of stock anomalies, where the difference in limits to arbitrage exists.17

Therefore, overpriced non-pilot stocks sold short by arbitrageurs exhibit larger
underperformance (i.e., reduction of stock price) than similar overpriced pilot
stocks during the pilot period. In contrast, since the arbitrage costs are low
(e.g., have relaxed short-sale constraints) for the pilot stocks, mispricing of
even a small magnitude (small price deviation from fundamental values) will
be exploited and corrected by arbitrageurs, and thus the average abnormal return
associated with arbitrage trading is relatively small for the pilot stocks.

As placebo tests, we compare pilot stocks with non-pilot stocks during
both the pre-pilot period and the post-pilot period when there is no regulatory
difference in short-sale constraints. As expected, there is no significant return
gap between pilot stocks and non-pilot stocks outside the pilot period.

Finally, we perform a panel regression analysis for the entire sample period,
to formally test the difference between pilot and non-pilot stocks during the
pilot period. Similar to Chu, Hirshleifer, and Ma (2017), we regress future stock
returns on the dummy variables of the non-pilot stocks and the pilot period. The
Non-pilot dummy equals one if a stock is a non-pilot stock and zero otherwise.
The Pilot-period dummy equals one if the time falls within the pilot period and
zero otherwise. We regress the returns of the traded group (or, the not-traded
group) on the Non-pilot dummy and the interaction term between the Non-pilot
dummy and the Pilot-period dummy, with control of the time fixed effect. The
panel regression is specified as follows.

ri,t+1 =at +a1×Non-pilott ×Pilot-periodt +a2×Non-piloti +εi,t+1, (1)

where ri,t+1 is the portfolio-level average monthly excess return in the next
month for the long leg, the short leg, or the long-minus-short of the traded and
not-traded groups, and at is the time fixed effect. Hypothesis 4 predicts that
high level of arbitrage trading on anomaly stocks subject to greater limits to
arbitrage should lead to more investment profit. Given the greater difficulty of
short selling for non-pilot stocks than for pilot stocks during the pilot period,
non-pilot stocks in the short leg should exhibit more negative returns. Thus,
we expect a negative regression coefficient, a1, on the interaction term for the
short leg among traded stocks.

As shown in panel C of Table 5, for the short leg among traded stocks, the
estimated coefficient on the interaction term is −0.32% (t-value = −1.92). This
suggests that, compared with pilot stocks in the short leg, non-pilot stocks that
are also in the short leg and experience high arbitrage trading during the pilot
period tend to have more negative returns. Such a relation does not exist among
stocks that are not traded by arbitrageurs. These findings echo the results of the
portfolio sorting tests.

17 Hwang, Liu, and Xu (forthcoming) find that when stocks are added to the short-sale list (i.e., become shortable) in
Hong Kong, their industry-peer, underpriced stocks experience increased hedge fund purchases, which suggests
that shortability of some stocks could offer a hedging benefit and thus affect arbitrageurs’ long position in
underpriced stocks in the same industry. In our setting, anomaly stocks are not restricted to industry peers.
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In summary, exploiting the exogenous Regulation SHO that altered limits
to arbitrage on a random group of stocks, we provide causal evidence that
limits to arbitrage affect arbitrage activity, which in turn affects anomaly
returns. Consistent with Hypothesis 4, we present novel evidence that, when
arbitrageurs faced with greater limits to arbitrage still choose to trade some
anomaly stocks, those stocks tend to realize larger abnormal returns.

3.4 Arbitrage trading during the financial crisis of 2007–09
In this subsection, we examine the trading behavior of arbitrageurs on anomaly
stocks during the financial crisis of 2007–09, which has had far-reaching
impacts on financial markets and beyond. Ben-David, Franzoni, and Moussawi
(2012) document that hedge funds significantly divested their stock positions in
the crisis. Nagel (2012) presents evidence of reduced liquidity provision during
the 2007–09 period. We attempt to further understand how arbitrageurs allocate
their capital and how arbitrage activity affects the anomaly returns during the
crisis. In particular, Hypothesis 4 predicts that anomalies arbitrageurs choose
to trade despite capital constraints should do better in the near future.

To infer arbitrage capital allocated to the anomalies over time, we adopt the
method of Hanson and Sunderam (2014) to run the following cross-sectional
regression for each stock anomaly in each quarter.

NATi,t =c0,t +ct
′×I(Characteristic Quintile)i,t +ei,t , (2)

where NATi,t is the net arbitrage trading on stock i in quarter t .
I(Characteristic Quintile)i,t is the vector of quintile dummies for a specific
anomaly characteristic (e.g., book-to-market), and the omitted dummy is
Quintile 1, corresponding to the short leg. Thus, each coefficient in the vector
ct captures the difference in NAT between stocks in that particular quintile and
those in quintile 1 (i.e., the short leg). We focus on the coefficient on quintile
5, c5,t , since it measures the NAT difference between the long and the short
leg. We obtain a time series of c5,t by running the cross-sectional regression
for each anomaly in each quarter. Because all the independent variables in the
regression are dummy variables, we can compare the regression coefficients
across anomalies and over time.

Next, for each anomaly, we run a time-series regression of c5,t on a constant,
and the Crisis dummy that equals one for the crisis period 2007:Q3–2009:Q2
and zero otherwise.

c5,t =b0+b1×Crisist +εt . (3)

Here, b0 captures the average difference in net arbitrage trading between the
long and the short legs, and a positive value means that arbitrage capital on
average is allocated to the “right” leg. A larger value of b0 implies greater
arbitrage trading on that particular anomaly. b1 is the change of arbitrage capital
during the crisis relative to other times. Accordingly, b0+b1 is the arbitrage
capital allocated to each anomaly during the crisis. In contrast to prior studies
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Table 6
Arbitrage trading during the financial crisis

Panel A: Arbitrage trading on anomalies over time

BM GP OPE MOM MC

Estimate t-value Estimate t-value Estimate t-value Estimate t-value Estimate t-value

b0 0.34 8.62 0.07 1.80 0.10 3.33 0.36 7.83 0.02 0.41
b1 −0.17 −1.21 −0.39 −2.72 −0.54 −4.81 −0.09 −0.54 −0.64 −2.98
b0 + b1 0.17 0.78 −0.32 −1.10 −0.43 −0.83 0.27 1.33 −0.61 −1.11

AG IK NS ACB NOA

Estimate t-value Estimate t-value Estimate t-value Estimate t-value Estimate t-value

b0 0.32 9.67 0.25 7.10 0.12 3.64 0.18 4.75 0.05 1.44
b1 0.20 1.69 0.16 1.28 0.46 3.79 −0.46 −3.41 −0.02 −0.15
b0 + b1 0.53 5.02 0.41 2.17 0.59 8.41 −0.29 −1.45 0.03 0.22

Panel B: Long and short anomalies

1990:Q1–2015:Q4 2007:Q3–2009:Q2

Portfolio Ret t-value FF5 t-value Ret t-value FF5 t-value

L 0.46 3.62 0.55 4.57 0.54 1.22 0.44 1.02
Middle 0.37 3.59 0.44 4.29 −0.10 −0.26 −0.18 −0.50
S 0.17 1.49 0.25 2.19 −0.79 −1.31 −0.99 −1.82
L–S 0.28 1.70 0.31 1.82 1.33 1.97 1.43 2.12

This table presents results on arbitrage capital allocated to anomalies as well as the effect of arbitrage trading on
anomaly returns during the 2007–09 financial crisis. We consider the following anomaly characteristics: book-
to-market ratio (BM), gross profitability (GP), operating profit (OP), momentum (MOM), market capitalization
(MC), asset growth (AG), investment growth (IK), net stock issues (NS), accrual (AC), and net operating assets
(NOA). We run the following cross-sectional regression for each anomaly in each quarter.

NATi,t =c0,t +ct
′ ×I(Characteristic Quintile)i,t +ei,t ,

where NATi,t is the net arbitrage trading (in percent) on stock i in quarter t . I(Characteristic Quintile)i,t is the
vector of quintile dummies (of dimension four-by-one) for a specific anomaly characteristic, and the omitted
dummy is quintile 1 corresponding to the short leg. Each coefficient in the vector ct

′ captures the difference in
NAT between stocks in that particular quintile and those in quintile 1 (the short leg). We focus on the coefficient
on quintile 5, c5,t , since it measures the NAT difference between the long and the short legs. We obtain a time
series of c5,t by running the cross-sectional regression for each quarter. In panel A, for each anomaly, we report
the results from the following time-series regression of c5,t on a constant and the Crisis dummy that equals one
for the crisis period 2007:Q3–2009:Q2 and zero otherwise.

c5,t =b0+b1×Crisist +εt .

b0 captures the average difference in NAT between the long and the short leg, with a larger value indicating
greater arbitrage capital allocated to that anomaly. b1 is the change of arbitrage capital during the crisis relative
to other times. b0+b1 is the arbitrage capital allocated to each anomaly during the crisis. In panel B, we examine
the relation between arbitrage trading and anomaly returns during the crisis period 2007:Q3–2009:Q2, as well
as the entire sample period. Based on c5,t across the anomalies at the end of each quarter t , we split the ten
anomalies into three groups: the three anomalies with the highest c5,t , the three anomalies with the lowest c5,t ,
and the remaining four anomalies. We then form three portfolios (denoted “L,” “S,” and “Middle,” respectively)
by following excess returns of each of the three groups over the next three months. We report the average excess
returns and the Fama-French five factor alphas for these portfolios. Returns and alphas are in percent per month.
The sample period is from 1990:Q1 to 2015:Q4.

that focus on either the long leg (hedge fund holdings) or the short leg (short
interest), NAT allows us to more precisely infer arbitrage trading intensity
across different anomalies.

Panel A of Table 6 presents the allocation of arbitrage capital over time. b0
is positive for all ten anomalies and statistically significant for eight of them,
suggesting that overall arbitrage capital has been allocated to the right leg.
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In particular, arbitrageurs seem to trade momentum, value, and asset growth
anomaly more heavily.

Moreover,b1 appears negative for seven anomalies, andb0+b1 is statistically
insignificant for seven of the ten anomalies, suggesting significant withdrawal of
arbitrage capital in the financial crisis. This finding is consistent with the results
of Ben-David, Franzoni, and Moussawi (2012) and Nagel (2012). Interestingly,
arbitrageurs did not cease trading all anomalies; asset growth, investment, and
net share issuance are the three anomalies that arbitrageurs continued to trade
during the crisis.

Finally, in panel B of Table 6, we explore the relation between arbitrage
trading and anomaly returns during the crisis. Based on c5,t across the anomalies
at the end of each quarter t , we split the ten anomalies into three groups: the
three anomalies with the highest c5,t , the three anomalies with the lowest c5,t ,
and the remaining four anomalies. We then form three portfolios (“Long,”
“Short,” and “Middle,” respectively) by following excess returns of each of the
three groups over the next three months. Over the entire sample period 1990–
2015, the Long portfolio (i.e., anomalies receiving relatively large arbitrage
capital) significantly outperforms the Short portfolios (i.e., anomalies receiving
relatively small arbitrage capital). More importantly, such outperformance is
much larger in magnitude over the crisis period than in other times. During
2007:Q3–2009:Q2, the Long portfolio outperformed the Short portfolio by
1.43% per month (t−value = 2.12) on a risk-adjusted basis. This provides
further support to our Hypothesis 4, in the sense that during the crisis, when
arbitrageurs were facing severe capital constraints, those positions to which
arbitrageurs chose to allocate their scarce capital indeed realized high future
abnormal returns.

4. Evidence from Daily Data

In this section, we repeat our main analysis using daily data. We estimate NAT
at a daily frequency by combining daily security lending data with daily trading
records of a subset of hedge funds. The use of daily data can potentially deliver
powerful tests even for a relatively short sample period.

Using daily levels of security lending to proxy for short interest at a daily
frequency, we compute daily abnormal short interest (ASI) in a way similar to
the construction of ASI using the quarterly data. In the meantime, while we do
not observe the daily holdings of hedge funds, we show how to compute daily
abnormal hedge fund holdings (AHF) based on daily hedge fund trading data.
We next describe the data sources and how we compute daily AHF, ASI, and
NAT in detail.

4.1 Estimating daily NAT
Our daily equity lending data come from Data Explorers. Since the main reason
for borrowing equity is short selling, the level of equity on loan is a good proxy
of shortselling activity. Equity lending data have been used to study short selling
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in several existing studies, such as Geczy, Musto, and Reed (2002) and Saffi
and Sigurdsson (2011).

Our data on daily institutional trading activity come from ANcerno, Ltd. (also
called Abel Noser Solutions), a widely recognized transaction cost consulting
firm to institutional investors. We obtain the data of all trades made by their
clients. To focus on hedge funds among all the clients, we compile a list of 125
hedge fund companies by manually matching the names of ANcerno’s clients
with our list of hedge fund companies (described in Section 2.1).18 The equity
lending data overlap with the intuitional trading data spanning June 2006 to
March 2011, which constitutes the sample period for our analysis with the daily
data.

For the short side, the daily abnormal short interest (ASI) is computed as the
deviation of short interest from its average in the past 30 days (scaled by the total
number of shares outstanding). For the long side, we lack direct information
about daily hedge fund holdings. As a solution, we infer abnormal hedge fund
holdings (AHF) from daily hedge fund trades covered in the ANcerno data.
Specifically, if we denote unobservable hedge fund holdings at day t as Qt , then
abnormal hedge fund holdings AQt is the deviation of hedge funds holdings at
day t from its average in the past 30 days.

AQt =Qt − Qt−1 +Qt−2 +Qt−3 +···+Qt−29 +Qt−30

30
. (4)

The right-hand side can be rewritten as:

AQt =

30(Qt −Qt−1)+29(Qt−1 −Qt−2)+28(Qt−2 −Qt−3)
+···+2(Qt−28 −Qt−29)+1(Qt−29 −Qt−30))

30
. (5)

In Equation (5), each value in the parentheses is the observed net buy for a day
(i.e., the difference between the number of shares bought by hedge funds and
the number of shares sold by hedge funds for a stock on that day). This way,
AQt is a linear combination of past net buys with linearly decaying weights.
Finally, we compute AHF at day t by scaling AQt by the number of shares
outstanding.

Since the ANcerno daily data covers only a small subset of hedge funds,
the levels of AHF and ASI are not directly comparable, and thus we cannot
compute NAT as the simple difference between the two values. Instead, we
compute the cross-sectional percentile rankings of AHF and ASI at each day
and take the difference between the AHF ranking and the ASI ranking as our
daily measure of NAT.

18 Jame (forthcoming) identifies 70 hedge fund companies from ANcerno based on name matching with two hedge
fund databases (TASS and Barclays). Our sample represents a significantly expanded list of hedge fund companies
by using six hedge fund databases.
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4.2 Return predictability of daily NAT
We now examine the return predictability of daily net arbitrage trading. At day
t , we form quintile portfolios based on NAT and follow the equal-weighted
portfolio excess returns in the next s days. Quintile 5 has the highest value of
NAT. We examine s equal to 5, 10, and 20 trading days. This trading strategy is
similar to the momentum strategy of Jegadeesh and Titman (1993), since there
are s effective trading signals on a particular day. For instance, if the holding
period is 10 days, then the daily return for any particular day is the average of
the daily returns on 10 different portfolios formed in each of the past 10 days.
The alphas are computed with the Fama-French five factors (the inference is
unchanged when the other asset pricing models are used for risk adjustment).
Stocks with prices less than $5 at the time of portfolio formation are excluded.
Our daily sample covers an average of 2,418 stocks per day.

Table 7 presents the results. When the holding period is 10 trading days
(about 2 weeks), the long leg—that is, the quintile having the highest value of
NAT, has an average daily excess return of 0.052% (5.2 bps). The corresponding
five-factor alpha is 0.015% per day (t-value = 3.46). In contrast, quintile 1 has
an average daily excess return of 0.022% and an alpha of −0.017% (t-value =
−3.61). The difference between quintiles 5 and 1 yields a daily return of 0.029%
(t-value = 3.61) and a daily alpha of 0.032% (t-value = 3.99). The pattern is
similar when we change the holding period to 5 and 20 trading days. Thus,
the return predictability of NAT at a daily frequency provides further support
for Hypothesis 1 that arbitrageurs are informed about future stock returns.
As shown in Figure 4, the cumulative return associated with the high-minus-
low NAT-quintile portfolio is gradually increasing up to 30 days. The gradual
correction of mispricing is consistent with Hypothesis 3 about the presence of
limits to arbitrage. We also confirm that the cumulative return does not reverse
when we extend the horizon.

4.3 Daily NAT and stock mispricing
Using daily data, we revisit the performance of anomaly stocks by separating
them into those that arbitrageurs trade and those that arbitrageurs do not trade.
To define traded and not-traded groups, we first form two portfolios from MISP
using the median MISP as the breakpoint, then in each MISP portfolio, we use
the 20th percentile and the 80th percentile NAT breakpoints to identify low,
medium, and high NAT groups.19 The traded group include stocks that have
either low MISP/high NAT (traded long leg, denoted T/L) or high MISP/low
NAT (traded short leg, denoted T/S). The not-traded group has either low
MISP/medium NAT (not traded long leg, denoted NT/L) or high MISP/medium
NAT (not traded short leg, denoted NT/S). We follow average excess returns of
these portfolios in the next 5, 10, and 20 trading days.

19 We use the median value of MISP as the breakpoint in the daily sample to allow for a larger number of stocks in
each portfolio, which reduces noise associated with portfolio returns at a daily frequency.
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Table 7
One-way sorting based on NAT: Evidence from daily data

Ret t-val. FF5 t-val. Ret t-val. FF5 t-val. Ret t-val. FF5 t-val.

NAT s = 5 days s = 10 days s = 20 days

1 0.023 0.43 −0.017 −3.35 0.022 0.42 −0.017 −3.61 0.024 0.45 −0.015 −3.50
2 0.033 0.66 −0.003 −0.69 0.033 0.66 −0.003 −0.66 0.033 0.65 −0.003 −0.77
3 0.038 0.76 0.001 0.48 0.038 0.76 0.002 0.65 0.038 0.77 0.002 0.98
4 0.038 0.77 0.002 0.50 0.039 0.78 0.003 0.70 0.039 0.79 0.004 0.93
5 0.053 1.02 0.016 3.52 0.052 1.00 0.015 3.46 0.049 0.94 0.012 3.10
HML 0.030 3.54 0.032 3.88 0.029 3.61 0.032 3.99 0.025 3.35 0.028 3.73

This table reports results of portfolio sorting based on net arbitrage trading (NAT) from a daily sample. ASI is
computed as the deviation of short interest from its average in the past 30 days. For each stock, net buy from
hedge funds is computed based on daily buy and sell. AHF at day t is computed as a linear combination of net
buys in the past 30 days, where the weight for day t is 1, and the weight for day t−1 is 29/30, and so on so that
the weight for day t−29 is 1/30. AHF and ASI are ranked from 1 to 100 across stocks each day. NAT for each
stock is computed as the difference between the AHF ranking and the ASI ranking. At day t, we form quintile
portfolios from NAT and follow their excess returns in the next s days. Quintile 5 has the highest value of NAT.
We set s equal to 5, 10, and 20 trading days to approximately match the holding periods of 1 week, 2 weeks,
and a month. Alphas are computed with the Fama-French five factors. HML stands for high-minus-low. Stocks
whose prices are less than $5 at the time of portfolio formation are excluded. Returns and alphas are in percent
per day. The sample period for the daily data is from June 2006 to March 2011.

Figure 4
Cumulative return based on NAT in the daily sample
This figure plots the cumulative return (in percent) of the high-minus-low (HML) NAT-quintile portfolio return
spread in the daily sample. ASI is computed as the deviation of short interest from its average in the past 30 days.
For each stock, net buy from hedge funds is computed based on daily buy and sell. AHF at day t is computed as
a linear combination of net buys in the past 30 days, where the weight for day t is 1, and the weight for day t−1
is 29/30, and so on so that the weight for day t−29 is 1/30. AHF and ASI are ranked from 1 to 100 across stocks
each day. NAT for each stock is computed as the difference between the AHF ranking and the ASI ranking. At
day t , we form quintile portfolios from NAT and follow their daily excess returns in the next 30 days. Stocks
whose prices at the time of portfolio formation are less than $5 are excluded. The sample is from June 2006 to
March 2011.
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Table 8
Two-way sorting based on NAT and MISP: Evidence from daily data

Ret t-val. FF5 t-val. Ret t-val. FF5 t-val. Ret t-val. FF5 t-val.

Portfolio s = 5 days s = 10 days s = 20 days

L 0.052 1.04 0.018 2.61 0.051 1.02 0.017 2.51 0.049 0.99 0.016 2.39
Traded S 0.017 0.29 −0.022 −2.78 0.019 0.32 −0.021 −2.69 0.021 0.35 −0.019 −2.58

L–S 0.035 2.05 0.040 2.82 0.032 1.94 0.038 2.72 0.029 1.78 0.035 2.59
L 0.041 0.85 0.008 1.50 0.041 0.86 0.008 1.59 0.041 0.86 0.008 1.55

Not traded S 0.032 0.59 −0.004 −0.75 0.031 0.58 −0.004 −0.87 0.031 0.58 −0.004 −0.88
L–S 0.009 0.82 0.012 1.26 0.010 0.92 0.013 1.37 0.010 0.92 0.012 1.33

This table reports results of portfolio sorting based on net arbitrage trading (NAT) and the mispricing measure
MISP from a daily sample. ASI is computed as the deviation of short interest from its average in the past 30 days.
For each stock, net buy from hedge funds is computed based on daily buy and sell. AHF at day t is computed
as a linear combination of net buys in the past 30 days, where the weight for day t is 1, and the weight for
day t−1 is 29/30, and so on so that the weight for day t−29 is 1/30. AHF and ASI are ranked from 1 to 100
across stocks each day. NAT for each stock is computed as the difference between the AHF ranking and the ASI
ranking. To define traded and not-traded groups, we first form two portfolios based on MISP using the median
MISP value as the breakpoint, then in each MISP portfolio, we use the 20th percentile and the 80th percentile
NAT breakpoints to identify low, medium, and high NAT groups. The traded group are stocks that have either
low MISP/high NAT (traded long leg, denoted T/L) or high MISP/low NAT (traded short leg, denoted T/S). The
stocks in the not-traded group have either low MISP/medium NAT (not-traded long leg, denoted NT/L) or high
MISP/medium NAT (not-traded short leg, denoted NT/S). We follow average excess returns of these portfolios
in the next s days. We set s equal to 5, 10, and 20 trading days to approximately match the holding periods of 1
week, 2 weeks, and a month. The alphas are computed with the Fama-French five factors. Stocks whose prices
are less than $5 at the time of portfolio formation are excluded. Returns and alphas are in percent per day. The
sample period for the daily data is from June 2006 to March 2011.

Table 8 presents the results about anomaly stock returns. When the holding
period is 10 days, the traded long leg (T/L) has a daily excess return of 0.051%
and a daily alpha of 0.017% (t-value = 2.51), and the traded short leg has a
return of 0.019% and an alpha of −0.021% (t-value = −2.69). In this traded
group, the long-minus-short portfolio has a return of 0.032% (t-value = 1.94)
and an alpha of 0.038% per day (t-value = 2.72). In contrast, among not-traded
stocks, the long-minus-short portfolio has a return of 0.010% (t-value = 0.92)
and an alpha of 0.013% per day (t-value = 1.37). The abnormal return spread
among the traded stocks remains at 0.035% per day (t-value = 2.59) when the
holding period is 20 trading days.

Therefore, these results provide further evidence supporting Hypothesis 2
that arbitrageurs can detect mispricing even among stocks of similar anomaly
characteristics and Hypothesis 3 that limits to arbitrage prevent mispricing from
being corrected quickly and completely.

4.4 Evidence from Regulation SHO
We test Hypothesis 4 using daily data in this subsection. As in Section 3, we
exploit the exogenous shock from Regulation SHO that alleviated limits to
arbitrage for a random set of pilot stocks. Similar to the analysis described
in Section 3.3, we employ the daily data to study the relation between
arbitrage trading, stock mispricing, and limits to arbitrage in a panel regression
framework.

Specifically, we regress future stock returns on the dummy variables of the
non-pilot stocks and the pilot period for the daily sample. The Non-pilot dummy
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Table 9
Regression analysis using daily data

d1 t-value d1 t-value d1 t-value

Portfolio s = 5 days s = 10 days s = 20 days

L 0.001 0.07 −0.001 −0.04 −0.006 −0.35
Traded S −0.054 −2.20 −0.056 −2.35 −0.055 −2.52

L–S 0.056 1.75 0.055 1.80 0.049 1.71
L −0.002 −0.12 −0.001 −0.04 0.003 0.22

Not traded S −0.029 −1.38 −0.023 −1.20 −0.022 −1.27
L–S 0.027 1.00 0.022 0.90 0.026 1.13

This table reports results of regressing future stock returns on the Non-pilot dummy and the Pilot-period dummy
using the daily sample. Pilot stocks are the stocks in the Russell 3000 index with short-sale constraints relaxed
over the period from June 2005 to July 2007, and non-pilot stocks are the rest of the Russell 3000 stocks. The
Non-pilot dummy equals one for non-pilot stocks and zero otherwise. The Pilot-period dummy equals one if the
time falls within the pilot period June 2006–July 2007 and zero otherwise. ASI is computed as the deviation of
short interest from its average in the past 30 days. For each stock, net buy from hedge funds is computed based
on daily buy and sell. AHF at day t is computed as a linear combination of net buys in the past 30 days, where
the weight for day t is 1, and the weight for day t−1 is 29/30, and so on so that the weight for day t−29 is 1/30.
AHF and ASI are ranked from 1 to 100 across stocks each day. NAT for each stock is computed as the difference
between the AHF ranking and the ASI ranking. At day t , we form quintile portfolios from NAT and follow their
returns in the next s days. We set s equal to 5, 10, and 20 trading days to approximately match the holding periods
of 1 week, 2 weeks, and a month. The traded and not-traded stocks are defined using the MISP median value
and the NAT tercile portfolios. We regress the returns of each group on the Non-pilot dummy and the interaction
term between the Non-pilot dummy and the Pilot-period dummy. The panel regression is specified as follows.

ri,t+s =dt +d1×Non-piloti ×Pilot-periodt +d2×Non-piloti +εi,t+s ,

where ri,t+s is the portfolio-level average daily excess return in the next s days for the long leg, the short leg, or
the long-minus-short of the traded and not-traded groups. dt is the time fixed effect. L(S) stands for long (short).
The table reports the regression coefficient d1 on the interaction term between the Non-pilot dummy and the
Pilot-period dummy along with its t-value. We skip the third and fourth quarters of 2008 to mitigate the impact
of the financial crisis and the short-selling ban. Stocks whose prices are less than $5 at the time of portfolio
formation are excluded. Returns are in percent per day. The sample period for the daily data is from June 2006
to March 2011.

equals one for non-pilot stocks and zero otherwise. The Pilot-period dummy
equals one if the time falls within the pilot period June 2006–July 2007 and zero
otherwise.20 The post-pilot period spans August 2007 to March 2011 (the end
of the daily sample), and we skip the last two quarters of 2008. We regress the
returns of the traded group (or, the not-traded group) on the Non-pilot dummy
and the interaction term between the Non-pilot dummy and the Pilot-period
dummy. The panel regression is specified as follows.

ri,t+s =dt +d1×Non-piloti ×Pilot-periodt +d2×Non-piloti +εi,t+s , (6)

where ri,t+s is the portfolio-level average daily excess return in the next s days
for the long leg, the short leg, or the long-minus-short of the traded and not-
traded groups, and bt is the time fixed effect. According to our Hypothesis 4,
we expect a significantly negative regression coefficient on the interaction term
for the short leg among traded stocks.

Table 9 reports results from the regressions. While we examine both traded
stocks and not-traded stocks, our focus is on traded stocks for which abnormal

20 The pilot period for the daily data starts in June 2006, the beginning month of our daily sample.
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returns are expected to arise by Hypothesis 4. For the short leg among traded
stocks, the estimated coefficient on the interaction term between the Non-pilot
dummy and the Pilot-period dummy is −0.056% (t-value = −2.35) for a
holding horizon of 10 trading days. Thus, relative to pilot stocks in the short
leg, non-pilot stocks in the short leg and experiencing high arbitrage trading
during the pilot period realize more negative returns. The results are robust to
different holding days.

In contrast, there is no difference in stock returns for the long leg between
pilot stocks and non-pilot stocks during the pilot period. The coefficient on the
interaction term is −0.001 (t-value = −0.04) for the long leg. In addition, in the
not-traded group, there is also no difference for both the long leg and the short
leg. This is intuitive, since the pilot program should mainly affect the short leg
during the pilot period and have a relatively small impact for the long leg or
outside the pilot period.

In summary, using Regulation SHO as an instrument of limits to arbitrage and
the daily measure of net arbitrage trading, we document relatively large negative
returns associated with stocks that are in the short leg (likely overpriced stocks),
excluded from the pilot stock list (having greater limits to arbitrage), and yet
experience heavy arbitrage trading. This finding is consistent with Hypothesis
4 that arbitrage trading has stronger predictive power for stock returns when
the mispriced stocks face greater limits to arbitrage.

5. Conclusion

While modern finance predicts that arbitrageurs play a crucial role in financial
markets, measuring arbitrage activity is challenging. Prior research has relied
on aggregate hedge fund holdings to measure the long side of arbitrage and short
interest to measure the short side. In this paper, we track net arbitrage trading
(NAT) with the difference between the long and short sides. Empirically, NAT
provides new insights relative to examining either side of arbitrage alone and
enhances our understanding about the interaction between arbitrage trading,
stock mispricing, and the role of limits to arbitrage.

Based on the NAT measure over the period 1990–2015, we find that
arbitrageurs are informed about mispricing. In the cross-section, NAT strongly
predicts future stock returns for at least two quarters. Such predictability is not
due to temporary price pressure, but consistent with the informational advantage
of arbitrageurs and the subsequent copycat trading of other types of institutional
investors such as mutual funds, banks, and insurance companies.

When examining a broad set of stock anomalies, we find that abnormal
returns come exclusively from anomaly stocks traded by arbitrageurs. The
persistent anomaly returns suggest the existence of limits to arbitrage.
Exploiting Regulation SHO, which facilitated short selling for a random group
of stocks, we show causal evidence that limits to arbitrage affect arbitrageurs’
ability to correct mispricing. In addition, zooming into the 2007–09 financial
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crisis, we find that stock anomalies exploited by arbitrageurs despite capital
constraints were particularly profitable.

Our NAT measure can potentially be applied in other contexts. For example,
it would be interesting to use the return spread associated with arbitrage activity
as a pricing factor in the spirit of the APT. Another potential area is to examine
NAT and its impacts in international markets. We leave these topics for future
research.
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Appendix

Details of the Constructions of Stock Return Anomalies
This appendix provides details of constructing the ten stock return anomalies examined in the
paper. Following the convention in the literature (e.g., Fama and French 2008; Novy-Marx 2013;
Hou, Xue, and Zhang 2015), the financial and accounting ratios for each stock from July of year t

to June of year t +1 (i.e., third quarter of year t to second quarter of year t +1) are computed based
on information from the previous fiscal year ending in year t −1. At the end of each quarter, we
sort stocks into quintile portfolios based on their financial ratios. Monthly excess returns in the
next three months are calculated as equal-weighted averages of excess returns of individual firms
in each portfolio. The portfolios are rebalanced each quarter at the end of March, June, September,
and December.

1. Book-to-market ratio (BM). Book equity is stockholders’ book equity, plus balance sheet
deferred taxes (Compustat item ITCB) and investment tax credit (TXDB) if available,
minus the book value of preferred stock. We employ tiered definitions largely consistent
with those used in Davis, Fama, and French (2000), Novy-Marx (2013), and Hou, Xue,
and Zhang (2015) to construct stockholders’ equity and book value of preferred stock.
Stockholders’ equity is as given in Compustat (SEQ) if available, common equity (CEQ)
plus the book value of preferred stock, or total assets minus total liabilities (AT–LT). Book
value of preferred stock is redemption value (PSTKRV), liquidating value (PSTKL), or
par value (PSTK). The book-to-market ratio in year t−1 is computed as book equity for
the fiscal year ending in calendar year t−1 divided by the market capitalization at the end
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of December of year t−1. Stocks with missing book values or negative book values are
deleted.

2. Gross profit to asset (GP). Following Novy-Marx (2013), we measure gross profits-to-
assets in year t−1 as gross profit in year t−1 (Compustat item GP) divided by total assets
in year t−1 (AT).

3. Operating profit (OP). Following Fama and French (2015), we measure operating profit
in year t−1 as year t−1 gross profit (Compustat item GP), minus selling, general, and
administrative expenses (XSGA) if available, minus interest expense (XINT) if available,
all divided by year t−1 book equity. Stocks with missing book value or negative book
value are deleted.

4. Momentum (MOM). Similar to Jegadeesh and Titman (1993), at the end of March, June,
September, and December (month t), we compute each stock’s cumulative return from
month t−13 to t−2, and form quintile portfolios for the next three months. We compute
equal-weighted monthly returns in each portfolio for month t+1 to t+3, and the portfolio
is rebalanced at the end of month t+3.

5. Market capitalization (MC). Following Fama and French (2008), MC is defined as the
market capitalization (in million dollars) at the end of June in each year. It is the product
of the number of shares outstanding and share price from the CRSP. This MC is used for
the following four quarters.

6. Asset growth (AG). Following Cooper, Gulen, and Schill (2008), we compute asset growth
in year t−1 as total assets (AT) for the fiscal year ending in calendar year t−1 divided by
total assets for the fiscal year ending in calendar year t−2, minus one.

7. Investment growth (IK). Following Xing (2008), we measure investment growth for year
t−1 as the growth rate in capital expenditure (CAPX) from the fiscal year ending in
calendar year t−2 to the fiscal year ending in t−1.

8. Net stock issues (NS). Following Fama and French (2008), we compute net stock issues
in year t−1 as the split-adjusted shares outstanding for fiscal year ending in calendar year
t−1 divided by the split-adjusted shares outstanding for fiscal year ending in calendar year
t−2, minus one. The split-adjusted shares outstanding are calculated as shares outstanding
(CSHO) times the adjustment factor (AJEX).

9. Accrual (AC). Accruals in year t−1 are defined following Fama and French (2008), as
the change in operating working capital per split-adjusted share from t−2 to t−1 divided
by book equity per split-adjusted share at t−1. Operating working capital is computed as
current assets (ACT) minus cash and short-term investments (CHE), minus the difference
of current liability (LCT) and debt in current liabilities (DLC) if available.

10. Net operating assets (NOA). Following Hirshleifer et al. (2004), we define net operating
assets (NOA) in year t−1, as operating assets minus operating liabilities in year t−1
scaled by total assets in year t−2 (Compustat item AT). Operating assets are total assets
(AT) minus cash and short-term investment (CHE). Operating liabilities are total assets
minus debt included in current liabilities (item DLC, zero if missing), minus long-term
debt (item DLTT, zero if missing), minus minority interests (item MIB, zero if missing),
minus book value of preferred stocks as described in the definition of book equity (zero
if missing), and minus common equity (CEQ).
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