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a b s t r a c t 

Hedging short gamma exposure requires trading in the direction of price movements, 

thereby creating price momentum. Using intraday returns on over 60 futures on equities, 

bonds, commodities, and currencies between 1974 and 2020, we find strong market in- 

traday momentum everywhere. The return during the last 30 minutes before the market 

close is positively predicted by the return during the rest of the day (from previous mar- 

ket close to the last 30 minutes). The predictive power is economically and statistically 

highly significant, and reverts over the next days. We provide novel evidence that links 

market intraday momentum to the gamma hedging demand from market participants such 

as market makers of options and leveraged ETFs. 
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1. Introduction 

During the last week of February 2020, as the coron-

avirus surged outside China, the U.S. stock market crashed

by more than 10% and market volatility soared. Accord-

ing to market participants, hedging by traders with short

gamma positions has been a big contributor to the in-

crease in volatility. 1 Gamma measures how much the price

of a derivative accelerates when the underlying security
✩ We thank SqueezeMetrics for providing data; Kester Brons and Tijmen 

Van Paasen for their research assistance; and Wouter Tilgenkamp, Xiao 

Xiao, and Guofu Zhou for helpful comments. 
∗ Corresponding author at: Erasmus School of Economics, Erasmus Uni- 

versity Rotterdam, Burgemeester Oudlaan 50, Rotterdam 30 0 0 DR, Nether- 

lands. 

E-mail address: baltussen@ese.eur.nl (G. Baltussen). 
1 See https://www.wsj.com/articles/the- invisible- forces- exacerbating- 

market- swings- 11582804802 . JP Morgan Chase estimated that more than 

$100 billion in stock selling during the first two days of the week was 

due to such hedging activities. 

https://doi.org/10.1016/j.jfineco.2021.04.029 

0304-405X/© 2021 Published by Elsevier B.V. 
price moves. Market makers in products with gamma ex- 

posure, such as options and leveraged ETFs, are commonly 

net short these products. Consequently, they have to buy 

additional securities when prices are rising and sell when 

prices are falling to ensure that their positions are delta- 

neutral. Trading in the direction of the market price move- 

ment will exacerbate market swings and thereby result in 

market intraday momentum. 

Similar hedging activities are carried out by other mar- 

ket participants and have existed for a long time, for ex- 

ample, dynamic hedging programs like portfolio insurance 

( Leland and Rubinstein, 1976 ) and the hedging of vari- 

able annuities products by insurers. Indeed, portfolio in- 

surance was a popular portfolio-protecting strategy during 

the 1980s, achieving a market cap of $70 billion in the 

United States around 1987, and is commonly thought to 

be one of the drivers of the October 19th, 1987 crash in 

the equity futures market, accounting for up to 24% of the 

market’s short volume on that day ( Tosini, 1988 ). More re- 

cently, popular volatility-targeting strategies (for example, 

https://doi.org/10.1016/j.jfineco.2021.04.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jfec
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jfineco.2021.04.029&domain=pdf
mailto:baltussen@ese.eur.nl
https://www.wsj.com/articles/the-invisible-forces-exacerbating-market-swings-11582804802
https://doi.org/10.1016/j.jfineco.2021.04.029
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risk parity portfolios), variance swaps, and levered or in-

verse ETFs all conduct similar hedging trades. 2 These hedg-

ing activities all contribute to market intraday momentum.

In this paper, we extensively study market intraday mo-

mentum, or time-series momentum at the market level at

the intraday frequency, across all major asset classes go-

ing back to the 1970s. Our comprehensive coverage is the

result of examining intraday trading of futures contracts.

Specifically, our data consists of 17 developed markets eq-

uity index futures (6 North American, 8 European, 3 Asian

or Australian); 16 developed market bond futures (6 North

American, 7 European, 3 Asian or Australian); 21 com-

modity futures (5 metals, 4 energies, 12 softs), and 8 cur-

rency futures. Our sample period covers almost 45 years

from December 1974 to May 2020. We present novel ev-

idence that market intraday momentum appears “every-

where” (i.e., robustly across asset classes and time periods)

and that gamma hedging is an important driver. 

To facilitate our discussion, we define a trading day as

the 24-hour period from the market close on day t − 1

to the market close on day t . We select the open and

close time to match the “common” trading hours of the

market. The time line below then partitions the trading

day into five parts: overnight ( ON, from close to open);

first half an hour ( F H, the first 30 minutes after the mar-

ket open); middle of the day ( M, from the end of F H to

an hour before the market close); second-to-last half an

hour ( SLH, the second-to-last 30-minute interval); and last

half an hour ( LH, the last 30 minutes before the market

close). The combination of the first two partitions is la-

belled “ONFH ” ( ONF H = ON + F H). The combination of the

first four partitions is labelled as “rest of the day” ( ROD =
ON + F H + M + SLH) and will be the focus of our paper. 

We start by demonstrating a robust stylized fact: the

rest-of-day return ( r ) positively and significantly pre-
ROD 

2 Anecdotal evidence of this channel is covered in several newspaper 

articles, including Jason Zweig, “Will leveraged ETFs put cracks in market 

close?,” Wall Street Journal , April 18, 2009, and Tom Lauricella, Susan Pul- 

liam, and Diya Gullapalli, “Are ETFs driving late-day turns?,” December 

15, 2018, and, more recently, Gunjan Banerji, “The invisible forces exac- 

erbating market swings,” Wall Street Journal , February 27, 2020, Gunjan 

Banerji, “The 30 minutes that can make or break the trading day,” Wall 

Street Journal , March 11, 2020, and Gunjan Banerji and Gregory Zucker- 

man, “Why are markets so volatile? It’s not just the coronavirus,” Wall 

Street Journal , March 16, 2020. 
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dicts the last half-an-hour return ( r LH ) across all ma- 

jor asset classes and markets. This effect is robust over 

time across our sample period of 1974 to 2020, and dis- 

tinct from the cross-sectional intraday return seasonality of 

Heston et al. (2010) . A simple market intraday momentum 

trading strategy produces consistent returns over time, 

translating into high and attractive (annualized) Sharpe ra- 

tios between 0.87 and 1.73 at the asset class level. 

Note that our result differs from that obtained by 

Gao et al. (2018) , who find that r ONF H predicts r LH for nine 

ETFs on equity indices and one ETF on a bond index. While 

we also confirm that r ONF H positively and significantly pre- 

dicts r LH in other markets and asset classes, its predictive 

power is weaker than r ROD . First, r ROD has higher out-of- 

sample R -squares than r ONF H . Second, when r ROD and r ONF H 

have different signs, r ROD in general does a better job pre- 

dicting r LH . Gao et al. (2018) also find that r SLH predicts r LH . 

We find that the predictive power of r SLH does not extend 

to other asset classes such as commodities and currencies. 

In contrast, r M 

seems to predict r LH better than r SLH . We 

further show that these results are robust over time and 

markets, and generally also show up in the returns of sim- 

ple trading strategies. All in all, using data across multiple 

asset classes and markets in an extended sample period, 

we conclude that r ROD positively and significantly predicts 

r LH and this robust pattern better describes market intra- 

day momentum everywhere. 

Next, we provide two novel pieces of empirical evi- 

dence linking hedging demand to the market intraday mo- 

mentum. The first is based on S&P 500 index options. Op- 

tion market makers need to trade in the same direction 

as the underlying movement of the S&P 500 index if they 

have negative gamma exposure. The more negative their 

gamma exposure is, the more aggressively they have to 

trade. Using a direct proxy of their negative gamma expo- 

sure (NGE), we confirm that market intraday momentum is 

present for the index when NGE is negative and becomes 

stronger when NGE becomes more negative. 

The second piece of evidence is based on leveraged 

ETFs (LETF). Leveraged ETFs seek to deliver a multiple 

of the daily market return of their underlying. As of the 

end of February 2009, Cheng and Madhavan (2010) esti- 

mated that LETF rebalancing made up 16.8% (50.2%) of the 

market-on-close volume on a day when the market moved 

1% (5%). Shum et al. (2015) argue that market-on-close or- 

ders have fill risk, such that the hedging could start as 
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early as 30 minutes before close. This fits nicely into our

reasoning that r ROD predicts r LH . Hedging demand on a par-

ticular LETF can be directly measured using its market cap-

italization and leverage and this hedging demand varies

considerably in the cross-section and over time. We find

strong cross-sectional and time-series evidence that LETFs’

hedging demand on a particular index drives the magni-

tude of its market intraday momentum pattern. 

What’s so special about the end of a trading day? While

we do find evidence that large price jumps during the day

predict subsequent returns, consistent with intraday hedg-

ing activities, the bulk of the hedge seems to take place

towards the end of the day. We conjecture that there are

at least five reasons for this decision. First, from a theoreti-

cal point of view, Clewlow and Hodges (1997) show that, in

the presence of partially fixed transaction cost, it is optimal

to hedge only partially after a large price movement, im-

plying that additional hedging is required afterwards. Sec-

ond, the additional hedging could be deferred to the end

of the trading day for liquidity reasons. The U-shape in-

traday volume pattern across the equity, bond, commod-

ity, and currency markets in Fig. 1 confirms that liquidity

tends to be high right after open and before close. Further,

spreads are generally lower and market depth higher when

trading towards the close. This is another reason why in-

vestors may not fully hedge their positions immediately af-

ter a jump during the day and will leave the bulk of hedg-

ing to be done in the last half hour, when liquidity is gen-

erally better, especially for trading larger quantities. 

Third, while hedging is partial during the day, it tends

to be complete at the end of the day to protect against

overnight risk. Brock and Kleidon (1992) and Hong and

Wang (20 0 0) show that lower liquidity and higher price

risk overnight makes it optimal for market makers to close

delta positions before overnight. Fourth, holding positions

overnight typically incurs higher capital needs and invest-

ment frictions. For example, Bank for International Settle-

ments (BIS) capital requirements are driven by deltas at

close. Further, margin requirements generally increase for

overnight positions, while lending fees and margin inter-

est are typically charged only on positions held overnight

( Bogousslavsky, 2020 ). As a consequence, holding risky po-

sitions overnight not only comes with higher price risks,

but also with higher capital requirements. Market partic-

ipants therefore have an incentive to reduce delta at the

end of the day to free up capital and save cost. Finally, as

we have demonstrated, market makers of index products

such as LETFs have little choice but to hedge at the end of

the day. 3 

Besides hedging demand, other factors could

also contribute to the market intraday momentum.

Gao et al. (2018) discuss two: infrequent portfolio rebal-

ancing and late informed trading. Under the infrequent

rebalancing explanation, some institutional investors ef-

fectively choose to rebalance their portfolios in the first

half hour and others in the last half hour. Rebalancing in

the same direction can thus generate momentum intraday.
3 The same holds for market makers of variance swaps, as payoff of a 

variance swap is calculated based on the closing levels of the underlying 

index. 

379 
Under the late informed trading explanation, traders who 

are informed late trade in the last 30 minutes. Hence, 

the same information is incorporated into prices during 

both the first and the last 30 minutes, resulting in mo- 

mentum. Both explanations hinge on the strong U-shaped 

intraday trading volume pattern, as informed trading and 

rebalancing are expected to primarily take place at the 

start and end of the trading session, when liquidity is high 

( Admati and Pfleiderer, 1988; Bogousslavsky, 2016 ). The 

fact that r ROD better predicts r LH than r ONF H suggests that 

returns during the day also matter, and that hedging is an 

important driver of market intraday momentum. 

We conduct two additional tests that further differenti- 

ate hedging demand from informed trading. We first notice 

that under the hedging explanation, the predictability of 

r LH reflects transitory price pressure and should therefore 

be reverted in the future. In contrast, the informed trading 

explanation builds upon the arrival of fundamental infor- 

mation, which should cause permanent price impact, and 

hence no reversal in predictability. Empirically, in all four 

asset classes, returns in the next three days are opposite to 

those of r LH . For equities, bonds, and commodities, there is 

a highly significant mean-reversion, consistent with transi- 

tory price pressure, which arises from hedging. 

For another piece of evidence supporting the hedging 

channel instead of informed trading, we turn to the under- 

lying market for S&P 500, which closes at 4pm ET, at which 

time most related options and levered ETFs also settle. Yet 

futures contracts on the S&P 500 index still trade actively 

at substantial volume for another 15 minutes until the fu- 

tures settles at 4:15pm ET, so informed trading at sufficient 

liquidity can well take place after 4pm ET. We find that the 

return predictability of r ROD does not extend to the futures 

return beyond 4pm ET, which seems hard to reconcile with 

the informed trading channel. 

Our paper contributes to the voluminous literature on 

return momentum. In the cross-section, winners in the 

past six months to one year earn higher returns up to 

one year in the future (see Jegadeesh and Titman, 1993 , 

among others). Similarly in the time series, the past one- 

year returns of an asset positively predict its future re- 

turns across many asset classes (see Moskowitz et al., 2012 , 

among others). Instead, we focus on market momentum 

within a trading day. In this regard, our paper is most 

closely related to Gao et al. (2018) but differs in several 

aspects. Our analysis is much more comprehensive in its 

coverage, spanning indices and futures contracts across all 

major asset classes between 1974 and 2020. The market in- 

traday momentum effect we observe is also different from 

theirs. And, most importantly, we discover a novel underly- 

ing economic force, which seems to be increasingly promi- 

nent. In a related study Elaut et al. (2018) show intra- 

day momentum in the RUB/USD currency pair since 2005, 

which they attribute to dealers closing positions overnight. 

Our paper also relates to a growing literature on in- 

traday price patterns. Recently, Lou et al. (2019) reported 

strong overnight and intraday return continuation and an 

offsetting cross-period reversal at the individual stock level 

and in equity return factors (see also Bogousslavsky, 2020; 

Hendershott et al., 2020 ). Muravyev and Ni (2019) and 

Goyenko and Zhang (2019) observe strong intraday and 
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Fig. 1. Trading volume distribution during the day. This figure shows the average trading volume as a fraction of total daily volume per time bucket for 

each asset class. The time buckets are (1) the “first half an hour” ( F H, the first 30 minutes after the market open), (2) the “middle of the day” ( M, from the 

end of F H to an hour before the market close), (3) the “second-to-last half an hour” ( SLH, the second-to-last 30 minute interval), and (4) the “last half an 

hour” ( LH, the last 30 minutes before the market close). Since bucket M contains more than 30 minutes, we divide its volume by the number of minutes 

in the bucket and multiply by 30, such that all buckets represent volume per 30 minutes. Per market, we divide the buckets’ volumes by the daily volume 

and average over time to get the average volume fractions per market. For each asset class, we then take the average over the markets belonging to that 

asset class. Shown are the results for equity index futures (Panel (a)), government bond futures (Panel (b)), commodity futures (Panel (c)), and currency 

futures (Panel (d)). Samples range from July 2003 to May 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

overnight differences in option returns. In subsequent

work, Barbon and Buraschi (2020) show that gamma hedg-

ing also drives intraday momentum and reversal patterns

in individual stocks throughout the trading day. Further,

Heston et al. (2010) find evidence of intraday return sea-

sonality in the cross-section of stocks: returns continue

during the same half-hour intervals as in previous trad-

ing days, lasting from 1 to up to 40 trading days. While

these studies focus on individual stocks and their options,

our paper focuses on indices across a broad range of asset

classes. 4 We also find market intraday momentum to be

distinct from intraday return seasonality, with r ROD contin-

uing to predict r LH even after controlling for r LH from pre-

vious days. 
4 In addition, several studies utilize intraday price data to exam- 

ine intraday volatility ( Chang et al., 1995 ) or the efficiency of volatil- 

ity estimators. Examples include Bollerslev et al. (20 0 0) , Martens and 

Van Dijk (2007) , and Bollerslev et al. (2018) . 

380 
Our results reveal that hedging demand coming from 

options and LETFs amplifies price changes and affects mar- 

ket return dynamics over several days. Several other recent 

studies link the rise in indexing products (like ETFs) to side 

effects such as the amplification of fundamental shocks 

( Hong et al., 2012 ), excessive co-movement ( Barberis et al., 

20 05; Greenwood, 20 05; Greenwood, 20 08; Da and Shive, 

2018 ), a deterioration of the firm’s information envi- 

ronment ( Israeli et al., 2017 ), increased non-fundamental 

volatility in individual stocks ( Ben-David et al., 2018 ) and 

VIX and commodity futures markets ( Todorov, 2019 ), and 

non-fundamental shocks at the market level that result 

in price reversals ( Baltussen et al., 2019 ). Intraday gamma 

hedging demand effects could contribute to short-term 

negative market reversals shown in the latter paper. In 

a related study, Bogousslavsky and Muravyev (2019) ar- 

gue that an increase in indexing is associated with an in- 

crease in market close volumes and distortions in closing 

price. These results are broadly consistent with the view in 
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6 
Wurgler (2011) that indexing can affect the general prop-

erties of markets. 

The rest of the paper is organized as follows.

Section 2 describes our data and provides summary statis-

tics. Section 3 presents the main stylized facts about the

market intraday momentum pattern across the various

asset classes. Section 4 offers evidence supporting the

gamma hedging demand channel. Section 5 concludes. The

Appendix contains additional descriptions of the data and

various robustness results. 

2. Data 

To examine intraday momentum effects, we collect data

for the world’s largest, best traded, and most important

stock and government bond futures or indices in developed

markets around the world, as well as for commodity, and

currency futures. We obtain historical tick-by-tick data on

the major equity index, government bond, commodity and

currency futures from Tick Data LLC 

5 The data consists of

17 developed markets’ equity futures (6 North American, 8

European, 3 Asian or Australian), 12 of which are also cov-

ered by data on their underlying equity indices; 16 devel-

oped markets bond futures (6 North American, 7 European,

3 Asian or Australian); 21 commodity futures (5 metals, 4

energies, 12 softs); and 8 currency futures with the sample

period ranging from December 1974 to May 2020. 

We retrieve one-minute intervals containing the corre-

sponding open price, close price and trade volume. Volume

data is available from 2003 onwards. We consider the most

liquid contract (generally the nearest-to-delivery contract)

and roll it over when the daily tick volume of the next

back-month contract exceeds the current contract. Follow-

ing the procedure for intraday data filtering in Barndorff-

Nielsen et al. (2008) , we filter the data by subsequently

(i) removing all observations with non-positive prices, (ii)

removing all non-business days, (iii) removing all days in

which the exchange closed earlier (such as Memorial Day),

and (iv) removing all days in which the total traded vol-

ume is less than 100 contracts. This procedure ensures that

the sample consists of regular trading days. Appendix A

provides a detailed overview of the included futures con-

tracts. 

To determine ON, FH, M, SLH , and LH hours, we estab-

lish the opening and closing times of markets using the

following procedure. We select the observations that cor-

respond to the “common” trading hours of the market (i.e.,

the openings hours of the cash (and ETF) market in line

with Gao et al. (2018) ), which typically differ from fu-

tures’ trading hours (futures trade for extended time pe-

riods, nowadays often close to 24 hours a day). Our mo-

tivation for this choice is that futures are derivatives and

are expected to behave like their underlying instruments;

these are the moments at which positions are most likely

rebalanced. This corresponds to the trading hours of the

underlying for equity futures; e.g., we select the observa-

tions of the S&P E-Mini between 09:30 and 16:00, as these

are the trading hours of the S&P 500. Futures are traded
5 www.tickdata.com . 

381 
nearly round-the-clock, but most of the trading happens 

during the hours the underlying is trading. Trading volume 

outside of these hours is typically substantially lower. By 

contrast, the highest levels of trading volume clearly hap- 

pen around open and close of the underlying equity index. 

As equity markets have clear trading hours, it is straight- 

forward to select the trading hours of the equity index it- 

self. We correct for changes in trading hours over our sam- 

ple, as, for example, the S&P 500 opened 30 minutes later 

before 1985. 6 

For futures on non-equity assets, it is not that straight- 

forward to select the trading hours, as, for example, gov- 

ernment bonds are generally traded over the counter. Fol- 

lowing the patterns in equity markets, we select trading 

hours of government bond futures based on volume plots 

and selecting “open” and “close” times based on spikes in 

volume. These spikes consistently happen at preset times, 

signaling their suitability as opening and closing times. For 

all but Australian and Japanese bond futures, this results in 

using the regular opening hours of the futures as open, and 

the end of the daily settlement period as close. We use the 

regular trading hours of Australian and Japanese futures as 

trading hours. 

The currency futures we use are all U.S. listed. These 

futures show volume spikes at 8:21 and 15:00, which cor- 

respond to the open outcry hours of options on those fu- 

tures; 15:00 also happens to be the end of the daily settle- 

ment period for these futures. 

The commodity futures in our sample have been sub- 

ject to several changes in trading hours. Nowadays, most 

of these futures trade almost 24 hours a day, but this used 

to be different. Before the futures traded continuously, we 

consider the actual trading hours of the futures as our 

trading hours. After the introduction of continuous trad- 

ing, we select trading hours based on volume plots, as is 

the practice for government bond futures and currency fu- 

tures. 

For each of the asset classes, a more detailed descrip- 

tion of the sample, along with trading hours at the end of 

our sample, can be found in Appendix A. The trading hours 

we consider over time and average volume plots are avail- 

able upon request. 

To examine the presence of intraday return predictabil- 

ity, we calculate the return of buying at previous day’s 

( t − 1 ) close (c) and selling 30 minutes after today’s ( t) 

opening (o) for each futures or index, 

r ONF H,t = 

P o+30 ,t 

P c,t−1 

− 1 , (1) 

and every following half-hour return until close. 

We argue that the return until the last half hour, the re- 

turn of buying at previous day’s close and selling 30 min- 

utes before today’s close, 

r ROD,t = 

P c−30 ,t 

P c,t−1 

− 1 , (2) 
For several equity index futures, the standard contracts were quickly 

outgrown in terms of traded volume by their mini versions. To obtain the 

largest sample, we first consider the standard contracts and replace them 

with the mini versions after its introduction. 

http://www.tickdata.com
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predicts the last half-hour return. To investigate the added

value of considering the return until the last half hour over

the first half-hour return, we also consider the return be-

tween the end of the first half hour and the last hour and

the second-to-last half hour, 

r M,t = 

P c−60 ,t 

P o+30 ,t 

− 1 (3)

r SLH,t = 

P c−30 ,t 

P c−60 ,t 

− 1 . (4)

We remove all observations outside of the trading hours

we consider a trading day. This way, the overnight return,

which is contained in the first half-hour return, is com-

puted using the price at our closing time on the previous

day: e.g., a German future usually trades between 08:00

and 22:00. When adjusting the time frame to 08:00–17:15,

r ONF H is computed over the closing price at 17:15 yesterday

and the closing price of the first half hour today, 08:30. 

For each asset class, we construct various groups, one

of which contains all futures belonging to that asset class.

Within equity index and bond futures, we consider ge-

ographical groups for U.S.-based futures (“USA”), futures

from Europe (“EU”), and futures from Australia or Asia

(“Australasia”). Commodity futures are not country specific,

such that we consider categorical groups for metals, ener-

gies, and softs. 

Table 1 lists the tickers and trading hours for all the

futures contracts we used in the paper. 

3. Market intraday momentum everywhere 

In this section, we show a robust market intraday mo-

mentum effect in all four asset classes we examine. 

We consider several regression specifications for pre-

dicting the last half-an-hour return( r LH ). In the first spec-

ification, the only predictor is the return from previous

close to the end of the first half an hour ( r ONF H ), as in

Gao et al. (2018) : 

r LH,t = α + βONF H · r ONF H,t + ε t . (5)

In the second specification, we consider multiple pre-

dictors. In addition to r ONF H , we also include the return

during the middle of the day ( r M 

) and the return in the

second-to-last half an hour ( r SLH ): 

r LH,t = α + βONF H · r ONF H,t + βM 

· r M,t + βSLH · r SLH,t + ε t . 
(6)

In the third specification, we combine the returns from

all three periods into the return during the rest of the day

( r ROD ): 

r LH,t = α + βROD · r ROD,t + ε t . (7)

We also compute the out-of-sample (OOS) R 2 to mea-

sure the out-of-sample predictability for each individual

market. A positive OOS R 2 implies that the model makes

better forecasts, i.e., has a lower mean squared predic-

tion error (MSPE), than when using the recursive historical

mean as a prediction for the last half-hour return. For each

individual market, we make forecasts using an expanding
382 
window, requiring at least 500 observations, or about two 

years of data. 

We then define the OOS R 2 as follows: 

R 

2 
OOS = 1 −

∑ T 
t=1 (r LH,t − ˆ r LH,t ) 

2 

∑ T 
t=1 (r LH,t − r̄ LH,t ) 2 

, (8) 

where ˆ r LH,t is the predicted last half-hour return on day t

and r̄ LH,t is the historical average last half-hour return until 

t − 1 (expanding window). 

To see whether the MSPE is significantly lower than us- 

ing the recursive historical mean, we perform a Clark and 

West (2007) test. First, define f t , 

f t = (r LH,t − r̄ LH,t ) 
2 − ((r LH,t − ˆ r LH,t ) 

2 − ( ̄r LH,t − ˆ r LH,t ) 
2 ) , 

(9) 

and the test statistic follows from regressing f t on a con- 

stant. A significant positive constant implies that predic- 

tor ˆ r LH,t , the first half-hour return or return until the last 

half hour before close, results in a significantly lower MSPE 

than when using r̄ LH,t , the recursive historical mean. 

3.1. Baseline results 

In our analyses, we first pool together futures contracts 

in the same asset class and the regressions’ results are pro- 

vided in Table 2 . Panels A through D report the results 

for equity, bond, commodity, and currency futures, respec- 

tively. 

To the best of our knowledge, there is no pooled out- 

of-sample R 2 measure, so we define a measure that rep- 

resents a pooled OOS R 2 . Define F t as the futures available 

at day t and n (F t ) the number of futures available on day 

t . We define r LH, f,t as the last half-hour return for future 

f ∈ F t on day t , ˆ r LH, f,t our prediction for the last half hour, 

and r̄ LH, f,t the historical average last half-hour return until 

t − 1 . Then, R 2 OOS is defined as: 

R 

2 
OOS = 1 −

∑ T 
t=1 

∑ 

f∈ F t 
(r LH, f,t −ˆ r LH, f,t ) 

2 

n (F t ) 

∑ T 
t=1 

∑ 

f∈ F t 
(r LH, f,t −r̄ LH, f,t ) 2 

n (F t ) 

. (10) 

Gao et al. (2018) examine for ten equity ETFs and one 

bond ETF how the return in each of the 30-minute in- 

tervals during the day predicts the return in the last half 

an hour. They find r ONF H to have the strongest predictive 

power, followed by r SLH . Panel A of Table 2 confirms this 

pattern in an extended sample period and across different 

stock markets. Column (1) finds a strong predictive power 

in r ONF H on a stand-alone basis. Column (2) presents the 

results for Eq. (6) ; r ONF H is again highly significant ( t-value 

= 6.46), followed by r SLH ( t-value = 4.82). Interestingly, the 

returns in other 30-minute intervals, when combined into 

one r M 

variable, are also significant in predicting r LH ( t- 

value = 4.43). In other words, all returns during the day 

(prior to the last half an hour) have predictive power on 

r LH . 

In Column (3) of Panel A, we find that combining all 

returns during the day (prior to the last half an hour) 

into r ROD generates the strongest predictive power. First, 

r ROD has the highest t-value, 7.29. In addition, r ROD has the 

highest out-of-sample R -squared ( R 2 ), 2.88%. In contrast, 

OOS 
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Table 1 

Overview of futures sample. Trading hours are based on underlying trading hours (equity index futures) or on volume patterns. Trading hours are expressed 

in the local exchange time zone. U.S.-listed futures are expressed in Eastern Standard Time (EST). An asterisk indicates futures for which the sample period 

is extended by considering the regular future before the mini contract was introduced. 

Future Symbol Trading hours Future Symbol Trading hours 

Equity index futures Commodity futures 

Dow Jones futures ∗ YM 9:30 - 16:00 Gold futures COMEX GC 8:20 - 13:30 

S&P 500 futures ∗ ES 9:30 - 16:00 Copper high grade futures COMEX HG 8:10 - 13:00 

NASDAQ 100 futures ∗ NQ 9:30 - 16:00 Silver futures COMEX SV 8:25 - 13:25 

Russell 2000 ICE/CME ∗ ER 9:30 - 16:00 Palladium futures NYMEX PA 8:30 - 13:00 

S&P 400 MidCap futures ∗ MI 9:30 - 16:00 Platinum futures NYMEX PL 8:20 - 13:05 

Amsterdam AEX Index futures EO 9:00 - 17:30 Light crude oil futures NYMEX CL 9:00 - 14:30 

DAX Index futures DA 9:00 - 17:30 Heating oil #2 futures NYMEX HO 9:00 - 14:30 

Swiss Market Index futures SW 9:00 - 17:30 Natural gas futures NYMEX NG 9:00 - 14:30 

EURO STOXX 50 Index futures XX 9:00 - 17:30 RBOB gasoline futures NYMEX XB 9:00 - 14:30 

CAC 40 Index futures CF 9:00 - 17:30 Soybean oil futures BO 8:30 - 13:20 

IBEX 35 Index futures IB 9:00 - 17:30 Corn futures CN 8:30 - 13:20 

FTSE MIB Index futures II 9:00 - 17:30 Soybean meal futures SM 8:30 - 13:20 

FTSE 100 Index futures FT 8:00 - 16:30 Soybean futures SY 8:30 - 13:20 

Nikkei 225 futures SGX EN 8:00 - 14:00 Wheat futures CBOT WC 8:30 - 13:20 

TOPIX futures JPX TP 9:00 - 15:00 Cocoa futures CC 9:45 - 18:30 

ASX SPI 200 Index futures XP 10:00 - 16:00 Cotton #2 futures CT 2:00 - 19:20 

S&P Canada 60 futures PT 9:30 - 16:00 Coffee C futures KC 9:15 - 18:30 

Sugar #11 futures SB 8:30 - 18:00 

Government bond futures Feeder cattle futures FC 8:30 - 13:05 

US 2-year T-note futures TU 8:20 - 15:00 Live cattle futures LC 8:30 - 13:05 

US 5-year T-note futures FV 8:20 - 15:00 Lean hogs futures LH 8:30 - 13:05 

US 10-year T-note futures TY 8:20 - 15:00 

US 30-Year T-bond futures US 8:20 - 15:00 Currency futures 

Ultra T-bond futures UB 8:20 - 15:00 Australian dollar futures AD 7:20 - 14:00 

Euro-Schatz 2-year futures BZ 8:00 - 17:15 British pound futures BP 7:20 - 14:00 

Euro-Bobl 5-year futures BL 8:00 - 17:15 Canadian dollar futures CD 7:20 - 14:00 

Euro-Bund 10-year futures BN 8:00 - 17:15 Euro FX futures EC 7:20 - 14:00 

Euro-Buxl 30-year futures BX 8:00 - 17:15 Japanese yen futures JY 7:20 - 14:00 

Short-term Euro-BTP futures BS 8:00 - 17:15 Mexican peso futures ME 7:20 - 14:00 

Long-term Euro-BTP futures BT 8:00 - 17:15 New Zealand dollar futures NZ 7:20 - 14:00 

Long gilt futures GL 8:00 - 16:15 Swiss franc futures SF 7:20 - 14:00 

Australian 3-year bond futures AY 8:30 - 16:30 

Australian 10-year bond futures AX 8:32 - 16:30 

Japanese 10-year bond futures JPX JB 8:45 - 15:00 

Canadian 10-year futures CB 8:20 - 15:00 

Table 2 

Market intraday momentum regressions. This table shows the pooled regression results of regressing the last half-hour return ( r LH ) on a constant and the 

first half hour return ( r ONFH ), the return from first half hour until last hour ( r M ) and second-to-last half hour ( r SLH ), and the return until the last half hour 

( r ROD ), for equity index futures (Panel A), government bond futures (Panel B), commodity futures (Panel C), and currency futures (Panel D). Trading hours 

of equity futures are based on the trading hours of their underlying markets, for other futures trading hours are matched to their volume patterns. The 

intercept is not reported. T -statistics in parentheses are computed using standard errors that account for clustering on time and market (in case number 

of clusters exceeds ten), see Cameron et al. (2011) . Samples range from December 1974 to May 2020. Significance at the 1%, 5%, and 10% level is denoted 

by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and slope coefficients are multiplied by 100. 

Panel A Equity futures Panel B Bond futures 

βONFH 4 . 86 
(6 . 52) 

∗∗∗ 4 . 72 
(6 . 46) 

∗∗∗ 1 . 59 
(4 . 65) 

∗∗∗ 1 . 66 
(4 . 99) 

∗∗∗

βM 2 . 92 
(4 . 43) 

∗∗∗ 1 . 97 
(5 . 93) 

∗∗∗

βSLH 9 . 08 
(4 . 82) 

∗∗∗ 3 . 11 
(1 . 68) 

∗

βROD 4 . 18 
(7 . 29) 

∗∗∗ 1 . 90 
(5 . 97) 

∗∗∗

R 2 (%) 1.49 2.74 2.45 0.2 0.66 0.64 

R 2 OOS (%) −1.71 2.22 2.88 −0.05 0.56 0.60 

Panel C Commodity futures Panel D Currency futures 

βONFH 1 . 33 
(3 . 04) 

∗∗∗ 1 . 29 
(3 . 02) 

∗∗∗ 0 . 91 
(4 . 58) 

∗∗∗ 0 . 91 
(4 . 61) 

∗∗∗

βM 0 . 85 
(2 . 73) 

∗∗∗ 0 . 37 
(1 . 60) 

βSLH 2 . 24 
(1 . 16) 

0 . 62 
(0 . 33) 

βROD 1 . 21 
(3 . 63) 

∗∗∗ 0 . 72 
(4 . 57) 

∗∗∗

R 2 (%) 0.09 0.15 0.15 0.19 0.21 0.19 

R 2 OOS (%) −0.01 −0.14 0.07 0.28 0.03 0.26 

383 
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Table 3 

Market intraday momentum: horse race results. This table reports the pooled regressions results for Eq. (5) (first two colmuns), Eq. (7) (middle comuns), or 

Eq. (11) (last three colmuns), conditioned on whether the first half-hour return ( r ONFH ) and the return until the last half hour ( r ROD ) (i) have the same sign 

(row “Equal sign”), (ii) have a different sign (row “Different sign”), and (iii) without conditioning (row “Full sample”). Results are shown for equity index 

futures (Panel A), government bond futures (Panel B), commodity futures (Panel C), and currency futures (Panel D). T -statistics in parentheses are computed 

using standard errors that account for clustering on time and market (in case number of clusters exceeds ten), see Cameron et al. (2011) . Samples range 

from December 1974 to May 2020. Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and slope coefficients are 

multiplied by 100. 

βONFH R 2 (%) βROD R 2 (%) βONFH βROD R 2 (%) 

Panel A: Equity index futures 

Equal sign 5 . 75 
(6 . 78) 

∗∗∗ 2.67 4 . 26 
(7 . 19) 

∗∗∗ 3.13 1 . 80 
(1 . 44) 

3 . 23 
(3 . 39) 

∗∗∗ 3.21 

Different sign −3 . 71 
(−2 . 76) 

∗∗∗ 0.28 3 . 59 
(3 . 54) 

∗∗∗ 0.80 −0 . 46 
(−0 . 33) 

3 . 44 
(3 . 09) 

∗∗∗ 0.79 

Full sample 4 . 86 
(6 . 52) 

∗∗∗ 1.49 4 . 18 
(7 . 29) 

∗∗∗ 2.45 1 . 14 
(1 . 39) 

3 . 65 
(5 . 28) 

∗∗∗ 2.49 

Panel B: Government bond futures 

Equal sign 1 . 94 
(5 . 04) 

∗∗∗ 0.41 2 . 00 
(6 . 43) 

∗∗∗ 0.91 −1 . 29 
(−2 . 77) 

∗∗∗ 2 . 73 
(5 . 91) 

∗∗∗ 0.97 

Different sign −1 . 35 
(−1 . 39) 

0.04 1 . 32 
(1 . 84) 

∗ 0.14 −0 . 23 
(−0 . 19) 

1 . 25 
(1 . 48) 

0.14 

Full sample 1 . 59 
(4 . 65) 

∗∗∗ 0.20 1 . 90 
(5 . 97) 

∗∗∗ 0.64 −0 . 41 
(−1 . 04) 

2 . 07 
(5 . 17) 

∗∗∗ 0.65 

Panel C: Commodity futures 

Equal sign 1 . 47 
(3 . 23) 

∗∗∗ 0.14 1 . 19 
(3 . 50) 

∗∗∗ 0.18 0 . 23 
(0 . 36) 

1 . 06 
(2 . 09) 

∗∗ 0.18 

Different sign −0 . 47 
(−0 . 56) 

0.00 1 . 32 
(3 . 12) 

∗∗∗ 0.09 0 . 94 
(0 . 96) 

1 . 52 
(3 . 07) 

∗∗∗ 0.09 

Full sample 1 . 33 
(3 . 04) 

∗∗∗ 0.09 1 . 21 
(3 . 63) 

∗∗∗ 0.15 0 . 17 
(0 . 39) 

1 . 13 
(3 . 02) 

∗∗∗ 0.15 

Panel D: Currency futures 

Equal sign 0 . 90 
(4 . 41) 

∗∗∗ 0.24 0 . 74 
(4 . 73) 

∗∗∗ 0.25 0 . 42 
(1 . 03) 

0 . 45 
(1 . 46) 

0.26 

Different sign 1 . 05 
(1 . 33) 

0.05 0 . 46 
(0 . 69) 

0.02 1 . 86 
(2 . 18) 

∗∗ 1 . 09 
(1 . 46) 

0.14 

Full sample 0 . 91 
(4 . 58) 

∗∗∗ 0.19 0 . 72 
(4 . 57) 

∗∗∗ 0.19 0 . 52 
(1 . 51) 

0 . 39 
(1 . 45) 

0.21 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

in this extended equity futures index sample, r ONF H has a

negative R 2 
OOS 

, −1.71%. Interestingly, the R 2 
OOS 

of r ROD is also

higher than that of the case where r ONF H , r M 

, and r SLH are

used separately. 

Panels B to D show similar patterns in bond, com-

modity, and currency futures markets. While r ONF H al-

ways positively and significantly predicts r LH , r ROD has gen-

erally stronger predictive performance. In almost all as-

set classes, r ROD has the highest t-value and the highest

R 2 
OOS 

. The only exception is in the currency futures mar-

ket (Panel D), in which r ONF H has a slightly higher t-value

and R 2 
OOS 

than r ROD . This is probably due to the fact that

the U-shaped intraday volume pattern is the least pro-

nounced in the currency futures market. Fig. 1 (d) shows

that the first half an hour dominates and the volume drops

afterwards. 

The four tables in Appendix B report the predictive re-

gression results for each individual futures contract in eq-

uities ( Table B1 ), bonds ( Table B2 ), commodities ( Table B3 ),

and currencies ( Table B4 ). In each of the four tables, Panel

A first reports the pooled results by regions (USA, Europe,

Australasia). Panel B then reports the results contract by

contract. 

The four tables present overwhelming evidence that

r ROD positively and significantly predicts r LH . Focusing on

the R 2 
OOS 

of r ROD in the equity futures market ( Table B1 ),

out of a total of 17, the R 2 OOS is positive and significant for

14 contracts. In addition, r ROD has a higher R 2 
OOS 

than r ONF H 

for 10 contracts. In Appendix C, we show that these re-

sults are very similar for stock market indices included in
384 
our sample instead of index futures. This is not surprising 

given the no-arbitrage relation between the index futures 

and the underlying index. 

In the bond futures market ( Table B2 ), out of a total 

of 16, the R 2 
OOS 

is positive and significant for 11 contracts; 

r ROD has a higher R 2 
OOS 

than r ONF H for 13 contracts. The re- 

sults are slightly weaker for commodity futures ( Table B3 ) 

and currency futures ( Table B4 ). Still, for about 40% to 50% 

of the contracts, r ROD has a positive and significant R 2 
OOS 

. Its 

performance, however, is more comparable to that of r ONF H 

in these two asset classes. 

Based on the evidence across multiple asset classes and 

markets in an extended sample period, we conclude that 

the rest-of-day return ( r ROD ) positively and significantly 

predicts the last half-an-hour return ( r LH ) and this robust 

pattern better describes market intraday momentum ev- 

erywhere. 

3.2. Horse race between r ONF H and r ROD 

The fact that returns during all intervals of the day mat- 

ter for predicting r LH suggests a new driver of market in- 

traday momentum: market makers’ hedging demand. To 

the extent that market makers want to hedge their expo- 

sure right before the market close (i.e., during the LH pe- 

riod) and their exposure tends to be the reverse of the sign 

of the return during the rest of the day (or they are short 

gamma), their hedging activity will push r LH in the same 

direction as r ROD , resulting in the market intraday momen- 

tum we have shown so far. 
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Under this hedging-based explanation, r LH should

be best predicted by r ROD , not just r ONF H . To test this

conjecture directly, we estimate: 

r LH,t = α + βONF H · r ONF H,t + βROD · r ROD,t + ε t . (11)

We also estimate Eq. (11) separately for the cases in

which r ROD and r ONF H have the same or different signs. The

results are presented in Table 3 for the four asset classes

separately in Panels A through D. 

The evidence in Table 3 is clear. When r ROD and r ONF H 

are of the same sign, r ROD tends to be the better predictor

of r LH , in terms of both t-value and R -squared. When r ROD

and r ONF H have opposite signs, r ROD is also clearly better,

apart from the result for currencies. The only reason r ROD

and r ONF H can have opposite signs is that | (r M 

+ r SLH ) | >
| (r ONF H ) | . In equity, bond, and commodity futures markets,

the coefficient on r ONF H has the wrong sign but the coef-

ficient on r ROD is still positive and highly significant. The

currency futures market is again the exception with the co-

efficients for both r ROD and r ONF H positive but insignificant.

In general, the result supports the negative gamma

hedging hypothesis in which r ROD should be more relevant

than r ONF H in determining the hedging demand towards

the end of the trading hours. Also for the full sample,

i.e., without conditioning, we see clearly that r ROD is the

strongest predictor for r LH for equities, bonds, and com-

modities, leaving r ONF H insignificant. 

3.3. Intraday seasonality 

Heston et al. (2010) find a striking intraday seasonality

in the cross-section of individual stock returns. The return

of a stock over a half-hour trading interval today positively

and significantly predicts its return during the same inter-

val tomorrow and on subsequent days, potentially up to

40 days. They attribute this seasonality to systematic trad-

ing and institutional fund flows. How does market intra-

day momentum compare to such an intraday seasonality?

We examine this question in Table 4 , where we repeat the

regressions in Table 2 after including yesterday’s last half-

hour return ( r LH t−1 
) as an additional predictor. 

We do not find positive and significant coefficients on

r LH t−1 
except in the case of currency futures. In fact, the co-

efficients are negative and significant among equity index

futures, suggesting that intraday seasonality in the cross-

section of individual stocks does not aggregate up to time-

series intraday seasonality at the market level. One possi-

ble explanation is that the former effect is cross-sectional,

hence largely ignoring general market movements, while

the latter is a time-series effect that especially captures

general market movements. More importantly, including

r LH t−1 
hardly changes the conclusions regarding market in-

traday momentum we reached in Table 2 . Coefficients on

r ROD in Table 4 are almost identical to those in Table 2 . We

have confirmed (unreported for the sake of brevity) that

these results remain similar even when 5 up to 40 lags of

r LH are included. In other words, market intraday momen-

tum seems distinct from intraday seasonality in the cross-

section. The results further support the negative gamma

hedging channel in which only intraday returns during

day- t should matter. 
385 
3.4. Intraday momentum over time 

In this section, we show the pooled regression results 

for the subsamples: 1974–1999 and 20 0 0–2020. Table 5 

shows the results for equity index (Panel A), government 

bond (Panel B), commodity (Panel C), and currency futures 

(Panel D). The results are similar in the first and second 

half of our sample. In addition to r ONF H , r M 

and r SLH also 

predict returns in the last half hour. As a result, r ROD gen- 

erally has a higher adjusted R 2 than r ONF H in both subsam- 

ples. Results also confirm that r ROD wins the direct horse 

race against r ONF H in both subsamples, especially when 

their signs differ, as shown in Appendix D. 

Overall, intraday momentum as predicted by r ROD is 

present in both subsamples, indicating that there always 

have been hedgers who have to trade in the same direction 

as the market has moved. For example, portfolio insurance 

was very popular during the first period ( Tosini, 1988 ), op- 

tion activity increased a lot since the end of the first pe- 

riod, and leveraged ETF activity strongly gained traction as 

of 2006 ( Cheng and Madhavan, 2010 ). 

3.5. Economic significance market intraday momentum 

Next, we investigate the economic significance of mar- 

ket intraday momentum in futures markets. To this end, 

we examine a market-timing strategy that uses the predic- 

tor variables as timing signals and evaluate their trading 

profits. We look at both r = r ONF H and r = r ROD as predic- 

tors. If the predictor return is positive, we will earn the last 

half-hour return, r LH , otherwise we will earn −r LH . Hence, 

the timing returns are: 

η(r) = 

{
r LH , if r > 0 . 

−r LH , otherwise . 
(12) 

We use two different benchmark strategies to compare 

the timing strategies. The first benchmark, Always Long, has 

a long position during the last half hour irrespective of 

the sign of the signal. The other benchmark buys at the 

start of the sample and sells at the end of the sample, May 

2020. 

The trading strategy results are presented in Table 6 , 

showing annualized returns, volatilities, and Sharpe ratios, 

as well as daily success rates. We find overall positive re- 

turns, very high Sharpe ratios, and success rates well above 

0.50 on the timing strategies. Further, r ROD produces higher 

average returns and Sharpe ratios than r ONF H in all asset 

classes but currencies. Moreover, the market-timing strate- 

gies based on r ROD outperform passive benchmark strate- 

gies in terms of Sharpe ratios. 

Fig. 2 provides a visual illustration of the strategy re- 

turns and their consistency over time. We plot the cumu- 

lative (log) performance of the market intraday momen- 

tum strategy based on r ROD (solid line) and the bench- 

mark Always Long strategy (dashed line). Clearly, condition- 

ing positions in LH to equal r ROD outperforms a passive 

Always Long strategy. This outperformance is generally con- 

sistent over time, as is evident from the upward-sloping 

solid lines. Focusing on the equity asset class, the market 

intraday momentum strategy also performs strongly dur- 
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Table 4 

Market intraday momentum: seasonality robustness. This table shows the pooled regression results of regressing the last half-hour return ( r LH ) on a 

constant and the first half-hour return ( r ONFH ), return from the first half hour until the last hour ( r M ) and second-to-last half hour ( r SLH ), the return until 

the last half hour ( r ROD ), and the last half-hour return of the previous day ( r LH t−1 
) for equity index futures (Panel A), government bond futures (Panel B), 

commodity futures (Panel C), and currency futures (Panel D). Trading hours of equity futures are based on the trading hours of their underlying markets; 

for other futures trading hours are matched to their volume patterns. The intercept is not reported. T -statistics in parentheses are computed using standard 

errors that account for clustering on time and market (in case number of clusters exceeds ten), see Cameron et al. (2011) . Samples range from December 

1974 to May 2020. Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and slope coefficients are multiplied by 

100. 

Panel A Equity futures Panel B Bond futures 

βONFH 4 . 76 
(6 . 66) 

∗∗∗ 4 . 63 
(6 . 55) 

∗∗∗ 1 . 59 
(4 . 68) 

∗∗∗ 1 . 66 
(5 . 02) 

∗∗∗

βM 2 . 97 
(4 . 54) 

∗∗∗ 1 . 98 
(6 . 00) 

∗∗∗

βSLH 8 . 83 
(4 . 95) 

∗∗∗ 3 . 13 
(1 . 69) 

∗

βROD 4 . 14 
(7 . 50) 

∗∗∗ 1 . 90 
(6 . 01) 

∗∗∗

βLH t−1 
−6 . 68 
(−2 . 66) 

∗∗∗ −6 . 56 
(−2 . 71) 

∗∗∗ −6 . 81 
(−2 . 75) 

∗∗∗ 2 . 22 
(1 . 36) 

2 . 24 
(1 . 36) 

2 . 24 
(1 . 35) 

R 2 (%) 1.94 3.17 2.91 0.25 0.71 0.69 

R 2 OOS (%) −1.40 2.51 2.77 0.00 0.61 0.66 

Panel C Commodity futures Panel D Currency futures 

βONFH 1 . 33 
(3 . 03) 

∗∗∗ 1 . 29 
(3 . 01) 

∗∗∗ 0 . 93 
(4 . 66) 

∗∗∗ 0 . 94 
(4 . 70) 

∗∗∗

βM 0 . 85 
(2 . 74) 

∗∗∗ 0 . 37 
(1 . 57) 

βSLH 2 . 27 
(1 . 18) 

0 . 57 
(0 . 30) 

βROD 1 . 21 
(3 . 63) 

∗∗∗ 0 . 73 
(4 . 62) 

∗∗∗

βLH t−1 
−1 . 04 
(−0 . 99) 

−1 . 09 
(−1 . 03) 

−1 . 07 
(−1 . 02) 

3 . 05 
(3 . 43) 

∗∗∗ 3 . 03 
(3 . 42) 

∗∗∗ 2 . 98 
(3 . 37) 

∗∗∗

R 2 (%) 0.10 0.16 0.16 0.28 0.30 0.28 

R 2 OOS (%) 0.17 0.03 0.24 0.25 0.00 0.22 

Table 5 

Market intraday momentum: subsample results. This table shows the pooled regression results of regressing the last half-hour return ( r LH ) on a constant 

and the first half-hour return ( r ONFH ), return from the first half hour until the last hour ( r M ) and second-to-last half hour ( r SLH ), and the return until the last 

half hour ( r ROD ), for equity index futures, government bond futures, commodity futures, and currency futures for the 1974–1999 (Panel A) and 20 0 0–2020 

(Panel B) subsamples. Trading hours of equity futures are based on the trading hours of their underlying markets; for other futures, trading hours are 

matched to their volume patterns. The intercept is not reported. T -statistics in parentheses are computed using standard errors that account for clustering 

on time and market (in case number of clusters exceeds ten); see Cameron et al. (2011) . Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or 
∗ , respectively. Adjusted R 2 and slope coefficients are multiplied by 100. 

βONFH R 2 (%) βONFH βM βSLH R 2 (%) βROD R 2 (%) 

Panel A: 1974–1999 

Equity 3 . 73 
(2 . 74) 

∗∗∗ 0.53 3 . 81 
(2 . 70) 

∗∗∗ 6 . 94 
(4 . 25) 

∗∗∗ 9 . 46 
(4 . 35) 

∗∗∗ 3.74 5 . 96 
(4 . 80) 

∗∗∗ 3.41 

Bonds 1 . 65 
(3 . 49) 

∗∗∗ 0.17 1 . 89 
(4 . 14) 

∗∗∗ 3 . 71 
(7 . 46) 

∗∗∗ 9 . 40 
(4 . 75) 

∗∗∗ 1.68 3 . 19 
(8 . 38) 

∗∗∗ 1.28 

Commodity 0 . 83 
(1 . 45) 

0.03 0 . 72 
(1 . 29) 

2 . 08 
(4 . 06) 

∗∗∗ 4 . 13 
(3 . 14) 

∗∗∗ 0.31 1 . 59 
(3 . 92) 

∗∗∗ 0.23 

Currency 1 . 79 
(7 . 54) 

∗∗∗ 0.68 1 . 84 
(7 . 66) 

∗∗∗ 0 . 97 
(2 . 99) 

∗∗∗ −4 . 05 
(−1 . 55) 

0.95 1 . 31 
(6 . 48) 

∗∗∗ 0.61 

Panel B: 2000–2020 

Equity 4 . 97 
(6 . 06) 

∗∗∗ 1.67 4 . 83 
(6 . 02) 

∗∗∗ 2 . 42 
(3 . 82) 

∗∗∗ 8 . 89 
(4 . 11) 

∗∗∗ 2.73 3 . 98 
(6 . 65) 

∗∗∗ 2.34 

Bonds 1 . 56 
(3 . 63) 

∗∗∗ 0.21 1 . 60 
(3 . 79) 

∗∗∗ 1 . 52 
(4 . 16) 

∗∗∗ 1 . 00 
(0 . 35) 

0.47 1 . 53 
(3 . 61) 

∗∗∗ 0.47 

Commodity 1 . 58 
(3 . 22) 

∗∗∗ 0.13 1 . 57 
(3 . 25) 

∗∗∗ 0 . 34 
(1 . 08) 

0 . 86 
(0 . 28) 

0.14 1 . 04 
(2 . 86) 

∗∗∗ 0.12 

Currency 0 . 38 
(1 . 29) 

0.03 0 . 37 
(1 . 27) 

−0 . 04 
(−0 . 12) 

3 . 44 
(1 . 41) 

0.17 0 . 33 
(1 . 45) 

0.04 

 

 

 

 

 

 

 

 

 future research. 
ing the last four months of our sample (February to May,

2020), consistent with the anecdotal evidence cited in the

beginning of the paper. 

Note that we do not consider transaction costs. Given

that trading on market intraday momentum requires fre-

quent rebalancing, the strategy as presented might not be

exploitable to many investors after accounting for transac-

tion costs. That said, this is definitely not to say that mar-

ket intraday momentum is not exploitable for investors. In

fact, several investors in especially the most liquid mar-
386 
kets are known to trade at very limited cost, and exploit- 

ing the effect in the S&P 500 futures yields a positive net 

Sharpe ratio when we assume transaction cost equal to a 

tick (a cost level faced commonly by advanced investors 

in the S&P 500 futures market). Further, market intraday 

momentum could be exploited in other manners that limit 

turnover or additional trading cost, for example, via the 

timing of already planned trades. We leave a detailed study 

of the best way to exploit market intraday momentum for 
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Table 6 

Market intraday momentum: trading strategy results. This table shows annualized average returns, standard deviations, and Sharpe Ratios (SR) together 

with the success rates of our three timing strategies, η(r ONFH ) , η(r ONFH , r ROD ) , η(r ROD ) , and two benchmark strategies, Always Long and Buy & Hold. Timing 

strategies η(r ONFH ) ( η(r ROD ) ) take a long position when the first half hour return r ONFH (return until 30 minutes before close r ROD ) is positive, and a short 

position otherwise. Timing strategy η(r ONFH , r ROD ) takes a long (short) position when both the first half-hour return and the return until 30 minutes before 

close are positive (negative) and does not trade when signs differ. The benchmark strategy Always Long is always long during the last half hour, and Buy & 

Hold opens a position at the start of each futures sample and closes this at the end of the sample (May 2020). For each asset class, a 1/ N portfolio is used 

to combine the various futures belonging to the same asset class into one portfolio. Shown are the results for equity index futures (Panel A), government 

bond futures (Panel B), commodity futures (Panel C), and currency futures (Panel D). Samples range from December 1974 to May 2020. 

Avg ret(%) Std dev(%) SR Success Avg ret(%) Std dev(%) SR Success 

Panel A: Equity index futures Panel B: Government bond futures 

η(r ONFH ) 4.21 3.95 1.07 0.55 1.08 1.33 0.81 0.53 

η(r ONFH , r ROD ) 5.47 3.42 1.60 0.61 1.57 1.10 1.42 0.58 

η(r ROD ) 6.86 3.96 1.73 0.55 2.16 1.33 1.62 0.55 

Always Long 0.44 4.20 0.11 0.53 0.48 1.42 0.34 0.53 

Buy & Hold 8.76 17.29 0.51 0.54 4.07 5.96 0.68 0.53 

Panel C: Commodity futures Panel D: Currency futures 

η(r ONFH ) 2.48 3.03 0.82 0.54 0.93 0.97 0.96 0.54 

η(r ONFH , r ROD ) 3.29 2.56 1.29 0.56 0.89 0.86 1.03 0.54 

η(r ROD ) 4.34 3.05 1.42 0.56 0.85 0.98 0.87 0.53 

Always Long −0.68 3.50 −0.19 0.51 0.49 1.13 0.43 0.52 

Buy & Hold 1.92 13.34 0.14 0.51 0.53 7.27 0.07 0.50 

Fig. 2. Strategy performance of market intraday momentum. This figure shows the cumulative performance (on a log-scale) of the η(r ROD ) timing strategy 

and the Always Long benchmark strategy per asset class. Timing strategy η(r ROD ) takes a long position when the return until 30 minutes before close r ROD is 

positive, and a short position otherwise. The benchmark strategy Always Long is always long during the last half hour. Shown are the results for equity index 

futures (Panel (a)), government bond futures (Panel (b)), commodity futures (Panel (c)), and currency futures (Panel (d)). Samples range from December 

1974 to May 2020. For each asset class, a 1/ N portfolio is used to combine the various futures belonging to the same asset class into one portfolio. 

387 
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7 We have verified the computations of SqueezeMetrics using Option- 

Metrics data over the 2002 to 2017 period, yielding virtually identical re- 

sults. 
8 Note that NGE is on average positive for most days. One possible ex- 

planation is that market makers are net short put and long call positions, 

but markets on average drift up over time in such a manner that the net 

gamma of the puts drops and the net gamma of calls rises. Another ex- 

planation for more positive NGE days could also be the choice of data. We 

like to stress that the data used in this section is limited to listed cash op- 

tions available from OptionMetrics, and we assume option market makers 

are short all puts and long all calls. We do not have data on, for example, 

OTC option positions and precise end-user option positions. This means 

that our sample misses many long puts and short calls typically done 

OTC by institutional investors (for example, many institutional investors 

buy index puts as portfolio insurance and insurers buy puts to hedge 

insurance books) and proxies end-user demand. Portfolio insurance and 

insurer hedging practices create structural option demand, in line with 

studies showing net long end-user demand to index put options ( Bollen 

and Whaley, 2004; Garleanu et al., 2008 ). Further, the net short option 

position of option market makers is believed to cause them to demand 

a volatility risk premium as compensation for exposure to volatility risk 

( Bollen and Whaley, 2004 ), a finding consistently observed across most of 

the markets we study. Industry estimates from, for example, JP Morgan 

Chase suggest that short puts are by far the most dominant positions of 

option market makers. 
4. New evidence on hedging demand 

In this section, we provide more evidence support-

ing market makers’ hedging demand as a novel driver of

the market intraday momentum phenomenon. The first

two tests provide direct evidence for the hedging channel,

while the last two tests allow us to differentiate hedging

activities from late informed trading. 

4.1. Hedging demand of option market makers 

Hedging demand of option market makers hinges on

their net gamma positions. So far, we assumed that op-

tion market makers are on average net short gamma,

and, as a result, they need to trade in the direction

of the market to rebalance their delta hedges. It is

well known that institutional investors buy index puts

as portfolio insurance ( Bollen and Whaley, 2004 ). Simi-

larly, Garleanu et al. (2008) find that end users have a

net long position in S&P 500 index options with large

net positions in out-of-the-money puts. Since there are

no natural counter-parties to these trades, market makers

must step in to absorb the imbalance. By contrast, index

call options are typically shorted by market participants,

for example, via call overwriting strategies. Goyenko and

Zhang (2019) provide evidence supporting positive net de-

mand pressures by end users for S&P 500 index puts, and

negative net demand pressures for S&P 500 index calls.

Cici and Palacios (2015) study mutual fund holdings in op-

tions, finding that, for mutual funds using options, writ-

ten calls and long (mostly index) put options represent

the majority of option positions. As a result, option market

makers are typically net short (index) put options, and net

long call options, and, as a result, often net short gamma

on average. 

By contrast, if option market makers are net long

gamma (which happens, for example, with net short put

and long call positions and markets drifting up), they will

have to trade against the market. As such, they could off-

set the effects of information and rebalancing trades, po-

tentially resulting in no market intraday momentum or

even intraday reversals. Hence, if hedging demand is a key

driver of market intraday momentum, the market intraday

momentum could be virtually absent in periods that op-

tion market makers are not net short gamma, but stronger

the more gamma they short. 

For the S&P 500 index, we proxy the net gamma ex-

posure of option market makers based on all the open in-

terest in S&P 500 index options using OptionMetrics data.

Specifically, we assume that (i) all traded options are fa-

cilitated by delta-hedgers, (ii) call options are sold by in-

vestors, and bought by option market makers, (iii) put op-

tions are bought by investors and sold by option market

makers, and (iv) option market makers hedge precisely

their option deltas. 

For a call (C) option on day t with strike price s ∈ S C t 

and maturity m ∈ M 

C 
t , the NGE is computed as: 

NGE C s,m,t = �C 
s,m,t · OI C s,m,t · 100 · P t , (13)

where �C 
s,m 

is the option’s gamma, OI C s,m 

is the option’s

open interest, and 100 is the adjustment from option con-
388 
tracts to shares of the underlying. P t is equal to the level 

of the S&P 500 index on day t . 

For a put (P) option on day t with strike price s ∈ S P t 

and maturity m ∈ M 

P 
t , the NGE is computed as: 

NGE P s,m,t = �P 
s,m,t · OI P s,m,t · (−100) · P t , (14) 

where we use the adjustment of −100 as this represents 

short gamma for option market makers and P t the level of 

the S&P 500 index on day t . 

The NGE of the S&P 500 index is then computed by 

summing all NGEs at every strike price in every available 

contract and dividing by the market value of the S&P 500 

index ( MV t ): 

N GE t = 

∑ 

s ∈ S C 
∑ 

m ∈ M 

C N GE C s,m 

+ 

∑ 

s ∈ S P 
∑ 

m ∈ M 

P N GE P s,m 

MV t 
. (15) 

Using data from OptionMetrics, we compute the NGE 

measure from 1996 until the end of 2017. We use data 

from SqueezeMetrics to extend the sample until May 

2020. 7 Fig. 3 shows the NGE for the S&P 500 over time. 

In the period from 1996 until May 2020 there have been 

2930 days with a negative NGE and 3158 with a positive 

one. 8 

A negative NGE t implies that option market makers 

will delta hedge in the same direction as the market has 

moved, in line with market intraday momentum. There- 

fore, we regress the r LH on r ROD conditional on the sign 

of the NGE. Table 7 shows that indeed intraday momen- 

tum is much more pronounced on negative NGE days. On 

days with positive NGE, however, there is no significant 

intraday momentum. This provides strong support for our 

hedging demand hypothesis, i.e., that intraday momentum 

is partially driven by option hedging demand. As discussed 

in the introduction, rebalancing and information traders 

could also show up to trigger the market intraday mo- 

mentum. However, we show that market intraday momen- 

tum is only present when, according to our proxy, op- 

tion market makers are net short gamma. But, when they 

are net long gamma, market intraday momentum is no 
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Fig. 3. Net gamma positioning for the S&P 500. This figure shows the net gamma exposure (NGE) from S&P 500 index options between January 1996 and 

May 2020. 

Table 7 

Market intraday momentum and net gamma exposure: conditional anal- 

ysis. This table reports the results of regressing r LH,t on r ROD,t , condi- 

tioned on the sign of the net gamma exposure (NGE) for the S&P 500 

futures. Newey and West (1986) robust t-statistics are shown in paren- 

theses. Samples range from January 1996 to May 2020. Significance at the 

1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 

and regression coefficients are multiplied by 100. 

Intercept βROD,t R 2 (%) 

NGE t−1 ≥ 0 0 . 00 
(0 . 17) 

0 . 82 
(1 . 03) 

0.05 

NGE t−1 < 0 −0 . 01 
(−0 . 63) 

6 . 63 
(4 . 78) 

∗∗∗ 3.58 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 8 

Market intraday momentum and net gamma exposure: regression anal- 

ysis. This table reports the results of regressing the last half-hour return 

( r LH ) on a constant, the return until the last half hour ( r ROD ), I NGE< 0 ∗ r ROD,t , 

NGE t and NGE t multiplied by r ROD for the S&P500 futures. X t is computed 

as net gamma exposure (NGE) divided by the market value of the S&P 500 

index. Newey and West (1986) robust t-statistics are shown in parenthe- 

ses. Samples range from January 1996 to May 2020. Significance at the 

1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 

and regression coefficients are multiplied by 100. 

Variable r LH �r LH 

(1) (2) (3) (4) (5) 

Intercept −0 . 00 
(−0 . 38) 

0 . 00 
(0 . 82) 

−0 . 00 
(−0 . 47) 

−0 . 01 
(−0 . 80) 

−0 . 01 
(−0 . 85) 

r ROD,t 5 . 08 
(4 . 72) 

∗∗∗ 1 . 41 
(1 . 72) 

∗ 2 . 58 
(3 . 86) 

∗∗∗

I NGE≤0 ∗ r ROD,t 5 . 05 
(3 . 04) 

∗∗∗

NGE ∗ r ROD,t −123 . 04 
(−3 . 42) 

∗∗∗

NGE t 0 . 21 
(1 . 34) 

�r ROD,t 5 . 77 
(6 . 49) 

∗∗∗ 3 . 33 
(4 . 86) 

∗∗∗

�NGE ∗ r ROD,t −119 . 79 
(−4 . 06) 

∗∗∗

�NGE t 0 . 43 
(2 . 51) 

∗∗

R 2 (%) 2.32 2.75 3.78 3.04 4.63 
longer present. This suggests that hedging demand then

seems to offset the intraday momentum effects triggered

by rebalancing and information traders. Unreported anal-

yses show that the results in Table 7 also hold when us-

ing the overnight return plus first half hour ( r ONF H ) used

in Gao et al. (2018) or the return between the first half

hour and last half hour ( r M 

). 

Furthermore, we include the S&P 500 NGE in Eq. (7) .

We include NGE t and NGE t multiplied by r ROD,t−1 into

Eq. (7) . Table 8 contains the results. Confirming the ear-

lier results, intraday momentum is especially pronounced

when NGE is negative (i.e., option market makers are net

short gamma) or when their net short gamma position is

stronger. The last two columns confirm that these results

are not driven by a time trend shared by intraday momen-

tum and NGE by running a difference-in-difference regres-

sion. Further, unreported robustness checks confirm that

these results also hold when only considering puts (and no

calls). 

4.2. Hedging demand from leveraged ETFs 

Next, we present direct evidence for the hedging-based

explanation in the market for leveraged ETFs (LETF). Note

that direct data on dynamic hedging demand is gener-

ally not available or very noisy. Option data across asset

classes is also limited. On the other hand, data on lever-
389 
aged ETFs is readily available and generally accurate. Lever- 

aged ETFs seek to deliver a multiple of their underlying 

market’s daily returns. There are two types of leveraged 

ETFs: bull/ultra ETFs that promise a positive multiple (usu- 

ally two or three times) of the underlying index’s daily re- 

turn, and inverse/bear ETFs that promise an (leveraged) in- 

verse of their underlying market’s return. Both ETF types 

need to rebalance daily in the same direction as the under- 

lying index’s daily performance. This is caused by the fact 

that on an up (down) day, bull ETFs need to increase (de- 

crease) their exposure to the underlying, while bear ETFs 

have to close (open) some shorts. 

Consequently, market makers of the ETF providers need 

to rebalance exposure to the market near or at the market 

close (which these investors typically do using total return 

swaps and futures contracts), as these indexing products 
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Table 9 

Market intraday momentum and Leveraged ETF market share: regression 

analysis. This table reports the pooled regression results of regressing the 

last half-hour return ( r LH ) on a constant, the return until the last half hour 

( r ROD ), Indexing LETF and Indexing LETF multiplied by r ROD , for equity index 

futures (Panel A) and government bond futures (Panel B). Indexing LETF 

is computed as the total market value of all leveraged ETFs on the eq- 

uity indices or government bond indices multiplied by x 2 − x , where x is 

their leverage factor, divided by their market size. Due to seasonality in 

government bond market sizes, we use three-month rolling averages for 

this asset class. T -statistics that account for clustering on time and mar- 

ket (in case the number of clusters exceeds ten) are in parentheses; see 

Cameron et al. (2011) . Samples range from June 2006 to May 2020. Signif- 

icance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. 

Adjusted R 2 and slope coefficients for r ROD are multiplied by 100. 

Panel A: Equity futures r LH �r LH 

(1) (2) (3) (4) 

Intercept 0 . 00 
(0 . 83) 

0 . 00 
(0 . 51) 

0 . 00 
(0 . 01) 

0 . 00 
(0 . 01) 

r ROD 2 . 90 
(4 . 51) 

∗∗∗ 2 . 91 
(4 . 51) 

∗∗∗

Indexing LETF · r ROD 1 . 79 
(2 . 20) 

∗∗ 1 . 79 
(2 . 20) 

∗∗

Indexing LETF 0 . 25 
(0 . 75) 

0 . 71 
(1 . 26) 

�r ROD 2 . 42 
(3 . 49) 

∗∗∗ 2 . 42 
(3 . 49) 

∗∗∗

�Indexing LETF · r ROD 2 . 94 
(3 . 10) 

∗∗∗ 2 . 94 
(3 . 10) 

∗∗∗

�Indexing LETF −10 . 09 
(−3 . 36) 

∗∗∗ −10 . 19 
(−3 . 38) 

∗∗∗

R 2 (%) 1.75 1.76 1.67 1.67 

Fixed effects No Yes No Yes 

Panel B: Bond futures r LH �r LH 

(1) (2) (3) (4) 

Intercept −0 . 00 
(−1 . 88) 

∗ −0 . 00 
(−2 . 83) 

∗∗∗ −0 . 00 
(−1 . 52) 

−0 . 00 
(−1 . 75) 

∗

r ROD 1 . 07 
(2 . 85) 

∗∗∗ 1 . 08 
(2 . 91) 

∗∗∗

Indexing LETF · r ROD 0 . 67 
(1 . 96) 

∗ 0 . 67 
(1 . 96) 

∗∗

Indexing LETF 0 . 03 
(0 . 40) 

0 . 20 
(1 . 64) 

�r ROD 1 . 18 
(2 . 54) 

∗∗ 1 . 18 
(2 . 54) 

∗∗

�Indexing LETF · r ROD 0 . 45 
(1 . 31) 

0 . 45 
(1 . 31) 

�Indexing LETF 0 . 20 
(0 . 48) 

0 . 13 
(0 . 30) 

R 2 (%) 1.01 1.06 0.75 0.75 

Fixed effects No Yes No Yes 
essentially offer a multiple of the daily close-to-close re-

turn of the underlying index [see also Bogousslavsky and

Muravyev (2019) for the use of close prices]. This hedging

behavior causes price pressures near the end of the trading

day. Cheng and Madhavan (2010) derive that the rebalanc-

ing demand on day t is equal to: 

NAV t−1 (x 2 − x ) r c,t 
c,t−1 

, (16)

where NAV t are the net asset values on day t for a lever-

aged ETF and x is the leverage factor (e.g., −2, −1,2,3). 

As of the end of February 2009, Cheng and Madha-

van (2010) estimated that leveraged ETF rebalancing made

up 16.8% (50.2%) of the market-on-close (MOC) volume on

a day the market moved 1% (5%). 9 Shum et al. (2015) argue

that MOC orders have fill risk, such that the hedging could

start as early as 30 minutes before close. This fits nicely

into our reasoning that r ROD predicts r LH . 

We obtain historical daily NAV data for leveraged ETFs

on markets underlying the futures contracts used from

Bloomberg. Not all markets used in this research have

leveraged ETF data available. For markets with LETF data

available, we sum the NAVs multiplied by x 2 − x (where x

is the leverage factor) and express the total as a percent-

age of the underlying index’s market capitalization (akin

to Baltussen et al., 2019 ). We denote this market share of

leveraged ETFs by Indexing LET F . Market sizes for govern-

ment bonds are per maturity bucket. Due to duration re-

quirements, they show seasonality that we solve by using

a three-month rolling average. For commodities, we cannot

compute market shares, as we do not have data on the size

of the market. 

If hedging activity on these products drives market in-

traday momentum, we would expect more pronounced

market intraday momentum in markets with more lever-

aged ETF activity. To examine this relation, we first exam-

ine such a relation in the cross-section. To this end, we

plot the average leveraged ETF share per market against

the t-statistics of βROD . As leveraged ETFs are introduced

in 2006, we make scatterplots over the 2006–2020 sub-

sample. As we do not have market sizes for commodities,

we rank the LETF market sizes and plot these ranks against

the t-statistics. Fig. 4 shows a significant upward sloping

line for all three asset classes, indicating a positive relation

between LETF market shares and intraday momentum. 

Next, we examine the relation in a time series. To

this end, we expand the regression of r LH on r ROD with

Indexing LET F and this measure multiplied by r ROD (the

hedging demand): 

r LH,t = α + β1 · r ROD,t + β2 · Indexing LET F,t · r ROD,t 

+ β3 · Indexing LET F,t + ε t . (17)

We run this regression for equity index and govern-

ment bond futures, as we lack dynamic LETF data for the

other asset classes. The first columns of Table 9 show that

the hedging demand has additional predictive power for

the last half-hour return in both equity index and govern-

ment bond futures. Further, to remove any index-specific
9 In a related study, Todorov (2019) shows that leveraged ETFs rebal- 

ancing demand substantially influences price changes in VIX futures and 

the natural gas, silver, gold, and oil commodity futures markets. 

390 
time trend (indexing of LETFs has increased over time, 

and profits on intraday momentum might share a simi- 

lar time component), we also run difference-in-difference 

regressions. The results confirm the earlier findings in eq- 

uity markets, while the bond market results remain posi- 

tive but insignificantly so. Overall, we conclude that LETF’s 

hedging demand drives the magnitude of market intraday 

momentum patterns, providing unique evidence support- 

ing the hedging channel. 

4.3. Intraday vs. end-of-day hedging 

In a frictionless Black-Scholes world, hedging is done 

continuously to ensure delta-neutrality all the time. With 

transaction costs, it is optimal to hedge only discretely dur- 

ing the day. Yet, if hedging is complete, so the delta goes 

back to zero at the end of each discrete interval, then the 

return prior to the hedge should not predict the return af- 

ter the hedge, as demonstrated by Leland (1985) . 
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Fig. 4. Leveraged ETF market share versus market intraday momentum. This figure plots the average leveraged ETF (LETF) market share against the 

Newey and West (1986) robust t-statistic of regressing its futures’ last half-hour return ( r LH ) on the return until 30 minutes before close ( r ROD ) for eq- 

uity index futures (Panel (a)), government bond futures (Panel (b)), and commodity futures (Panel (c)). The market share measure is computed as the total 

market value of all LETFs on the market multiplied by x 2 − x , where x is the leverage factor, divided by the index market value. For government bond 

futures, we use three-month rolling average market sizes. Currencies are missing as we do not have LETF data on those markets. Commodity futures have 

no market size data available, therefore, we rank the LETF market sizes. Samples range from June 2006 to May 2020. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Table 10 , we examine such intraday hedging activi-

ties. We conjecture that, while small price movements dur-

ing the day may not trigger hedging due to transaction

cost, large price jumps probably will. If the gamma is neg-

ative, then hedging will further push the price in the di-

rection of the jump. Hence, cumulative return up to and

including the jump should positively predict the return af-

ter the jump when hedging takes place. In addition, if the

jump occurs early during the day and the hedge is timely

and complete, then the cumulative jump return should not

predict the return in the last half an hour ( r LH ). 

The results in Table 10 confirm that cumulative jump

returns positively predict subsequent returns during the

day ( r Post jump ). A jump is defined as each daily half hour

in which the return from close to that half-hour interval is

below (above) the 10% (90%) percentile of the full-sample

daily returns distribution of that asset (we have verified
391 
that results are comparable when using 5% (95%) or 2.5% 

(97.5%) percentiles). We run a pooled regression of r Post jump 

on a constant and the return from the previous day’s close 

until jump. Next, we decompose r Post jump into two parts: 

the return from post-jump to the end of SLH ( r Post jumptoSLH ) 

and the return in the last half hour ( r LH ). We find that the 

cumulative jump returns to positively predict r Post jumptoSLH 

for all four asset classes and significantly for commodities 

and currencies. We interpret the pattern as evidence for in- 

traday hedging after large jumps. Nevertheless, for all four 

asset classes, the cumulative jump returns still positively 

and significantly predict r LH , suggesting that intraday hedg- 

ing is incomplete and a significant portion of the hedge is 

still carried out towards the end of the day. 

We conjecture that there are at least five reasons 

why hedging activity is more intensive towards the end 

of the day. First, from a theoretical point of view, 
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Table 10 

Market intraday momentum and intraday jumps. This table shows the 

pooled regression results of regressing the post-jump return on a con- 

stant and the return from the previous day’s close until jump. A jump is 

defined as each daily half hour in which the return from close to that 

half-hour interval is below (above) the 10% (90%) percentile of daily re- 

turns for that asset. The dependent variables are the return in the period 

after the jump to close ( r Post jump ), the return after the half-hour post-jump 

to the second-to-last half hour ( r Post jumptoSLH ), and the last half-hour re- 

turn ( r LH ). The sample includes equity index futures, government bond 

futures, commodity futures, and currency futures, and ranges from De- 

cember 1974 to May 2020. Trading hours of equity futures are based on 

the trading hours of their underlying markets; for other futures, trading 

hours are matched to their volume patterns. The intercept is not reported. 

T -statistics in parentheses are computed using standard errors that ac- 

count for clustering on time and market (in case number of clusters ex- 

ceeds ten); see Cameron et al. (2011) . Significance at the 1%, 5%, and 10% 

level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and regression 

coefficients are multiplied by 100. 

r Post jump R 2 (%) r Post jumptoSLH R 2 (%) r LH R 2 (%) 

Equity 6 . 74 
(5 . 03) 

∗∗∗ 1.83 1 . 50 
(1 . 40) 

0.14 5 . 16 
(7 . 51) 

∗∗∗ 4.96 

Bonds 1 . 63 
(1 . 42) 

0.14 0 . 34 
(0 . 36) 

0.01 1 . 58 
(4 . 64) 

∗∗∗ 0.89 

Commodity 3 . 28 
(3 . 55) 

∗∗∗ 0.70 2 . 16 
(3 . 60) 

∗∗∗ 0.49 1 . 00 
(2 . 54) 

∗∗ 0.24 

Currency 1 . 64 
(2 . 45) 

∗∗ 0.27 0 . 97 
(1 . 72) 

∗ 0.13 0 . 80 
(3 . 89) 

∗∗∗ 0.53 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clewlow and Hodges (1997) show that, in the presence

of partially fixed transaction costs, the optimal trade-off

between delta risk and costs results in two bandwidths

around a delta-neutral hedge. If the outer bandwidth is

breached, it is optimal to trade towards the inner band-

width, not back to delta-neutral. Simply put, it is optimal

to hedge only partially after a large price movement, im-

plying that additional hedging is required afterwards (see

also Sepp, 2013 ). 

Second, the additional hedging could be deferred to the

end of the trading day for liquidity reasons. The U-shaped

intraday volume pattern across the equity, bond, commod-

ity, and currency markets in Fig. 1 confirms that liquidity

tends to be high right after open and before close. Fur-

ther, spreads are generally lower and market depth higher

when trading towards the close. Improved liquidity is an-

other reason why investors could leave the bulk of hedg-

ing to the last half hour, especially when they have larger

quantities to trade. 

Third, while hedging is partial during the day, it tends

to be complete at the end of the day to protect against

overnight risk. Brock and Kleidon (1992) and Hong and

Wang (20 0 0) show that lower liquidity and higher price

risk overnight makes it optimal for market makers to close

delta positions before overnight. 

Fourth, holding positions overnight typically incurs

higher capital needs and investment frictions. For ex-

ample, BIS capital requirements are driven by deltas at

close. Further, margin requirements generally increase for

overnight positions, while lending fees and margin inter-

est are typically charged only on positions held overnight

( Bogousslavsky, 2020 ). As a consequence, holding risky po-

sitions overnight comes not only with higher price risks,

but also with higher capital requirements. Market partic-

ipants therefore have an incentive to reduce delta at the

end of the day to free up capital and save cost. Sev-

eral studies empirically show that dealers in stocks, bonds,
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commodities, or currencies are indeed reluctant to hold 

delta positions overnight and tend to close them before the 

end of the day ( Lyons, 1995; Manaster and Mann, 1996; 

Ferguson and Mann, 2001; Bjønnes and Rime, 2005 ). A re- 

lated study, Gerety and Mulherin (1992) , provides evidence 

consistent with dealers unloading their delta positions be- 

fore the close and reopening them on the following day. 

Finally, as we have demonstrated, index products such 

as LETFs seek to deliver a multiple of their underlying mar- 

ket’s daily returns benchmarked at closing prices. Market 

makers in these index products have little choice but to 

rebalance daily and around the close in the same direc- 

tion as the underlying index’s daily performance. A similar 

mechanism holds for market makers of variance swaps, as 

the payoff of a variance swap is calculated based on the 

closing levels of the underlying index. 

4.4. Price pressure vs. informed trading 

Gao et al. (2018) presents late informed trading as an- 

other potential driver of market intraday momentum. Un- 

der this explanation, traders who are informed late trade 

in the last 30 minutes. Hence, the same information is in- 

corporated into prices during both the first and the last 

30 minutes, resulting in momentum. A major difference 

between hedging and informed trading lies in their price 

impact. Generally speaking, hedging activities should only 

result in transitory price pressure (as there is no news), 

while fundamental information is expected to cause a per- 

manent price impact (as news is incorporated into prices). 

In case the market intraday momentum is caused by price 

pressure from hedging demands, the price should revert 

back after the hedging activity has ceased. In case market 

intraday momentum is caused by informed traders delay- 

ing their trades to benefit from liquidity, the last half-hour 

return should reflect delayed incorporation of new infor- 

mation and should not revert back the next days. In other 

words, under the hedging explanation, we expect mean- 

reversion in the near future, while we do not expect mean- 

reversion under the informed trading explanation. 

Fig. 5 examines whether market intraday momentum 

persists beyond the current trading day. Throughout this 

paper, we use the intervals overnight, first half an hour, 

middle of day, second-to-last half an hour, and last half an 

hour. To find out when momentum disappears, in Fig. 5 , 

we extend the last half hour with the previously men- 

tioned intervals. Starting at our standard setting of regress- 

ing the last half hour return ( r LH ) on the return until the 

last half hour ( r ROD ), we progressively add those intervals 

until we regress the return from 30 minutes before today’s 

close until 30 minutes before close three days later ( r c,t+3 
c−30 ,t 

) 

on the return until 30 minutes before today’s close ( r ROD,t ). 

Fig. 5 clearly shows that the market intraday momen- 

tum does not persist for long. The predictive power of r ROD 

reverts to zero in the next day in the currency futures mar- 

ket ( Fig. 4 D), in two days in the equity and commodity fu- 

tures markets ( Figs. 4 A and C), and in three days in the 

government bond futures markets ( Fig. 4 B). 

In Fig. 5 , we focus on the relation between the predic- 

tor of the last half hour, r ROD , and the cumulative return 

from the last half hour on the same day. Table 11 shows 
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Fig. 5. Market intraday momentum and reversals. This figure shows the regression coefficients and corresponding confidence bounds of using the return 

until last half-hour today, r ROD , to predict today’s last half-hour return, r LH , and progressively adding intervals: overnight, first half an hour, middle of 

the day, second-to-last half an hour and last half an hour, until close three days later, r c,t+3 
c−30 ,t 

. Shown are the results for equity index futures (Panel (a)), 

government bond futures (Panel (b)), commodity futures (Panel (c)), and currency futures (Panel (d)). Samples range from December 1974 to May 2020. 

Table 11 

Market intraday momentum and mean-reversion: regression analysis. This table reports the pooled regression results of regressing the next day return 

( r c,t+1 
c,t ), the next two days return ( r c,t+2 

c,t ), and the next three days return ( r c,t+3 
c,t ) on a constant and today’s last half-hour return ( r LH,t ) for equity index 

futures (Panel A), government bond futures (Panel B), commodity futures (Panel C), and currency futures (Panel D). Trading hours of equity futures are 

based on the trading hours of their underlying markets; for other futures, trading hours are matched to their volume patterns. T -statistics in parentheses 

are computed using standard errors that account for clustering on time and market (in case number of clusters exceeds ten); see Cameron et al. (2011) . 

Samples range from December 1974 to May 2020. Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and 

regression coefficients are multiplied by 100. 

Dep. Variable: r c,t+1 
c,t r c,t+2 

c,t r c,t+3 
c,t r c,t+1 

c,t r c,t+2 
c,t r c,t+3 

c,t 

Panel A: Equity futures Panel B: Bond futures 

Intercept 0 . 02 
(1 . 95) 

∗ 0 . 05 
(2 . 55) 

∗∗ 0 . 07 
(2 . 98) 

∗∗∗ 0 . 01 
(4 . 53) 

∗∗∗ 0 . 03 
(5 . 30) 

∗∗∗ 0 . 04 
(5 . 79) 

∗∗∗

r LH,t −14 . 51 
(−1 . 70) 

∗ −29 . 05 
(−3 . 16) 

∗∗∗ −27 . 98 
(−2 . 61) 

∗∗∗ 1 . 77 
(0 . 41) 

−10 . 68 
(−1 . 60) 

−19 . 64 
(−2 . 21) 

∗∗

R 2 (%) 0.13 0.27 0.17 0.00 0.03 0.06 

Panel C: Commodity futures Panel D: Currency futures 

Intercept 0 . 01 
(0 . 76) 

0 . 01 
(0 . 94) 

0 . 02 
(1 . 01) 

0 . 00 
(0 . 54) 

0 . 00 
(0 . 74) 

0 . 01 
(0 . 89) 

r LH,t −0 . 82 
(−0 . 25) 

−8 . 56 
(−1 . 61) 

−12 . 22 
(−2 . 17) 

∗∗ −8 . 06 
(−1 . 32) 

−8 . 64 
(−1 . 14) 

−6 . 98 
(−0 . 84) 

R 2 (%) −0.00 0.03 0.04 0.02 0.01 0.00 
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Fig. 6. Average intraday trading volume S&P 500 E-Mini futures. This figure shows the average trading volume per 15-minute time interval of the S&P 500 

E-Mini futures. The sample period is July 2003 to May 2020. 

Table 12 

Market intraday momentum: 16:00 stock market close versus the 16:15 futures market close. This table reports the results of regressing the last half-hour 

return ( r LH ), last 15-minute return ( r c,t 
c−15 ,t 

), or last 5-minute return ( r c,t 
c−5 ,t 

) on a constant and the first half-hour return ( r ONFH ), return from the first half 

hour until last hour ( r M ), second-to-last half-hour return ( r SLH ) and the return until the last half hour ( r ROD ) for the S&P 500 index in Panel A (close 16:00 

EST) and for the S&P 500 index futures in Panel B (close 16:15 EST). The intercept is not reported. Newey and West (1986) robust t-statistics are shown in 

parentheses. The sample ranges from April 1982 to May 2020. Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 

and regression coefficients are multiplied by 100. 

βONFH R 2 (%) βr ONFH 
βM βSLH R 2 (%) βROD R 2 (%) 

Panel A: 16:00 close 

r LH 5 . 14 
(3 . 36) 

∗∗∗ 0.96 4 . 78 
(3 . 22) 

∗∗∗ 5 . 58 
(2 . 25) 

∗∗ 18 . 47 
(3 . 90) 

∗∗∗ 3.69 5 . 98 
(4 . 78) 

∗∗∗ 3.28 

r c,t 
c−15 ,t 

2 . 97 
(3 . 21) 

∗∗∗ 0.80 2 . 84 
(3 . 11) 

∗∗∗ 2 . 53 
(2 . 00) 

∗∗ 6 . 90 
(2 . 57) 

∗∗ 1.88 2 . 83 
(3 . 99) 

∗∗∗ 1.81 

r c,t 
c−15 ,t 

2 . 15 
(2 . 60) 

∗∗∗ 1.29 2 . 07 
(2 . 56) 

∗∗ 1 . 73 
(4 . 77) 

∗∗∗ 4 . 01 
(3 . 18) 

∗∗∗ 2.63 1 . 94 
(5 . 03) 

∗∗∗ 2.65 

Panel B: 16:15 close 

r LH 3 . 98 
(3 . 07) 

∗∗∗ 0.77 3 . 68 
(2 . 79) 

∗∗∗ 1 . 69 
(1 . 58) 

10 . 10 
(4 . 45) 

∗∗∗ 1.87 3 . 28 
(5 . 09) 

∗∗∗ 1.48 

r c,t 
c−15 ,t 

0 . 01 
(0 . 01) 

-0.01 0 . 00 
(0 . 01) 

−1 . 04 
(−1 . 89) 

∗ −0 . 03 
(−0 . 02) 

0.22 −0 . 37 
(−0 . 97) 

0.05 

r c,t 
c−15 ,t 

0 . 40 
(0 . 87) 

0.06 0 . 43 
(0 . 95) 

−0 . 92 
(−1 . 88) 

∗ −1 . 02 
(−0 . 94) 

0.52 −0 . 28 
(−1 . 06) 

0.09 

 

 

 

 

 

 

 

 

 

 

 

the results of regressing the next day return ( r c,t+1 
c,t ), the

next two days’ return ( r c,t+2 
c,t ), and the next three days’ re-

turn ( r c,t+3 
c,t ) on a constant and today’s last half-hour return

( r LH,t ). In all four markets, we observe reversals, although

this effect is not significant in currency futures. Such a re-

turn reversal is consistent with the price pressure caused

by market makers’ hedging activities. 

For another piece of evidence for the hedging demand,

we turn to the S&P 500 underlying market. The market

closes at 4:00pm ET, the time at which most options and

levered ETFs on the index are settled. Market makers for

these index-related instruments have strong incentives to
394 
hedge their positions before 4:00pm in the underlying 

market. 

On the other hand, the futures trade well until at least 

4:15pm ET, when the futures market has its settlement. 

This is evident in Fig. 6 , which plots the average 15-minute 

trading volume of the S&P 500 E-Mini futures. We ob- 

serve very active trading during the 15-minute interval 

from 4:00pm ET to 4:15pm ET, suggesting that informed 

traders can trade on their information at sufficient liquid- 

ity even after 4:00pm ET in the futures market. 

Table 12 examines the return predictability during the 

last half an hour before close in both the S&P 500 cash 

index market (Panel A) and the futures market (Panel B). 
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Empirically, Panel A shows that r ROD strongly predicts r LH 

in the cash index market (we have verified similar re-

sults in the futures market over the same time interval).

In contrast, in Panel B, we find that the predictability of

r ROD does not extend to the futures return beyond 4:00pm

ET. The evidence is again consistent with the hedging de-

mand channel, and seems hard to reconcile with the late

informed trading channel. 

5. Conclusion 

Using intraday price data on more than 60 futures con-

tracts on equity indices, bonds, commodities, and curren-

cies over the past 45 years, we find a strong market in-

traday momentum across the main markets in the major

asset classes. The futures return during the last 30 min-

utes before market close is positively predicted by the fu-

tures return during the rest of the day (from previous mar-

ket close to just before the last 30 minutes). The predictive

power is both statistically and economically highly signif-

icant, yielding Sharpe ratios between 0.87 and 1.73. Mar-

ket intraday momentum is robustly present across markets

and over time, reverts over the next days, and is distinct

from intraday seasonality effects. 

More importantly, we identify a novel economic force

that drives market intraday momentum: market partici-

pants’ hedging demand coming from short gamma expo-

sure. Our tests link both cross-sectional and time-series

variation in market intraday momentum to such hedging
Table A1 

Overview of equity index futures sample. This table includes symbols as listed on

the trading hours we consider to be a trading day, the number of observations 

asterisk indicates futures for which the sample period is extended by considering

given is the ticker used by Tickdata.com, which is not necessarily the exchange tic

indices have changed over time, for which the data has been adjusted. Trading ho

denoted in Eastern Standard Time (EST). 

Future Symbol Start 

Dow Jones futures ∗ YM 1997-10-08 

S&P 500 futures ∗ ES 1982-04-23 

NASDAQ 100 futures ∗ NQ 1996-04-12 

Russell 2000 ICE/CME ∗ ER 1993-02-08 

S&P 400 MidCap futures ∗ MI 1993-01-06 

Amsterdam AEX Index futures EO 2008-01-04 

DAX Index futures DA 1997-01-06 

Swiss Market Index futures SW 2005-11-21 

EURO STOXX 50 Index futures XX 1998-07-03 

CAC 40 Index futures CF 2000-05-04 

IBEX 35 Index futures IB 2003-07-03 

FTSE MIB Index futures II 2004-10-05 

FTSE 100 Index futures FT 1998-07-03 

Nikkei 225 futures SGX EN 1997-04-03 

TOPIX futures JPX TP 2003-07-03 

ASX SPI 200 Index futures XP 2001-07-04 

S&P Canada 60 futures PT 1999-10-05 
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demand. Our evidence suggests that concentrated trades 

of groups of investors, like portfolio insurers, option mar- 

ket makers, and leveraged ETFs, can have substantial, non- 

fundamental price impact, amplifying price changes and 

impacting market dynamics around the times they trade. 

Paradoxically, these dynamics could even lead leveraged 

(including short) ETFs to underperform their underlying 

index, as the hedging impact of their trades tend to re- 

vert. At the same time, market dynamics are strongly pre- 

dictable intraday, and as such, proactive investors can ben- 

efit, for example, by providing liquidity opportunistically in 

anticipation of hedging flows or a smart timing of planned 

trades. 

Appendix 

This Appendix is divided into four sections. The 

first section ( Section Appendix A ) elaborates on the fu- 

tures contracts used in this research. The second section 

( Section Appendix B ) shows results for the individual mar- 

kets. The third section ( Section Appendix C ) shows the re- 

sults for equity cash indices as opposed to futures con- 

tracts. Finally, Section Appendix D shows the horse race 

results for the different subperiods. 

Appendix A. Details on futures contracts 

Tables A1–A4 
 www.tickdata.com , start of the sample period, end of the sample period, 

after filtering, and the geographical group to which a future belongs. An 

 the regular future before the mini contract was introduced. The symbol 

ker. Trading hours provided are the current trading hours, however, some 

urs are expressed in the local exchange time zone, with U.S.-listed futures 

End Obs Times Group 

2020-05-01 5639 09:30–16:00 USA 

2020-05-01 9535 09:30–16:00 USA 

2020-05-01 6017 09:30–16:00 USA 

2020-05-01 6746 09:30–16:00 USA 

2020-05-01 6594 09:30–16:00 USA 

2020-05-01 3136 09:00–17:30 EU 

2020-05-01 5911 09:00–17:30 EU 

2020-05-01 3624 09:00–17:30 EU 

2020-05-01 5550 09:00–17:30 EU 

2020-05-01 5093 09:00–17:30 EU 

2020-05-01 4275 09:00–17:30 EU 

2020-05-01 3951 09:00–17:30 EU 

2020-05-01 5484 08:00–16:30 EU 

2020-04-02 5560 08:00–14:00 Australasia 

2020-05-01 4118 09:00–15:00 Australasia 

2020-03-19 4538 10:00–16:00 Australasia 

2020-05-01 5142 09:30–16:00 - 

http://www.tickdata.com
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Table A2 

Overview of government bond futures sample. This table includes symbols as listed on www.tickdata.com , the start of the sample period, the end of sample 

period, the trading hours we consider to be a trading day, the number of observations after filtering, and the geographical group to which a future belongs. 

The symbol given is the ticker used by Tickdata.com, which is not necessarily the exchange ticker. Trading hours provided are the current trading hours, 

however, some indices have changed over time, for which the data has been adjusted. Trading hours are expressed in the local exchange time zone, with 

U.S.-listed futures denoted in Eastern Standard Time (EST). 

Future Symbol Start End Obs Times Group 

US 2-year T-note futures TU 1991-01-04 2020-05-01 7153 08:20–15:00 USA 

US 5-year T-note futures FV 1988-07-06 2020-05-01 7907 08:20–15:00 USA 

US 10-year T-note futures TY 1983-01-05 2020-05-01 9296 08:20–15:00 USA 

US 30-year T-bond futures US 1982-10-05 2020-05-01 9366 08:20–15:00 USA 

Ultra T-bond futures UB 2010-02-03 2020-05-01 2564 08:20–15:00 USA 

Euro-Schatz 2-year futures BZ 1997-03-11 2020-05-01 5874 08:00–17:15 EU 

Euro-Bobl 5-year futures BL 1997-01-06 2020-05-01 5921 08:00–17:15 EU 

Euro-Bund 10-year futures BN 1997-01-06 2020-05-01 5921 08:00–17:15 EU 

Euro-Buxl 30-year futures BX 2005-09-13 2020-05-01 3720 08:00–17:15 EU 

Short-term euro-BTP futures BS 2010-10-21 2020-05-01 2421 08:00–17:15 EU 

Long-term euro-BTP futures BT 2010-02-24 2020-05-01 2591 08:00–17:15 EU 

Long gilt futures GL 1998-07-03 2020-05-01 5485 08:00–16:15 EU 

Australian 3-year bond futures AY 2001-07-04 2020-05-01 4738 08:30–16:30 Australasia 

Australian 10-year bond futures AX 2001-07-04 2020-05-01 4737 08:32–16:30 Australasia 

Japanese 10-year bond futures JPX JB 2003-07-03 2020-05-01 4117 08:45–15:00 Australasia 

Canadian 10-year futures CB 1990-04-04 2020-05-01 7368 08:20–15:00 - 

Table A3 

Overview of commodity futures sample. The table includes symbols as listed on www.tickdata.com , the start of the sample period, the end of sample 

period, the trading hours we consider to be a trading day, the number of observations after filtering, and the categorical group to which a future belongs. 

The symbol given is the ticker used by Tickdata.com, which is not necessarily the exchange ticker. Trading hours provided are the current trading hours, 

however, some indices have changed over time, for which the data has been adjusted. Trading hours are expressed in the local exchange time zone, except 

for CC, CT, KC, SB, which are expressed in London time. 

Future Symbol Start End Obs Times Group 

Gold futures COMEX GC 1984-01-05 2020-05-01 9044 08:20–13:30 Metals 

Copper high grade futures COMEX HG 1989-12-05 2020-05-01 7608 08:10–13:00 Metals 

Silver futures COMEX SV 1983-12-05 2020-05-01 9064 08:25–13:25 Metals 

Palladium futures NYMEX PA 1994-01-05 2020-05-01 5495 08:30–13:00 Metals 

Platinum futures NYMEX PL 2007-10-03 2020-03-30 2978 08:20–13:05 Metals 

Light crude oil futures NYMEX CL 1987-01-06 2020-05-01 8336 09:00–14:30 Energies 

Heating oil #2 futures NYMEX HO 1984-01-05 2020-05-01 9060 09:00–14:30 Energies 

Natural gas futures NYMEX NG 1993-01-06 2020-05-01 6824 09:00–14:30 Energies 

RBOB gasoline futures NYMEX XB 2006-10-04 2020-05-01 3417 09:00–14:30 Energies 

Soybean oil futures BO 1982-07-06 2020-05-01 9458 08:30–13:20 Softs 

Corn futures CN 1982-07-06 2020-05-01 9462 08:30–13:20 Softs 

Soybean meal futures SM 1982-07-06 2020-05-01 9458 08:30–13:20 Softs 

Soybean futures SY 1982-07-06 2020-05-01 9462 08:30–13:20 Softs 

Wheat futures CBOT WC 1982-07-06 2020-05-01 9462 08:30–13:20 Softs 

Cocoa futures CC 1986-07-07 2020-05-01 8389 09:45–18:30 Softs 

Cotton #2 futures CT 1987-01-07 2020-05-01 8168 02:00–19:20 Softs 

Coffee C futures KC 1987-01-07 2020-05-01 8201 09:15–18:30 Softs 

Sugar #11 futures SB 1986-07-07 2020-05-01 8345 08:30–18:00 Softs 

Feeder cattle futures FC 1984-08-15 2020-05-01 8164 08:30–13:05 Softs 

Live cattle futures LC 1984-08-14 2020-05-01 8797 08:30–13:05 Softs 

Lean hogs futures LH 1981-04-03 2020-05-01 9499 08:30–13:05 Softs 

Table A4 

Overview of currency futures sample. This table includes symbols as listed on www.tickdata.com , the start of the sample period, the end of sample period, 

the trading hours we consider to be a trading day, and the number of observations after filtering. Trading hours are expressed in the local exchange time 

zone. 

Future Symbol Start End Obs Times 

Australian dollar futures AD 1987-01-15 2020-04-13 8139 07:20–14:00 

British pound futures BP 1977-09-06 2020-05-01 10,570 07:20–14:00 

Canadian dollar futures CD 1977-01-05 2020-03-16 10,658 07:20–14:00 

Euro FX futures EC 1999-01-06 2020-05-01 5284 07:20–14:00 

Japanese yen futures JY 1977-03-14 2020-04-23 10,553 07:20–14:00 

Mexican peso futures ME 2002-07-12 2020-04-09 4255 07:20–14:00 

New Zealand dollar futures NZ 2010-01-06 2020-05-01 2584 07:20–14:00 

Swiss franc futures SF 1974-12-04 2020-05-01 11,233 07:20–14:00 
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Appendix B. Individual market results 
Tables B1–B4 

Table B1 

Market intraday momentum: individual equity index futures results. This table s

the last half-hour return ( r LH ) on a constant and the first half-hour return ( r ONFH ),

half hour ( r SLH ), and the return until the last half hour ( r ROD ), for equity index fu

markets. Intercepts are not reported. Panel A: T -statistics that account for cluste

parentheses; see Cameron et al. (2011) . Panel B: Newey and West (1986) robust t-

Significance at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. A

Panel A: Pooled regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM 

Total 4 . 86 
(6 . 52) 

∗∗∗ 1.49 −1.71 4 . 72 
(6 . 46) 

∗∗∗ 2 . 92 
(4 . 43) 

∗∗∗

USA 6 . 92 
(4 . 67) 

∗∗∗ 1.80 −0.87 6 . 50 
(4 . 49) 

∗∗∗ 4 . 47 
(4 . 22) 

∗∗∗

EU 4 . 62 
(5 . 62) 

∗∗∗ 1.76 1.60 4 . 59 
(5 . 57) 

∗∗∗ 2 . 33 
(3 . 99) 

∗∗∗

Australasia 2 . 97 
(4 . 30) 

∗∗∗ 1.17 1.03 2 . 90 
(4 . 29) 

∗∗∗ 0 . 39 
(0 . 42) 

Panel B: Individual regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM 

YM 6 . 07 
(3 . 28) 

∗∗∗ 1.34 1.31 ∗∗∗ 5 . 71 
(3 . 19) 

∗∗∗ 2 . 77 
(1 . 91) 

∗

ES 5 . 24 
(3 . 38) 

∗∗∗ 0.98 −1.68 4 . 81 
(3 . 25) 

∗∗∗ 6 . 06 
(2 . 48) 

∗∗

NQ 7 . 45 
(5 . 33) 

∗∗∗ 2.01 1.83 ∗∗∗ 6 . 95 
(5 . 03) 

∗∗∗ 5 . 14 
(4 . 74) 

∗∗∗

ER 8 . 17 
(4 . 62) 

∗∗∗ 2.38 2.21 ∗∗∗ 7 . 79 
(4 . 54) 

∗∗∗ 3 . 61 
(3 . 15) 

∗∗∗

MI 7 . 34 
(4 . 06) 

∗∗∗ 2.41 2.23 ∗∗∗ 6 . 99 
(4 . 09) 

∗∗∗ 3 . 59 
(3 . 26) 

∗∗∗

EO 3 . 82 
(2 . 62) 

∗∗∗ 1.68 −1.91 3 . 78 
(2 . 71) 

∗∗∗ 0 . 62 
(0 . 75) 

DA 4 . 57 
(5 . 45) 

∗∗∗ 1.67 1.19 ∗∗∗ 4 . 69 
(5 . 58) 

∗∗∗ 2 . 14 
(2 . 99) 

∗∗∗

SW 3 . 52 
(3 . 02) 

∗∗∗ 1.11 0.71 ∗∗∗ 3 . 41 
(3 . 01) 

∗∗∗ 0 . 43 
(0 . 42) 

XX 5 . 66 
(6 . 02) 

∗∗∗ 2.30 2.44 ∗∗∗ 5 . 73 
(6 . 13) 

∗∗∗ 4 . 17 
(5 . 01) 

∗∗∗

CF 4 . 82 
(5 . 55) 

∗∗∗ 1.89 1.72 ∗∗∗ 4 . 81 
(5 . 63) 

∗∗∗ 3 . 07 
(3 . 79) 

∗∗∗

IB 2 . 35 
(2 . 25) 

∗∗ 0.50 0.10 ∗ 2 . 27 
(2 . 21) 

∗∗ −0 . 38 
(−0 . 60) 

II 5 . 39 
(5 . 42) 

∗∗∗ 2.26 1.94 ∗∗∗ 5 . 13 
(5 . 32) 

∗∗∗ 3 . 49 
(5 . 83) 

∗∗∗

FT 5 . 76 
(6 . 91) 

∗∗∗ 2.48 1.70 ∗∗∗ 5 . 78 
(7 . 00) 

∗∗∗ 2 . 92 
(3 . 48) 

∗∗∗

EN 3 . 31 
(3 . 13) 

∗∗∗ 1.20 1.26 ∗∗∗ 3 . 16 
(3 . 06) 

∗∗∗ 0 . 67 
(0 . 74) 

TP 3 . 92 
(3 . 59) 

∗∗∗ 2.04 1.76 ∗∗∗ 3 . 80 
(3 . 58) 

∗∗∗ −0 . 75 
(−0 . 70) 

XP 0 . 72 
(0 . 94) 

0.10 −0.25 0 . 76 
(0 . 99) 

1 . 59 
(1 . 58) 

PT 2 . 08 
(1 . 50) 

0.28 0.09 1 . 80 
(1 . 34) 

1 . 11 
(0 . 86) 

Table B2 

Market intraday momentum: individual bond futures results. This table shows th

half-hour return ( r LH ) on a constant and the first half-hour return ( r ONFH ), return f

and the return until the last half-hour ( r ROD ) for government bond futures. Trad

A: T -statistics that account for clustering on time and market (in case the numb

Panel B: Newey and West (1986) robust t-statistics are in parentheses. Samples ra

level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 , R 2 OOS , and slope coefficie

Panel A: Pooled regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM 

Total 1 . 59 
(4 . 65) 

∗∗∗ 0.20 −0.05 1 . 66 
(4 . 99) 

∗∗∗ 1 . 97 
(5 . 93) 

∗∗∗

USA 1 . 91 
(3 . 57) 

∗∗∗ 0.30 −0.11 1 . 96 
(3 . 71) 

∗∗∗ 2 . 77 
(5 . 23) 

∗∗∗

EU 1 . 85 
(2 . 95) 

∗∗∗ 0.22 0.04 1 . 99 
(3 . 20) 

∗∗∗ 1 . 47 
(3 . 44) 

∗∗∗

Australasia 0 . 00 
(0 . 01) 

−0.01 −0.92 0 . 01 
(0 . 03) 

−0 . 22 
(−0 . 38) 

397 
hows the pooled (Panel A) and individual (Panel B) results of regressing 

 return from the first half hour until the last hour ( r M ) and second-to-last 

tures. Trading hours are based on the trading hours of their underlying 

ring on time and market (in case number of clusters exceeds ten) are in 

statistics are in parentheses. Samples range from April 1982 to May 2020. 

djusted R 2 , R 2 OOS , and slope coefficients are multiplied by 100. 

βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

9 . 08 
(4 . 82) 

∗∗∗ 2.74 2.22 4 . 18 
(7 . 29) 

∗∗∗ 2.45 2.88 

12 . 58 
(3 . 66) 

∗∗∗ 3.84 2.60 5 . 99 
(6 . 66) 

∗∗∗ 3.46 3.09 

5 . 05 
(2 . 83) 

∗∗∗ 2.60 2.22 3 . 48 
(7 . 41) 

∗∗∗ 2.36 2.50 

8 . 66 
(3 . 37) 

∗∗∗ 1.73 1.03 2 . 40 
(5 . 33) 

∗∗∗ 1.17 0.85 

βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

13 . 09 
(2 . 46) 

∗∗ 2.75 2.34 ∗∗∗ 5 . 02 
(4 . 12) 

∗∗∗ 2.20 2.18 ∗∗∗

12 . 39 
(3 . 49) 

∗∗∗ 3.74 1.21 ∗∗∗ 6 . 18 
(4 . 97) 

∗∗∗ 3.41 2.29 ∗∗∗

11 . 54 
(3 . 26) 

∗∗∗ 4.31 3.58 ∗∗∗ 6 . 36 
(7 . 97) 

∗∗∗ 4.10 3.76 ∗∗∗

12 . 27 
(2 . 17) 

∗∗ 3.91 3.33 ∗∗∗ 6 . 00 
(5 . 86) 

∗∗∗ 3.35 3.15 ∗∗∗

14 . 67 
(3 . 23) 

∗∗∗ 4.46 3.87 ∗∗∗ 5 . 85 
(5 . 53) 

∗∗∗ 3.69 3.46 ∗∗∗

2 . 69 
(0 . 69) 

1.75 −3.05 2 . 23 
(2 . 33) 

∗∗ 1.24 −1.91 

4 . 97 
(2 . 72) 

∗∗∗ 2.39 0.42 ∗∗∗ 3 . 42 
(6 . 28) 

∗∗∗ 2.13 0.42 ∗∗∗

3 . 80 
(1 . 17) 

1.21 0.17 ∗∗∗ 1 . 98 
(2 . 26) 

∗∗ 0.80 0.37 

5 . 91 
(2 . 42) 

∗∗ 4.10 3.26 ∗∗∗ 4 . 98 
(7 . 61) 

∗∗∗ 4.06 3.67 ∗∗∗

6 . 64 
(2 . 82) 

∗∗∗ 3.30 0.42 ∗∗∗ 4 . 07 
(6 . 37) 

∗∗∗ 3.14 0.85 ∗∗∗

2 . 83 
(1 . 05) 

0.56 −0.28 ∗ 0 . 93 
(1 . 45) 

0.18 −0.21 

6 . 53 
(2 . 24) 

∗∗ 4.29 3.31 ∗∗∗ 4 . 29 
(7 . 58) 

∗∗∗ 4.15 3.68 ∗∗∗

4 . 41 
(1 . 79) 

∗ 3.37 1.96 ∗∗∗ 4 . 28 
(7 . 35) 

∗∗∗ 3.09 2.03 ∗∗∗

9 . 50 
(2 . 86) 

∗∗∗ 1.84 1.36 ∗∗∗ 2 . 70 
(3 . 74) 

∗∗∗ 1.30 1.20 ∗∗∗

9 . 40 
(2 . 17) 

∗∗ 2.66 1.78 ∗∗∗ 2 . 77 
(3 . 22) 

∗∗∗ 1.47 1.24 ∗∗∗

2 . 80 
(0 . 83) 

0.39 −0.78 1 . 05 
(1 . 73) 

∗ 0.36 −0.13 ∗

12 . 18 
(2 . 16) 

∗∗ 1.26 0.56 ∗ 2 . 12 
(2 . 36) 

∗∗ 0.61 0.48 ∗∗

e pooled (Panel A) and individual (Panel B) results of regressing the last 

rom first half-hour until last hour ( r M ) and second-to-last half hour ( r SLH ), 

ing hours are based on volume plots. Intercepts are not reported. Panel 

er of clusters exceeds ten) are in parentheses; see Cameron et al. (2011) . 

nge from October 1982 to May 2020. Significance at the 1%, 5%, and 10% 

nts are multiplied by 100. 

βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

3 . 11 
(1 . 68) 

∗ 0.66 0.56 1 . 90 
(5 . 97) 

∗∗∗ 0.64 0.60 

5 . 25 
(1 . 42) 

1.13 0.16 2 . 51 
(6 . 00) 

∗∗∗ 1.03 0.29 

2 . 58 
(1 . 57) 

0.57 −0.08 1 . 69 
(4 . 78) 

∗∗∗ 0.56 0.29 

−14 . 07 
(−6 . 51) 

∗∗∗ 1.33 0.52 −0 . 45 
(−1 . 16) 

0.04 -0.63 
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Table B2 

( continued ) 

Panel B: Individual regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

TU 1 . 37 
(2 . 11) 

∗∗ 0.17 0.09 ∗ 1 . 56 
(2 . 44) 

∗∗ 2 . 34 
(3 . 41) 

∗∗∗ 4 . 83 
(1 . 52) 

0.80 0.26 ∗∗ 2 . 07 
(4 . 45) 

∗∗∗ 0.71 0.70 ∗∗∗

FV 1 . 67 
(3 . 35) 

∗∗∗ 0.27 0.19 ∗∗∗ 1 . 82 
(3 . 72) 

∗∗∗ 2 . 01 
(3 . 89) 

∗∗∗ 8 . 77 
(2 . 93) 

∗∗∗ 1.56 1.12 ∗∗∗ 2 . 33 
(6 . 25) 

∗∗∗ 1.05 0.93 ∗∗∗

TY 1 . 68 
(3 . 41) 

∗∗∗ 0.24 0.16 ∗∗∗ 1 . 81 
(3 . 68) 

∗∗∗ 2 . 60 
(5 . 21) 

∗∗∗ 7 . 51 
(4 . 07) 

∗∗∗ 1.33 0.91 ∗∗∗ 2 . 53 
(6 . 96) 

∗∗∗ 1.06 0.86 ∗∗∗

US 1 . 77 
(3 . 62) 

∗∗∗ 0.21 0.09 ∗∗∗ 1 . 81 
(3 . 71) 

∗∗∗ 2 . 59 
(5 . 03) 

∗∗∗ 0 . 88 
(0 . 15) 

0.65 −0.43 ∗∗∗ 2 . 11 
(3 . 85) 

∗∗∗ 0.64 0.22 ∗∗∗

UB 2 . 46 
(2 . 79) 

∗∗∗ 0.61 −2.24 2 . 44 
(2 . 77) 

∗∗∗ 3 . 73 
(3 . 30) 

∗∗∗ 15 . 06 
(2 . 52) 

∗∗ 3.49 −1.92 ∗∗ 3 . 39 
(4 . 36) 

∗∗∗ 2.35 −3.40 ∗

BZ 0 . 55 
(0 . 61) 

0.00 −0.12 0 . 77 
(0 . 84) 

1 . 56 
(2 . 59) 

∗∗∗ 0 . 93 
(0 . 38) 

0.24 −0.19 ∗∗ 1 . 28 
(2 . 26) 

∗∗ 0.25 0.14 ∗∗

BL 0 . 90 
(1 . 23) 

0.02 −0.05 1 . 00 
(1 . 36) 

0 . 91 
(1 . 74) 

∗ 4 . 72 
(1 . 44) 

0.28 −0.15 ∗∗ 1 . 19 
(2 . 70) 

∗∗∗ 0.19 0.11 ∗∗

BN 1 . 79 
(2 . 54) 

∗∗ 0.16 0.11 ∗∗ 1 . 97 
(2 . 78) 

∗∗∗ 1 . 80 
(3 . 65) 

∗∗∗ 3 . 67 
(2 . 18) 

∗∗ 0.67 0.36 ∗∗∗ 1 . 97 
(5 . 12) 

∗∗∗ 0.67 0.54 ∗∗∗

BX 2 . 08 
(2 . 37) 

∗∗ 0.23 0.02 ∗∗ 2 . 28 
(2 . 64) 

∗∗∗ 1 . 63 
(2 . 37) 

∗∗ −0 . 16 
(−0 . 06) 

0.51 0.01 ∗∗ 1 . 71 
(3 . 19) 

∗∗∗ 0.52 0.33 ∗∗∗

BS 1 . 51 
(0 . 73) 

0.15 0.12 1 . 03 
(0 . 51) 

1 . 74 
(1 . 22) 

12 . 47 
(1 . 99) 

∗∗ 2.23 0.96 2 . 02 
(2 . 01) 

∗∗ 1.20 1.02 

BT 1 . 56 
(1 . 47) 

0.18 −0.11 1 . 52 
(1 . 41) 

1 . 64 
(2 . 51) 

∗∗ 11 . 13 
(2 . 95) 

∗∗∗ 1.82 −0.98 ∗∗ 2 . 04 
(3 . 17) 

∗∗∗ 1.07 0.81 ∗∗∗

GL 2 . 02 
(3 . 28) 

∗∗∗ 0.26 0.26 ∗∗∗ 2 . 05 
(3 . 34) 

∗∗∗ 0 . 74 
(1 . 43) 

0 . 02 
(0 . 01) 

0.28 −0.11 ∗∗ 1 . 16 
(2 . 92) 

∗∗∗ 0.23 0.02 ∗∗

AY −0 . 41 
(−0 . 60) 

0.01 −1.05 −0 . 38 
(−0 . 54) 

−0 . 38 
(−0 . 58) 

−17 . 25 
(−7 . 20) 

∗∗∗ 2.01 0.70 ∗∗∗ −0 . 82 
(−1 . 55) 

0.15 −0.87 

AX 1 . 03 
(0 . 89) 

0.15 −0.56 0 . 90 
(0 . 91) 

2 . 07 
(1 . 74) 

∗ −14 . 41 
(−2 . 86) 

∗∗∗ 1.98 0.35 ∗ 1 . 06 
(1 . 08) 

0.26 −0.58 

JB 1 . 73 
(1 . 54) 

0.17 −0.95 1 . 68 
(1 . 50) 

−1 . 67 
(−1 . 16) 

−3 . 59 
(−0 . 85) 

0.36 −1.15 −0 . 05 
(−0 . 06) 

−0.02 −0.56 

CB 0 . 87 
(1 . 78) 

∗ 0.05 −0.10 0 . 93 
(1 . 93) 

∗ 1 . 52 
(3 . 02) 

∗∗∗ 0 . 77 
(0 . 36) 

0.25 −0.07 ∗∗ 1 . 20 
(3 . 67) 

∗∗∗ 0.25 0.19 ∗∗∗

Table B3 

Market intraday momentum: individual commodity futures results. This table shows the pooled (Panel A) and individual (Panel B) results of regressing the 

last half-hour return ( r LH ) on a constant and the first half-hour return ( r ONFH ), return from first half hour until the last hour ( r M ) and second-to-last half 

hour ( r SLH ), and the return until the last half hour ( r ROD ) for commodity futures. Trading hours are based on volume plots. Intercepts are not reported. Panel 

A: T -statistics that account for clustering on time and market (in case the number of clusters exceeds ten) are in parentheses; see Cameron et al. (2011) . 

Panel B: Newey and West (1986) robust t-statistics in parentheses. Samples range from April 1981 to May 2020. Significance at the 1%, 5%, and 10% level 

is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 , R 2 OOS , and slope coefficients are multiplied by 100. 

Panel A: Pooled regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

Total 1 . 33 
(3 . 04) 

∗∗∗ 0.09 −0.01 1 . 29 
(3 . 02) 

∗∗∗ 0 . 85 
(2 . 73) 

∗∗∗ 2 . 24 
(1 . 16) 

0.15 −0.14 1 . 21 
(3 . 63) 

∗∗∗ 0.15 0.07 

Metals 1 . 60 
(4 . 76) 

∗∗∗ 0.28 0.21 1 . 61 
(4 . 80) 

∗∗∗ 0 . 69 
(1 . 77) 

∗ 0 . 06 
(0 . 05) 

0.31 0.10 1 . 19 
(4 . 50) 

∗∗∗ 0.26 0.31 

Energies 2 . 80 
(2 . 43) 

∗∗ 0.35 0.03 2 . 75 
(2 . 49) 

∗∗ 1 . 25 
(1 . 52) 

0 . 73 
(0 . 13) 

0.42 −0.07 2 . 10 
(2 . 34) 

∗∗ 0.45 0.20 

Softs 0 . 25 
(0 . 70) 

0.00 −0.06 0 . 19 
(0 . 57) 

0 . 61 
(1 . 70) 

∗ 3 . 50 
(2 . 62) 

∗∗∗ 0.09 −0.14 0 . 65 
(2 . 16) 

∗∗ 0.04 −0.01 
398 
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Table B3 

( continued ) 

Panel B: Individual regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

GC 1 . 43 
(2 . 98) 

∗∗∗ 0.23 0.18 ∗∗∗ 1 . 43 
(2 . 97) 

∗∗∗ 0 . 68 
(1 . 20) 

0 . 84 
(0 . 44) 

0.26 −0.19 1 . 09 
(2 . 95) 

∗∗∗ 0.25 0.08 ∗∗

HG 0 . 87 
(1 . 86) 

∗ 0.08 −0.02 0 . 92 
(1 . 97) 

∗∗ 0 . 38 
(0 . 60) 

−3 . 56 
(−1 . 70) 

∗ 0.15 −0.31 0 . 52 
(1 . 34) 

0.04 −0.25 

SV 3 . 17 
(4 . 14) 

∗∗∗ 0.84 0.73 ∗∗∗ 3 . 14 
(4 . 13) 

∗∗∗ 2 . 33 
(3 . 58) 

∗∗∗ 5 . 59 
(2 . 48) 

∗∗ 1.51 0.76 ∗∗∗ 2 . 93 
(5 . 44) 

∗∗∗ 1.42 1.01 ∗∗∗

PA 0 . 74 
(1 . 32) 

0.05 −0.15 0 . 64 
(1 . 13) 

−1 . 49 
(−1 . 60) 

−7 . 72 
(−3 . 08) 

∗∗∗ 0.53 −0.01 ∗∗∗ −0 . 32 
(−0 . 63) 

0.00 −0.16 

PL 2 . 34 
(3 . 35) 

∗∗∗ 0.95 1.02 ∗∗∗ 2 . 33 
(3 . 37) 

∗∗∗ 0 . 42 
(0 . 43) 

0 . 89 
(0 . 25) 

0.90 0.68 ∗∗∗ 1 . 79 
(3 . 27) 

∗∗∗ 0.79 0.96 ∗∗∗

CL 2 . 00 
(0 . 72) 

0.17 −0.48 2 . 40 
(1 . 12) 

−0 . 06 
(−0 . 03) 

−13 . 95 
(−0 . 99) 

1.25 −1.77 0 . 67 
(0 . 25) 

0.03 −1.04 

HO 2 . 25 
(2 . 76) 

∗∗∗ 0.22 0.04 2 . 22 
(2 . 74) 

∗∗∗ 2 . 24 
(3 . 15) 

∗∗∗ 5 . 39 
(2 . 40) 

∗∗ 0.59 0.16 ∗∗∗ 2 . 40 
(4 . 95) 

∗∗∗ 0.55 0.44 ∗∗∗

NG 3 . 89 
(5 . 49) 

∗∗∗ 0.68 0.61 ∗∗∗ 3 . 74 
(5 . 21) 

∗∗∗ 1 . 80 
(2 . 58) 

∗∗∗ 9 . 20 
(3 . 44) 

∗∗∗ 1.34 0.94 ∗∗∗ 3 . 02 
(6 . 15) 

∗∗∗ 1.04 0.92 ∗∗∗

XB 2 . 90 
(1 . 62) 

0.38 −0.14 2 . 87 
(1 . 60) 

0 . 80 
(0 . 47) 

3 . 40 
(0 . 47) 

0.40 −0.83 1 . 92 
(2 . 04) 

∗∗ 0.32 −0.00 

BO −0 . 80 
(−1 . 40) 

0.02 −0.06 −0 . 86 
(−1 . 48) 

1 . 02 
(1 . 20) 

2 . 80 
(1 . 22) 

0.06 −0.36 0 . 03 
(0 . 08) 

−0.01 −0.06 

CN −0 . 13 
(−0 . 26) 

−0.01 −0.05 −0 . 21 
(−0 . 41) 

2 . 89 
(3 . 54) 

∗∗∗ 0 . 79 
(0 . 42) 

0.21 0.03 ∗∗∗ 0 . 82 
(2 . 09) 

∗∗ 0.05 −0.01 

SM −0 . 95 
(−1 . 58) 

0.03 −0.04 ∗ −1 . 02 
(−1 . 68) 

∗ 2 . 49 
(3 . 22) 

∗∗∗ −1 . 35 
(−0 . 54) 

0.18 −0.27 ∗∗∗ 0 . 18 
(0 . 42) 

−0.01 −0.07 

SY −1 . 17 
(−2 . 17) 

∗∗ 0.06 −0.04 ∗∗ −1 . 23 
(−2 . 26) 

∗∗ 1 . 68 
(2 . 01) 

∗∗ 3 . 11 
(1 . 19) 

0.15 −0.45 −0 . 05 
(−0 . 13) 

−0.01 −0.07 

WC 0 . 48 
(0 . 73) 

−0.00 −0.06 0 . 48 
(0 . 73) 

0 . 49 
(0 . 57) 

−1 . 74 
(−0 . 85) 

−0.00 −0.21 0 . 32 
(0 . 67) 

−0.00 −0.07 

CC 1 . 50 
(2 . 59) 

∗∗∗ 0.11 0.03 ∗∗∗ 1 . 44 
(2 . 48) 

∗∗ 0 . 20 
(0 . 59) 

2 . 00 
(1 . 09) 

0.12 −0.14 ∗∗ 0 . 70 
(2 . 27) 

∗∗ 0.07 0.02 ∗∗∗

CT −0 . 20 
(−0 . 26) 

−0.01 −0.05 −0 . 21 
(−0 . 27) 

−1 . 47 
(−2 . 94) 

∗∗∗ 0 . 90 
(0 . 45) 

0.11 −0.08 ∗∗ −0 . 90 
(−2 . 16) 

∗∗ 0.07 −0.02 ∗∗

KC 1 . 46 
(1 . 55) 

0.07 0.00 1 . 24 
(1 . 31) 

1 . 39 
(2 . 50) 

∗∗ 5 . 65 
(3 . 07) 

∗∗∗ 0.45 0.23 ∗∗∗ 1 . 72 
(3 . 30) 

∗∗∗ 0.34 0.26 ∗∗∗

SB 2 . 19 
(2 . 26) 

∗∗ 0.09 −0.09 ∗ 1 . 89 
(1 . 93) 

∗ 0 . 71 
(1 . 11) 

9 . 41 
(4 . 07) 

∗∗∗ 0.66 0.29 ∗∗∗ 2 . 07 
(4 . 24) 

∗∗∗ 0.29 0.08 ∗∗∗

FC 0 . 06 
(0 . 08) 

−0.01 −0.06 0 . 01 
(0 . 02) 

−1 . 04 
(−1 . 22) 

1 . 99 
(0 . 83) 

0.03 −0.19 −0 . 34 
(−0 . 72) 

−0.00 −0.04 

LC −0 . 01 
(−0 . 01) 

−0.01 −0.05 −0 . 03 
(−0 . 04) 

0 . 01 
(0 . 01) 

6 . 14 
(2 . 77) 

∗∗∗ 0.19 0.01 ∗∗ 0 . 42 
(1 . 03) 

0.00 −0.05 

LH 0 . 56 
(0 . 87) 

0.00 −0.04 0 . 58 
(0 . 89) 

−0 . 98 
(−1 . 18) 

3 . 30 
(1 . 76) 

∗ 0.08 −0.06 0 . 03 
(0 . 06) 

−0.01 −0.06 

Table B4 

Market intraday momentum: individual currency futures results. This table shows the pooled (Panel A) and individual (Panel B) results of regressing the 

last half-hour return ( r LH ) on a constant and the first half-hour return ( r ONFH ), return from the first half hour until the last hour ( r M ) and second-to-last half 

hour ( r SLH ), and the return until the last half hour ( r ROD ), for currency futures. Trading hours are based on volume plots. Intercepts are not reported. Panel 

A: T -statistics that account for clustering on time and market (in case the number of clusters exceeds ten) are in parentheses; see Cameron et al. (2011) . 

Panel B: Newey and West (1986) robust t-statistics are in parentheses. Samples range from December 1974 to May 2020. Significance at the 1%, 5%, and 

10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 , R 2 OOS , and slope coefficients are multiplied by 100. 

Panel A: Pooled regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

Total 0 . 91 
(4 . 58) 

∗∗∗ 0.19 0.28 0 . 91 
(4 . 61) 

∗∗∗ 0 . 37 
(1 . 60) 

0 . 62 
(0 . 33) 

0.21 0.03 0 . 72 
(4 . 57) 

∗∗∗ 0.19 0.26 

Panel B: Individual regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

AD 0 . 72 
(2 . 27) 

∗∗ 0.10 0.03 ∗ 0 . 71 
(2 . 25) 

∗∗ 1 . 23 
(2 . 19) 

∗∗ 1 . 36 
(0 . 45) 

0.22 −0.17 ∗∗ 0 . 89 
(3 . 25) 

∗∗∗ 0.23 0.17 ∗∗∗

BP 1 . 40 
(4 . 92) 

∗∗∗ 0.49 0.46 ∗∗∗ 1 . 41 
(4 . 92) 

∗∗∗ −0 . 04 
(−0 . 11) 

−3 . 30 
(−0 . 74) 

0.59 −0.14 ∗∗∗ 0 . 76 
(2 . 95) 

∗∗∗ 0.23 0.16 ∗∗∗

CD 0 . 36 
(0 . 97) 

0.01 −0.05 ∗ 0 . 39 
(1 . 06) 

0 . 90 
(2 . 23) 

∗∗ 1 . 33 
(0 . 52) 

0.14 −0.16 ∗∗∗ 0 . 65 
(1 . 94) 

∗ 0.13 0.02 ∗∗∗

EC 0 . 04 
(0 . 12) 

−0.02 −0.08 0 . 01 
(0 . 04) 

−0 . 47 
(−1 . 25) 

4 . 07 
(1 . 44) 

0.22 −0.30 −0 . 04 
(−0 . 17) 

−0.02 −0.07 

JY 0 . 45 
(1 . 72) 

∗ 0.05 −0.01 ∗∗∗ 0 . 44 
(1 . 68) 

∗ 0 . 19 
(0 . 40) 

1 . 07 
(0 . 41) 

0.05 −0.23 ∗∗∗ 0 . 39 
(1 . 54) 

0.06 −0.01 ∗∗∗

ME 1 . 13 
(1 . 46) 

0.18 −0.27 1 . 17 
(1 . 51) 

0 . 23 
(0 . 31) 

−0 . 08 
(−0 . 03) 

0.14 −1.23 0 . 70 
(1 . 21) 

0.10 −0.14 

NZ 0 . 47 
(0 . 94) 

0.03 −0.23 0 . 54 
(1 . 07) 

0 . 84 
(0 . 98) 

8 . 21 
(2 . 11) 

∗∗ 0.97 0.07 ∗ 0 . 84 
(2 . 07) 

∗∗ 0.25 −0.25 

SF 1 . 66 
(3 . 93) 

∗∗∗ 0.62 0.55 ∗∗∗ 1 . 68 
(3 . 96) 

∗∗∗ 0 . 37 
(1 . 14) 

−0 . 50 
(−0 . 30) 

0.63 0.38 ∗∗∗ 1 . 10 
(3 . 53) 

∗∗∗ 0.46 0.40 ∗∗∗
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Appendix C. Cash index results 
Tables C1 and C2 

Table C1 

Overview of equity indices sample. This table includes symbols as listed on www.t

hours we consider to be a trading day, number of observations after filtering, a

expressed in the local exchange time zone, with U.S.-listed futures denoted in Eas

Index Symbol Start 

Dow Jones Industrial Average Index DJ 1993-04-05 

S&P 500 Index SP 1983-02-03 

NASDAQ 100 Index ND 1997-01-06 

S&P 400 MidCap Index MD 1998-01-06 

Amsterdam AEX Index AE 2008-01-04 

DAX Index DA 2003-07-03 

Swiss Market Index SW 2011-07-01 

EURO STOXX 50 Index XX 2003-07-03 

CAC 40 Index CF 2003-07-03 

IBEX 35 Index IB 2003-07-03 

Nikkei 225 Index NE 2003-07-03 

TOPIX Index TP 2003-07-03 

S&P Canada 60 Index SC 2003-07-04 

Table C2 

Market intraday momentum: individual equity indices results. This table shows th

half-hour return ( r LH ) on a constant and the first half-hour return ( r ONFH ), the retu

hour ( r SLH ), and the return until the last half hour ( r ROD ) for equity indices. Interc

time and market (in case the number of clusters exceeds ten) in parentheses; see 

are in parentheses. Samples range from February 1983 to May 2020. Significan

Adjusted R 2 , R 2 OOS , and slope coefficients are multiplied by 100. 

Panel A: Pooled regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM 

Total 4 . 38 
(5 . 31) 

∗∗∗ 1.29 0.98 4 . 18 
(5 . 25) 

∗∗∗ 2 . 35 
(2 . 63) 

∗∗∗

USA 6 . 71 
(5 . 30) 

∗∗∗ 1.79 1.35 6 . 24 
(5 . 03) 

∗∗∗ 4 . 50 
(4 . 35) 

∗∗∗

EU 2 . 82 
(2 . 83) 

∗∗∗ 0.83 0.32 2 . 78 
(2 . 78) 

∗∗∗ 0 . 67 
(1 . 00) 

Australasia 3 . 38 
(4 . 02) 

∗∗∗ 1.62 1.39 3 . 31 
(3 . 88) 

∗∗∗ 0 . 07 
(0 . 05) 

Panel B: Individual regressions 

βONFH R 2 (%) R 2 OOS (%) βr ONFH 
βM 

DJ 5 . 68 
(3 . 19) 

∗∗∗ 1.15 0.97 ∗∗∗ 5 . 38 
(3 . 14) 

∗∗∗ 2 . 48 
(1 . 85) 

∗

SP 6 . 26 
(3 . 99) 

∗∗∗ 1.39 1.15 ∗∗∗ 5 . 68 
(3 . 86) 

∗∗∗ 4 . 20 
(3 . 05) 

∗∗∗

ND 7 . 34 
(5 . 38) 

∗∗∗ 2.09 2.09 ∗∗∗ 6 . 88 
(5 . 09) 

∗∗∗ 5 . 63 
(5 . 47) 

∗∗∗

MD 7 . 04 
(5 . 52) 

∗∗∗ 2.57 2.53 ∗∗∗ 6 . 53 
(5 . 47) 

∗∗∗ 4 . 28 
(3 . 68) 

∗∗∗

AE 3 . 00 
(2 . 31) 

∗∗ 1.04 −1.46 2 . 97 
(2 . 36) 

∗∗ 1 . 04 
(1 . 23) 

DA 3 . 83 
(3 . 31) 

∗∗∗ 1.37 1.00 ∗∗∗ 3 . 81 
(3 . 35) 

∗∗∗ 0 . 51 
(0 . 65) 

SW 2 . 27 
(2 . 60) 

∗∗∗ 0.98 0.93 ∗∗ 2 . 36 
(2 . 59) 

∗∗∗ 1 . 47 
(2 . 33) 

∗∗

XX 3 . 29 
(3 . 08) 

∗∗∗ 1.03 0.65 ∗∗ 3 . 24 
(3 . 11) 

∗∗∗ 1 . 24 
(1 . 61) 

CF 2 . 44 
(2 . 49) 

∗∗ 0.58 0.27 ∗ 2 . 40 
(2 . 53) 

∗∗ 0 . 82 
(1 . 06) 

IB 1 . 80 
(1 . 77) 

∗ 0.30 −0.14 1 . 72 
(1 . 72) 

∗ −0 . 21 
(−0 . 35) 

NE 3 . 64 
(3 . 61) 

∗∗∗ 1.84 1.60 ∗∗∗ 3 . 55 
(3 . 52) 

∗∗∗ 0 . 35 
(0 . 31) 

TP 3 . 09 
(3 . 49) 

∗∗∗ 1.37 1.14 ∗∗∗ 3 . 03 
(3 . 39) 

∗∗∗ −0 . 26 
(−0 . 24) 

SC 3 . 37 
(1 . 98) 

∗∗ 0.80 0.29 3 . 05 
(1 . 87) 

∗ 0 . 51 
(0 . 30) 

400 
ickdata.com , start of the sample period, end of the sample period, trading 

nd the geographical group to which a future belongs. Trading hours are 

tern Standard Time (EST). 

End #Obs Trading hours Group 

2020-05-01 6757 09:30–16:00 USA 

2020-05-01 9312 09:30–16:00 USA 

2020-05-01 5807 09:30–16:00 USA 

2020-05-01 5554 09:30–16:00 USA 

2020-05-01 3116 09:00–17:30 EU 

2020-05-01 4241 09:00–17:30 EU 

2020-05-01 2187 09:00–17:30 EU 

2020-05-01 4263 09:00–17:30 EU 

2020-05-01 4267 09:00–17:30 EU 

2020-05-01 4248 09:00–17:30 EU 

2020-05-01 4090 09:00–15:00 Australasia 

2020-05-01 4093 09:00–15:00 Australasia 

2020-05-01 4188 09:30–16:00 - 

e pooled (Panel A) and individual (Panel B) results of regressing the last 

rn from the first half hour until the last hour ( r M ) and second-to-last half 

epts are not reported. Panel A: T -statistics that account for clustering on 

Cameron et al. (2011) . Panel B: Newey and West (1986) robust t-statistics 

ce at the 1%, 5%, and 10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. 

βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

9 . 70 
(3 . 69) 

∗∗∗ 2.46 3.3 3 . 70 
(4 . 73) 

∗∗∗ 2.05 3.06 

14 . 42 
(3 . 98) 

∗∗∗ 4.32 3.76 6 . 03 
(7 . 27) 

∗∗∗ 3.75 3.45 

2 . 16 
(0 . 93) 

0.93 −0.11 1 . 71 
(3 . 07) 

∗∗∗ 0.70 0.23 

7 . 02 
(1 . 74) 

∗ 2.00 1.15 2 . 50 
(4 . 52) 

∗∗∗ 1.37 1.19 

βSLH R 2 (%) R 2 OOS (%) βROD R 2 (%) R 2 OOS (%) 

12 . 49 
(2 . 57) 

∗∗ 2.41 1.83 ∗∗∗ 4 . 63 
(4 . 16) 

∗∗∗ 1.88 1.69 ∗∗∗

15 . 36 
(4 . 04) 

∗∗∗ 3.95 3.10 ∗∗∗ 5 . 84 
(5 . 58) 

∗∗∗ 3.23 2.70 ∗∗∗

12 . 68 
(3 . 61) 

∗∗∗ 4.99 4.07 ∗∗∗ 6 . 69 
(8 . 96) 

∗∗∗ 4.74 4.39 ∗∗∗

18 . 86 
(3 . 87) 

∗∗∗ 6.19 5.58 ∗∗∗ 6 . 21 
(6 . 65) 

∗∗∗ 4.91 4.87 ∗∗∗

2 . 53 
(0 . 71) 

1.19 −2.60 2 . 04 
(2 . 31) 

∗∗ 1.04 −1.70 

1 . 60 
(0 . 63) 

1.38 0.46 ∗∗ 2 . 05 
(3 . 01) 

∗∗∗ 0.89 0.66 ∗∗

−1 . 82 
(−0 . 63) 

1.41 1.16 ∗∗ 1 . 76 
(2 . 94) 

∗∗∗ 1.24 1.28 ∗∗

2 . 99 
(1 . 16) 

1.27 0.43 ∗∗ 2 . 24 
(3 . 19) 

∗∗∗ 1.12 0.87 ∗∗

1 . 89 
(0 . 62) 

0.66 −0.13 ∗ 1 . 63 
(2 . 38) 

∗∗ 0.59 0.37 ∗

2 . 96 
(1 . 10) 

0.35 −0.51 0 . 78 
(1 . 23) 

0.13 −0.28 

6 . 72 
(1 . 62) 

2.18 1.39 ∗∗∗ 2 . 73 
(3 . 48) 

∗∗∗ 1.62 1.44 ∗∗∗

7 . 34 
(1 . 64) 

1.75 0.87 ∗∗∗ 2 . 24 
(3 . 31) 

∗∗∗ 1.08 0.91 ∗∗∗

17 . 68 
(2 . 30) 

∗∗ 2.59 0.81 ∗∗ 2 . 74 
(2 . 42) 

∗∗ 1.04 0.41 ∗

http://www.tickdata.com
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Appendix D. Horse race subsamples 

D.1. 1974–1999 
Table D1 

Market intraday momentum: horse race results 1974–1999. This table reports the

half-hour return ( r ONFH ) and the return until the last half hour ( r ROD ) (i) have th

sign”), and (iii) without conditioning (row “Full sample”). T -statistics in parenth

time and market (in case the number of clusters exceeds ten); see Cameron et a

10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and slope coefficien

βONFH R 2 (%) βROD 

Panel A

Equal sign 4 . 72 
(2 . 79) 

∗∗∗ 1.08 6 . 13 
(4 . 68) 

∗∗∗

Different sign −3 . 90 
(−1 . 97) 

∗∗ 0.20 4 . 92 
(2 . 63) 

∗∗∗

Full sample 3 . 73 
(2 . 74) 

∗∗∗ 0.53 5 . 96 
(4 . 80) 

∗∗∗

Panel B: G

Equal sign 2 . 57 
(5 . 26) 

∗∗∗ 0.58 2 . 96 
(8 . 08) 

∗∗∗

Different sign −5 . 66 
(−4 . 47) 

∗∗∗ 0.66 4 . 58 
(4 . 75) 

∗∗∗

Full sample 1 . 65 
(3 . 49) 

∗∗∗ 0.17 3 . 19 
(8 . 38) 

∗∗∗

Panel C

Equal sign 1 . 15 
(1 . 95) 

∗ 0.08 1 . 44 
(3 . 51) 

∗∗∗

Different sign −2 . 74 
(−2 . 03) 

∗∗ 0.08 2 . 57 
(3 . 37) 

∗∗∗

Full sample 0 . 83 
(1 . 45) 

0.03 1 . 59 
(3 . 92) 

∗∗∗

Panel

Equal sign 1 . 83 
(7 . 66) 

∗∗∗ 0.92 1 . 46 
(7 . 47) 

∗∗∗

Different sign 1 . 14 
(0 . 96) 

0.04 −0 . 42 
(−0 . 39) 

Full sample 1 . 79 
(7 . 54) 

∗∗∗ 0.68 1 . 31 
(6 . 48) 

∗∗∗

401 
 pooled regressions results for Eq. (11) , conditioned on whether the first 

e same sign (row “Equal sign”), (ii) have different signs (row “Different 

eses are computed using standard errors that account for clustering on 

l. (2011) . Samples range from 1974–1999. Significance at the 1%, 5%, and 

ts are multiplied by 100. 

R 2 (%) βONFH βROD R 2 (%) 

: Equity index futures 

4.42 −7 . 66 
(−2 . 12) 

∗∗ 10 . 06 
(3 . 87) 

∗∗∗ 5.47 

1.07 0 . 99 
(0 . 61) 

5 . 22 
(2 . 66) 

∗∗∗ 1.06 

3.41 −3 . 45 
(−1 . 98) 

∗∗ 7 . 32 
(4 . 74) 

∗∗∗ 3.68 

overnment bond futures 

1.44 −2 . 77 
(−3 . 16) 

∗∗∗ 4 . 67 
(6 . 71) 

∗∗∗ 1.64 

1.08 −2 . 81 
(−1 . 95) 

∗ 3 . 70 
(3 . 38) 

∗∗∗ 1.19 

1.28 −2 . 41 
(−3 . 67) 

∗∗∗ 4 . 35 
(7 . 94) 

∗∗∗ 1.48 

: Commodity futures 

0.24 −2 . 14 
(−2 . 84) 

∗∗∗ 2 . 73 
(5 . 33) 

∗∗∗ 0.31 

0.25 −0 . 58 
(−0 . 44) 

2 . 42 
(3 . 29) 

∗∗∗ 0.24 

0.23 −1 . 64 
(−2 . 30) 

∗∗ 2 . 40 
(4 . 88) 

∗∗∗ 0.28 

 D: Currency futures 

0.95 0 . 84 
(1 . 73) 

∗ 0 . 89 
(2 . 23) 

∗∗ 0.99 

0.00 1 . 09 
(1 . 04) 

−0 . 07 
(−0 . 06) 

0.02 

0.61 1 . 19 
(2 . 47) 

∗∗ 0 . 59 
(1 . 49) 

0.72 
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D.2. 20 0 0–2020 

Table D2 

Market intraday momentum: horse race results 20 0 0–2020. This table rep

half-hour return ( r ONFH ) and the return until the last half hour ( r ROD ) (i)

Sign”), and (iii) without conditioning (row “Full Sample”). T -statistics in

time and market (in case the number of clusters exceeds ten); see Came

10% level is denoted by ∗∗∗ , ∗∗ , or ∗ , respectively. Adjusted R 2 and slope c

βONFH R 2 (%) βROD

Equal sign 5 . 84 
(6 . 28) 

∗∗∗ 2.94 4 . 05
(6 . 55)

Different sign −3 . 69 
(−2 . 39) 

∗∗ 0.29 3 . 42
(3 . 12)

Full sample 4 . 97 
(6 . 07) 

∗∗∗ 1.67 3 . 97
(6 . 66)

Pa

Equal sign 1 . 71 
(3 . 63) 

∗∗∗ 0.34 1 . 72
(4 . 43)

Different sign 0 . 19 
(0 . 21) 

-0.00 0 . 47 
(0 . 47)

Full sample 1 . 56 
(3 . 63) 

∗∗∗ 0.21 1 . 53
(3 . 61)

Equal sign 1 . 15 
(1 . 95) 

∗ 0.08 1 . 44
(3 . 51)

Different sign −2 . 74 
(−2 . 03) 

∗∗ 0.08 2 . 57 
(3 . 37)

Full sample 0 . 83 
(1 . 45) 

0.03 1 . 59
(3 . 92)

Equal sign 0 . 34 
(1 . 13) 

0.03 0 . 27 
(1 . 19)

Different sign 0 . 99 
(0 . 96) 

0.04 1 . 11 
(1 . 32)

Full sample 0 . 38 
(1 . 29) 

0.03 0 . 33
(1 . 45)
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