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Previously, few, if any, comparative tests of performance of Jackwerth’s
(1997) generalized binomial tree (GBT) and Derman and Kani (1994)
implied volatility tree (IVT) models were done. In this paper, we propose
five different weight functions in GBT and test them empirically compared
to both the Black-Scholes model and IVT.

We use the daily settlement prices of FTSE-100 index options from
January to November 1999. With both American and European options
traded on the FTSE-100 index, we construct both GBT and IVT from
European options and examine their performance in both the hedging
of European option and the pricing of its American counterpart. IVT is
found to produce least hedging errors and best results for American call
options with earlier maturity than the maturity span of the implied trees.
GBT appears to produce better results for American ATM put pricing for
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any maturity, and better in-sample fit for options with maturity equal
to the maturity span of the implied trees. Deltas calculated from IVT are
consistently lower (higher) than Black-Scholes deltas for both European
and American calls (puts) in absolute term. The reverse holds true for
GBT deltas. These empirical findings about the relative performance
of GBT, IVT, and Standard Black-Scholes models are important to practi-
tioners as they indicate that different methods should be used for different
applications, and some cautions should be exercised. © 2002 Wiley
Periodicals, Inc. Jrl Fut Mark 22:601-626, 2002

INTRODUCTION

Since the market crash of October 1987, the volatility smile for most
world equity markets has become more pronounced. The constant
volatility assumption underpinning the Black-Scholes options pricing
model (1973) is violated if we assume that the option market is efficient
and the options are correctly priced. Tompkins (1998) documents
volatility smiles in the UK, Japan, and Germany and compares them with
similar smiles in US markets. Studies have extended the Black and
Scholes model to account for the volatility smile and other related empir-
ical violations. Jackwerth and Buraschi (1998) group them into two main
approaches: Stochastic Volatility models and Deterministic Volatility
models.

In Stochastic Volatility models, the evolution of the stock price
volatility can be modeled to follow a certain process. Two examples are
Brownian motion and mean-reverting process. Hull and White (1987),
Ball and Roma (1994), Heston (1993), Stein and Stein (1991), Scott
(1987), and Wiggins (1987) study options based on processes with sto-
chastic volatility. These extensions introduce some disadvantages. First,
using just the underlying security and risk-free bond is inadequate to
hedge the volatility or the jump risk directly, and options valuation is in
general no longer preference-free. Second, in these multi-factor models,
the option value depends on several additional parameters whose values
must be estimated.

Deterministic volatility models are based on the assumption that the
local volatility of the underlying asset is a known function of time and of
the path and level of the underlying asset price. In these economies,
markets are dynamically complete, and options are redundant assets that
can be replicated using other assets. Therefore, they can be priced by the
no-arbitrage principle without resorting to general equilibrium models,
and risk premia do not come into the picture. Moreover, these models
can fit the smile exactly by calibrating the local volatility function of the
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underlying asset. According to Jackwerth and Buraschi (1998) classifica-
tion, we have (1) the constant elasticity of variance model (Cox & Ross,
1976); (2) the generalized deterministic volatility function models
(Dupire, 1994; Derman & Kani, 1994); (3) the implied binomial tree
model (Rubinstein, 1994); and (4) the kernel approach (Ait-Sahalia &
Lo, 1998).

Implied trees can be applied to models (2) and (3). The basic idea
of these approaches is to construct a binomial tree that can fit currently
traded derivatives prices whether exactly or in some ways, and the tree can
then be used to price any other derivatives on the same underlying asset
with the same or earlier maturity. Market implied information embodied
in the constructed tree may then help traders’ decision making, and enable
the pricing of OTC and exotic options on the same underlying process.

Previously, few, if any empirical tests have been carried out, mainly
because of the need for tedious calibration on the generalized binomial
tree (GBT) and the implied volatility tree (IVT) models. In this paper, we
modify the implied binomial tree model in (3) to a GBT to try to make it
better incorporate prices of options that mature within the maturity span
of the constructed tree. We test GBT using five different weight func-
tions and compare the performance with the IVT and Black-Scholes
model. We calibrate the GBT and IVT using European options with
different maturities and test the pricing of American options that are
simultaneously traded in the same underlying FTSE-100 index.
We empirically compare the pricing performance of these trees and the
standard binomial tree (SBT).

There are a few related studies on FTSE-100 index options. In con-
trast to ours, most of them use parametric approaches by assuming a
specific risk-neutral probability distribution and deriving a Black-
Scholes-like formula for option pricing. The distribution parameters are
then chosen to best fit the observed option prices.

Merfendereski and Rebonato (1999) choose a four-parameter prob-
ability distribution, the Generalised Beta of the second kind, and find it
is able to fit the observed FTSE-100 index option prices well.

Another recent study on FTSE-100 index option is done by
Gemmill and Saflekos (2000). They estimate the implied distribution,
and for the options as a mixture of two lognormals, and find it is better
than the one-lognormal approach at fitting observed option prices, and
predicting and hedging out-of-sample prices. They also undertake event
studies on the shape of the implied distributions during the “crash period,”
and find the distribution helps to reveal investor sentiment, but does not
have much power for forecasting future events.
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In the next section, we briefly review the implied binomial tree
(IBT), its extension—generalized binomial tree (GBT), some related
techniques to discover the risk-neutral probability distribution, and the
implied volatility tree (IVT). Following that, the data are discussed. The
estimation of optimal weight function is described next. The following
section contains both methodology and results of the empirical tests
using FTSE-100 options. The final section summarizes the main find-
ings and points out directions for future research.

REVIEW OF THE IMPLIED TREE MODELS

Implied Binomial Tree

Obtaining the Future Probability Distribution
of the Underlying Asset

Prices of securities contain valuable information that can be used to
make a wide variety of economic decisions. In a dynamic equilibrium
model with complete markets, the price of any financial security can be
expressed as the expected net present value of its future payoffs.
The present value is calculated with respect to the riskless rate r and the
expectation is taken with respect to the risk-neutral Probability Density
Function (PDF) of the payoffs. This PDF, which is distinct from the true
PDF of the payoffs, is the risk-neutral PDF or the equivalent martingale
measure. More formally, the date-t price of a security with a single liqui-
dating date-T payoff Z(S;) is given by:

P, = ¢ "E,[Z(S;)] = e”JZ(ST)ft(ST)dST

where Sy is a state variable, r is the constant risk free rate of interest
between t and T = t + 7, and f(S;) is the date-t risk-neutral PDF for
date-T payoffs.

Jacques Dreze (1970) recognizes the significant correspondence
between state-contingent prices and probability. In the work of Ross
(1976), it was found that given a complete set of European option prices
on a particular underlying for a particular expiration date, one can deduce
the risk-neutral probability distribution (i.e., the PDF) of the underlying
for the given expiration date. There are various computational methods to
do this, and a good summary of them can be found in Jackwerth (1999).

Longstaff’s method (1990) expresses the probabilities in terms of
options prices, strike prices and previous probabilities, and solves for
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them in a triangular fashion. The result is a set of discrete probabilities
following a step function with respect to the strike prices. Rubinstein
(1994) discusses the method and finds a few drawbacks: (1) the proba-
bilities frequently vary significantly from very low to very high values over
adjoining intervals; (2) negative probabilities can occur; and (3) there are
considerable identification problems in the PDF tails.

Shimko (1993) uses Black-Scholes implied volatility as a transla-
tion device. Specifically, the method involves the following four steps.
(1) Calculate the Black-Scholes implied volatilities for known options
(same time to maturity, but different strike price). (2) Fit a smooth curve
to the “volatility smile” between the lowest and highest option striking
price. (3) Solve for the option prices as a continuous function of the
striking price. (4) Take the second derivative of the function. Rubinstein
(1994) proposes another method using minimization of fitted price to
actual price.

Rubinstein’s optimization with prior guess. The implied posterior
risk-neutral probabilities, P;, are the solution to the following quadratic
program:

min E (P; — 131)2 subject to
P 5

EP-=1 and P;=0 forj=0,..,n

- ]
]

S = <3N2Pjsj) / r
i
C, = (EP]- max]0, S; — KJ)/T" fori =1,...,m
j

Here, 13]- is a prior guess of the risk-neutral probabilities; S; is the nodal
underlying asset price at the end of the tree from the lowest to the highest;
P; is the required ending node risk-neutral probability, and Z,P; = 1. Let r
and & represent, respectively, the riskless interest return and underlying
asset payout return over each step. Let S, be the current price of the
underlying asset and C; be the price simultaneously observed on a
European call maturing at the end of the tree with a strike price of K;. We
must choose 1 > m. The solution can be easily obtained by using software
for quadratic optimization with constraints. In Rubinstein’s paper (1994),
he starts with a lognormal prior distribution for the terminal stock prices
for his study of the S&P 500 index in the period from 1986 to 1993. The
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lognormal distribution is generated from the Cox-Ross-Rubinstein
binomial tree. It is also useful to note that in the above program, the
inputs of S, and C; may not be available, but are further constrained to be
contained within available bid and ask prices instead.

Rubinstein’s optimization with maximum smoothness. The above
method requires an assumed prior distribution and occasionally leads to
posterior distributions that have sufficiently little smoothness to be plau-
sible. Another interesting approach is to select the implied distribution
with maximum smoothness. With all the constraints remaining
unchanged, the implied probabilities P;'s are chosen to minimize the fol-
lowing function:

> (P, —2P,+P,)* whereP, =P, =0
j
Jackwerth and Rubinstein (1996) consider other forms of objective func-

9«

tion used for minimization, such as “goodness-of-fit function,” “absolute
difference function” and “maximum entropy function.” They find that the
implied distributions are rather independent of the choice of the objec-

tive function when a sufficiently large number of options are available.

Constructing the Implied Binomial Tree

After obtaining the risk-neutral probability distribution, the implied
binomial tree can then be built. One important assumption of
Rubinstein’s original implied binomial tree is that all paths that lead to
the same ending node have the same risk-neutral probability. This is
often known as the assumption of Binomial Path Independence (BPI).
Under BPI, the path probability can be easily obtained by dividing the
nodal probability by the number of paths that lead to it. A backward
induction technique is then applied to build the entire tree from the end-
ing nodes to the initial node.

Generalized Binomial Tree

One generalization can be made regarding the BPI assumption under the
implied binomial tree model. We can assign different probabilities to
paths that lead to the same node. Therefore, more information can be
incorporated in the tree. For instance, the tree can now be constructed
in a way that best fits the prices of any derivatives with expiry before
the ending node time, on the same underlying asset. The generalized
binomial tree proposed by Jackwerth (1997) accomplishes this by using
an optimization method to determine the best linear and generalized
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FIGURE 1
The weight function of implied binomial tree.

weight function that assigns a particular portion of the nodal probability
going to the lower preceding node. Such a generalized binomial tree can
also incorporate the prices of European options with an earlier maturity.
It can also accommodate American options.

Under the implied binomial tree, the number of time steps is
indexed byi = 0, 1,..., n. The nodes at each stepj = 0, 1,..., i start with
the lowest stock price at the bottom of the step. Then the portion of
nodal probability going down to the preceding node is w(j/i) = j/i, and
the portion of probability going up is 1 — w(j/i). In other words, the
down weight is a linear function of j/i as shown in Figure 1.

In this way, the entire stock process can effectively be summarized
through this weight function together with the ending-node probability
distribution. For example, a standard binomial tree can be completely
described by a given ending-node probability distribution and a linear
weight function. Likewise an implied ending-node risk neutral probabil-
ity distribution plus a linear weight function summarizes an implied
binomial tree.

The tree can then be generalized by changing the weight function.
The backward induction of the entire tree can be illustrated using
Figure 2.



608 Lim and Zhi

— Pupnodal’ Sup’ W(]/l)

l:modal7 S —

Pdownm)dala Sdown’ WG_l/i)

FIGURE 2
One step in the generalized binomial tree.

Here, P*%! prodal and Prodal are nodal probabilities; S, S.pand Sy,

up down

are the prices of underlying assets; and W(j/i) and W((j — 1)/i) are
weights calculated from the weight function.

Then P4l = W(j/i) X prodal (1 —W((j — 1)/i)) X prodal - and

up down>

transition probability p = W(j/i) X PZI‘;”I“I /P! Thus, coupled with find-
ing the underlying asset price via risk-neutral expectation using the tran-
sition probabilities, working backward on the tree, the entire tree is built.
The tree can then be used to price other derivatives that mature earlier
or within the maturity span of the implied tree. Each weight function
will determine a particular binomial tree, which in turn will determine
the prices of other derivatives, and such prices may deviate from the
market prices. The purpose is to find an appropriate weight function
that, when plugged into the generalized binomial tree model, will be able
to price other derivatives accurately.

In this paper, we propose five linear and nonlinear weight functions.
They share some common characteristics. They pass through (0, 0),
(1, 1). Each function is governed by only one additional parameter, «,
that needs to be estimated using optimization method.

Function 1: Linear Concave

_ {Xa/O.S for X € [0, 0.5] €105, 1]

(1-a)X—05)/05+a forXe{05,1]"

Function 2: Linear Convex
Same as Function 1, except that o € [0, 0.5].

Function 3: Quadratic Concave

W=aX®+ (1 —a)X, a€[-1,0]
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Different proposed weight functions.

Function 4: Quadratic Convex
Same as Function 3, except a € [0, 1].

Function 5: S curve

0 forX =0
W=4(1 forX=1 a€]0,2.5]
normcdf(—5+10X, 0, «) otherwise

Function 5 is a cumulative normal distribution function, with mean 0,
standard deviation of a. All five functions are plotted in Figure 3.

Implied Volatility Tree

The implied volatility tree model of option pricing was introduced by
Derman and Kani of the Quantitative Strategies Group of Goldman
Sachs in 1994. It is in spirit similar to the implied binomial tree but
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different in some ways. The implied binomial tree can only incorporate
prices of European options with different strike prices but of the same
maturity. GBT extends to the possibility of incorporating options with
earlier maturities than the maturity span of the implied tree. The
implied volatility tree (IVT), also allows the incorporation of informa-
tion on European options with different strike prices and different
maturities.

In contrast to the GBT’s backward induction, IVT starts from the
initial node and expands forward. At any step of the tree, the center
node(s) is (are) decided first. Prices and transitional probabilities of all
nodes above the center node(s) can be solved in an iterative way by using
prices of particular European calls, while prices and transitional proba-
bilities of all nodes below the center node(s) are solved similarly but
using prices of particular European puts. These call and put prices are in
turn interpolated from the existing market traded options using an
implied volatility surface as a transformation tool.

One weakness of IVT is its inability to preclude bad transitional
probabilities, which are either greater than 1 or less than 0. In that
case, we override the particular nodal price, S,, that produces the bad
probability and setS; = Vs; X s;_,. (s; is the higher node price and s;_, is
the lower node price in the previous step). If S; happens to be at the
highest node at that step, i.e. S; =S, ., then S, = s2/S . If S, is at lowest
node, i.e. S; = S, then S, = s}%/S,.

Barle and Cakici (1998) add some improvements to increase the
stability of the original Derman and Kani (1994) trees by centering
the tree with the forward price. However, arbitrage violations and bad
probabilities still occur. Chriss (1996) extends the implied volatility for
use with American input options by applying an iterative method, called
the false-position method. However, this method is rather computation-
ally involved.

Options

FTSE options are traded on The London International Financial Futures
Exchange (LIFFE). Both European and American contracts on the same
underlying FTSE-100 stock index are traded, which enables a number of
interesting studies. For instance, Paul Dawson (1994) has done an
empirical analysis of comparative pricing of American and European
FTSE-100 Index Options by checking the boundary conditions of early
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exercise of American options. Not considering transactions costs, some
arbitrage possibilities indicate overpriced American options relative to
the European options.

Both American FTSE-100 index option contracts (SEI) and The
European FTSE-100 index option contracts (ESX) expire on the third
Friday of the delivery month. A wide range of exercise prices is available
for both contracts. However, in order to avoid confusion in the trading
pit, exercise prices of American options are offset from the exercise
prices of the European contracts by 25 points.

To use both the implied volatility tree model (IVT) and the general-
ized binomial tree model (GBT), option prices, at one point in time, of a
minimum two expiry series, each with different strikes are required.
For the convenience of data collection, we choose the “one point of
time” as the closing time of the market. We select only the current and
subsequent month maturing contracts that are relatively heavily traded.
The prices of European call options are used as the input. In addition, to
make Rubinstein’s optimization method and interpolation of volatility
smile computationally feasible and meaningful, at least five call option
prices for each expiry series are selected.

The data used for this study are primarily from LIFFE. The data
comprises a pre-sample set of FTSE-100 European call prices in the
period from February to June 1998. This data sample is used to estimate
the optimal weight function to employ for the GBT method. The esti-
mation is described in the next section. The sample for the empirical
study to compare the performance of the GBT and IVT methods consists
of FTSE-100 index option prices in the period from January to
November 1999. Data are end-of-day settlement prices. For the empiri-
cal studies, in order to ensure independence of the data, we only build
trees in odd months, so each tree is built from two months of data. The
data for different trees do not overlap. Since maturing contracts expire
on the third Friday of that month, only trading days before the third
Friday for odd month are included for building each tree. During the sam-
pling period, there are 74 such trading days. However, for 17 days, there
are less than 5 call options for each expiry, which leave us with 57 days
and in total 2388 options to study.

The underlying index level is provided together with the option data
by LIFFE. It is calculated as the average of index values between 4:20 PM
and 4:30 PM (London Time), excluding the eight highest and eight lowest.

The risk-free interest rate used here is the two month LIBOR
(London Interbank Borrowing Rate) rate, since the tree is expanding
from now till the third Friday of next month. We use the actual index
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dividend rates. The interest rate and dividend information are obtained
from Bloomberg.

ESTIMATION OF OPTIMAL
WEIGHT FUNCTION

As a first step for GBT, we need to select the optimal ending-node prob-
ability distribution fitting method and the weight function. To do this, we
use an earlier and separate pre-sample of data so that the empirical
results will not be biased.

Three methods are used to obtain the 46-day ending node risk neutral
probability distribution at 4:30 PM on February 2, 1998, from the prices
of March maturing FTSE-100 stock index Calls. They are Discretized
Shimko’s Method (a discretized approximation to the original Shimko’s
method as previously described), Rubinstein’s Optimization Method with
Prior Guess (the prior guess used here is a lognormal distribution), and
Rubinstein’s Optimization Method with Maximum Smoothness.

The above three probability distributions are plotted in Figure 4. For
the purpose of comparison, we add two more probability distributions.
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FIGURE 4
Future risk-neutral probability distributions implied by different methods.
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First is the lognormal probability distribution of Black-Scholes model
(the curve with highest variance). Second is the probability distribution
implied by the calculated IVT for February 2, 1998.

All four implied probability distributions are largely different from
the lognormal distribution. Among the four, the IVT implied distribution
skews a bit more to the right, which is different from the other three. It
is plausible since the IVT may incorporate more information embodied
in the current month maturing option contracts in the way the tree is
constructed. The other three methods produce roughly the same proba-
bility distribution, which reaffirms Rubinstein’s finding that the probabil-
ity distribution is rather independent of the method used to derive it,
given the same input set. Of the three methods, both of Rubinstein’s
methods produce somewhat kinky distributions. Shimko’s method pro-
duces the smoothest distribution. However, one drawback of this
method is that the probabilities are not guaranteed to sum to 1, and con-
sequently may cause trouble when constructing the GBT backwards. For
instance, the inferred starting node index level may not exactly equal the
current index level. Such a tree will generate large errors when used to
price near-maturity options. Due to these considerations, we decide to
choose Rubinstein’s method with maximum smoothness to infer the end-
ing-node risk-neutral probabilities, since, by construction, it will produce
a smoother distribution. We performed a check on the other sample days
till June 1998, and found that this method produces smooth ending-
node distributions in most of days.

All five proposed weight functions for constructing the GBT
together with the ending-node risk-neutral probability distributions are
used to fit European call options data for the first valid trading day for
each of the five months from February to June 1998. Since we have
more than one call option that matures before the maturity span of
the tree, and our proposed functions are all parameterized using «, the
earlier calls, unlike the later calls that are used to find the ending-node
distribution, are not fitted exactly. For each function, we find the associ-
ated a that minimizes Root Mean Square Error (RMSE), with the for-

mula as follows:
RMSE = | el/n
i=1

The optimal weight («), and associated RMSEs of the 5 selected weight
functions for current month maturing European Call (C1) and Put (P1)
are summarized in Table 1. (Figures are averaged out through five days.)
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TABLE |
Different Weight Functions

Weight Functions Weight (a) RMSE of C1 RMSE of P1
Linear Concave 0.89 5.32674 5.18974
Linear Convex 0.5 20.71164 18.86668
Quadratic Concave -1 17.00998 15.78394
Quadratic Convex 0 20.71164 18.86668
S-curve function 1.96 13.47964 19.5748

Notes. We test five different weight functions and calculate the optimal weight, root mean square error
(RMSE) of current-month maturing European calls (C1) and puts (P1) for each function. The figures are
averaged out across the various months.

The five different proposed weight functions pass through (0, 0), (1, 1). Each function is governed by param-
eter « as follows.

(1) Linear Concave:

[ Xa/0.5 for X € [0, 0.5]
W= {(1 —a)(X—0.5)/05+ a forXe€][0.51] @ €[0.5,1]
(2) Linear Convex: Same as Function 1, except that « € [0, 0.5].
(3) Quadratic Concave: W= aX? + (1 — a)X,a« €[-1, 0].
(4) Quadratic Convex: Same as Function 3, except a € [0, 1].
(5) S curve: cdf has mean 0 and standard deviation of a:

0 forX=0
W=<1 forX=1 a€]l0,2.5]
normcdf(—5 + 10X, 0, «) otherwise

As seen from the table, two convex weight functions (functions 2
and 4) collapse to straight lines in all five days, which leads to the same
conclusion as in Jackwerth (1997) that concave weight functions are
most appropriate. The weight of the quadratic concave function hit
the boundary in all 5 days, as the function reaches its maximum skew-
ness at the point where @ equals —1. This calls for a concave weight
function with higher skewness, and the linear concave function does
achieve that with a weight on average of about 0.89. As expected, the
linear concave function produces the least RMSE for both C1 and P1 in
all months. With the concave weight function, a path looping down
first and then coming up is more likely to take place than a path looping
up and then coming down.

In summary, for the generalized binomial tree (GBT), we decide to
use Rubinstein’s optimization method with maximum smoothness
to imply the ending node risk-neutral probability distribution. This prob-
ability distribution together with the concave linear weight function will
be used to construct the tree.
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EMPIRICAL TESTS AND RESULTS

For the sample data, we categorize 2388 European options (January to
November 1999) according to their types and moneyness. The summary
statistics are reported in Table II.

For each of the 57 sampling days, both the generalized binomial tree
(GBT) and the implied volatility tree (IVT) are constructed from two sets
of European Calls, with one expiring at the current month and the other
at the subsequent month.

Both trees have 200 steps, spanning from now to the third Friday of
the subsequent month, when the second set expires.'

Since only two sets of options are used as inputs, the interpolation
of the volatility surface for IVT is rather simple. For each set, a quad-
ratic curve of the implied volatility as a function of strike price is fitted
based on least squares criterion to extract the implied volatility smile.
For each strike price, there are two interpolated implied volatilities cal-
culated from the two quadratic curves. These two points are connected
with a straight line. We repeat this for all strike prices. The volatility
surface will be interpolated in three dimensions like the example in
Figure 5.

For constructing each IVT, interpolation and extrapolation are
employed on the implied volatility curves or smiles. Thus, the call prices
that are entered into the solution and construction of the IVT are not
the market prices of actual traded calls, but are instead interpolated or
extrapolated prices (or more accurately, prices derived from interpolated
or extrapolated implied volatilities) of non-existent artificial calls. Since
the IVT method requires /2 number of calls and 7/2 number of puts

TABLE 1l
Sample Statistics

Type of Options
Sampling
Total Month Moneyness Cl C2 Pl P2
January to IT™ 126 46 49 13 234
November 1999 ATM 210 119 209 104 642
OT™M 227 307 476 452 1512
Total 613 472 734 569 2388

Notes. ITM: In-the-money options, where S/K > 1.02 for call and S/K < 0.98 for puts. (S is the index level, and
K is the strike price.) ATM: At-the-money options, where 0.98 = S/K = 1.02. OTM: Out-of-the-money options,
where S/K < 0.98 for call and S/K > 1.02 for put. C(P)1: Current-month maturing European call (put). C(P)2:
Subsequent-month maturing European call (put).
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The entire volatility surface, February 2, 1998.

(if  is even), or else (1 + 1)/2 number of calls and (n — 1)/2 number of
puts (if # is odd), to compute » + 1 nodes for the next forward step,
there is a lot more information, but these are generated from the same
two sets of input calls.

For constructing each GBT, we could use a linear weight function
with more segments and thus more parameters. Indeed, for each day, if
there were 5 earlier calls, then using a linear function with 5 segments
and thus 5 parameters would fit the call prices exactly. These call prices
are actual market call prices, unlike the artificial calls used in the IVT. To
be able to provide some form of in-sample comparison between IVT and
GBT, our proposed single-parameter weight function allows for in-sample
non-trivial errors in the GBT method while employing the same two sets
of input calls as in the IVT.

This should not be construed as biasing the performance test
against the GBT in favor of IVT. There are two reasons. From a practical
point of view, when there are numerous traded options, it becomes com-
putationally intractable to customize many linear segments of the weight
function in order to provide an exact fit. It should also be noted that
depending on the sequence of options, the piecewise linear function is
not necessarily unique. This leads to the notion of selecting an optimal
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function. An approach would be to relax the fit and be able to parame-
terize the function. This notion is consistent with what we do in this
paper. Secondly, one should not forget that the GBT already fits exactly
the call prices with maturity at the ending-nodes. This may also be con-
strued as an unfair advantage of GBT over the IVT since the latter does
not provide for an exact fit. Rather, the holistic theme of the comparison
in GBT and IVT is to study how forward propagation of the tree by IVT
versus backward propagation by GBT, and the different ways in which
the identifying restrictions are set up in estimating the nodal security val-
ues and transitional probabilities affect the pricing of other options,
including American, not used to calibrate the trees.

In-Sample Test

In the in-sample test, the abilities of the GBT and IVT to explain the
prices of European calls and puts within the maturity span of the trees
are compared. Thus, apart from the calls used as inputs to build the
two trees, the trees are also used to price other European puts that
mature in both months. RMSEs are calculated each day for four cate-
gories of options: current-month maturing European calls (puts) and
subsequent month maturing European calls (puts). The results are
shown in Table III.

GBT is bound to price C2 exactly as it is one of the constraints in
Rubinstein’s optimization method used to imply the ending-node risk-
neutral probability distribution. The advantage of exact fitting of the C2
calls in GBT also helps in better in-sample performance of P2 put pric-
ing for GBT compared to IVT. However, the fitting of current-month
maturing options for GBT is not as good as IVT. This on the other
hand is perhaps due to the better employment of information based on

TABLE 111
In-Sample Fit Performance of Two Implied Trees

Type of Options

Sampling Month Cl Pl C2 P2

January to Average Price 107.45 47.75 130.37 75.52

November 1999 RMSE for IVT 1.08 6.17 8.23 11.44
RMSE for GBT 7.73 13.00 0.00 9.56

Notes. We run in-sample tests for C(P)1 (current month maturing European Call (Put)) and C(P)2 (subsequent
month maturing European Call (Put)) using IVT and GBT. The average input price and the RMSE are also
calculated.
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implied volatility fit of C1 (earlier) call options under IVT. This better
employment may be a result of the flexibility of IVT in using such earli-
er option price information through its implied volatility fitting. It is per-
haps more flexible and efficient in incorporating earlier option price
information than GBT does when partial and not full parameterization is
used in its backward propagation of the tree.

On the other hand, the IVT also has weaknesses. The IVT starts
from the first node, and nodal prices at a higher level will incorporate
those prices at a lower level and previous steps. There may be errors
introduced in the tree for two reasons. First, the interpolation and
extrapolation techniques are too simple to capture the real market
implied volatility surface. Second, the arbitrary centering condition
applied when encountering bad probabilities may also introduce error.
Such errors will be accumulated as the tree expands forward, which
results in larger errors in pricing subsequent month maturing options.
IVT is found to be extremely sensitive to the interpolation technique
when the smiles are of very different shapes, when the step of the tree is
large and when the volatility of the underlying is very high.

The trees are constructed using European Calls only. We find that
the error is much larger when the trees are used to price European puts
than when used to price other European calls, specifically P1 for GBT
and P2 for IVT. The typical bid-ask spread of the FTSE-100 index
Option in LIFFE ranges from 6 to 11. We find most RMSEs of the fitting
errors are within the bid-ask spread.

Many researchers have done empirical tests on put-call parity
(PCP), among others, Gould and Galai (1974), Klemkosky and Resnick
(1979, 1980), Evnine and Rudd (1985), Chance (1987), Loudon (1988)
and Gray (1989). Their conclusions can be best summarized by noting
that while PCP holds, on average, there are frequent, substantial viola-
tions of PCP involving both overpricing and underpricing of calls and
puts. In our context, the difference in the put pricing from call pricing
is not related to the PCP issue or observations, as the larger deviations
are mostly within the bid-ask spreads. If we also account for transac-
tion costs, then it is generally agreed that PCP is not an issue, even
elsewhere.

There could be other reasons for the larger put pricing deviations.
First, we use the current dividend rate and assume it is the same
throughout the tree. Second, the volatility implied from European calls
in practice may differ from that implied from puts. The IVT will be more
sensitive to the latter implication.
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Simple Delta Hedge of Current-Month Maturing
European Call Options

Here we will compare the hedging performance of IVT and GBT against
Black-Scholes in a simple delta hedge.

At the end of each trading day before the maturity date of that
month, three current month maturing European calls nearest to ATM
strike are chosen. Deltas or As will be calculated for the three chosen
calls. Three portfolios are then constructed, each by longing one call and
shorting respective A units of FTSE-100 index portfolio. The portfolios
are liquidated at the end of the next trading day, and new portfolios are
then constructed. The hedging errors are calculated as follows:

™ = (CIM — C!I™) — AI"™(FTSE,, , — FTSE,)

et = ( ?ﬂ/[ - C?TM) - A?TM(FTSEiH — FTSE;)
e?™ = ( IO+T11\4 - C?TM) - AiOTM(FTSEiH - FTSEi)

total — TV | ATM . ,OTM

Hedging errors in all four categories for all three models are computed
for analyses. The means and standard deviations of these errors across
time are reported in Table IV.

We find that both BLS and IVT produce negative hedging errors.
IVT produces the smallest hedging errors and the standard deviations of
the errors are comparable with those of BLS.

GBT does not show any biases in mean hedging error. However, it
demonstrates much larger standard deviations, which is mainly a result
of its much larger deltas.

TABLE IV
Simple Delta-Hedging Performance

BLS VT GBT
Sampling
Month Mean Error Std. Dev Mean Error Std. Dev Mean Evror Std. Dev
January to ITM —2.23 3.43 —1.47 3.59 —4.16 13.40
November ATM —-2.30 3.79 —-1.62 4.23 —-3.29 15.39
1999 OTM —-2.09 3.29 —1.45 3.65 -3.11 17.29
Total —-6.62 10.03 —4.54 11.05 -10.55 45.31

Notes. A simple delta hedge is conducted for Black-Scholes model (BLS), IVT, and GBT. The mean errors and
standard deviations (Std. Dev) are calculated for three categories of options (ITM: in-the-money, ATM: at-the-
money, OTM: out-of-the-money).
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Pricing of the Current Month Maturing
American Option

Assuming the European FTSE-100 index option market is efficient,
information extracted from the prices of such European options must
reflect the true market valuation of risk and return, given their expecta-
tion of future movements of the index. If such information is used to
price the American counterparts, superior results will be expected.
Here, IVT and GBT are compared against the standard binomial tree
with constant volatility in the pricing of American options. The standard
binomial tree constructed here consists of 200 steps. In a SBT, the up
and down move at each step are governed by the volatility of the underly-

a\V1/200 —aV1/200

ing index as follows:u = ¢ andu = e , where o is the annu-
alized standard deviation of the underlying index and t is the time to
maturity. For a particular American option, the o used is the Black-
Scholes implied volatility of an otherwise identical European option,
which is in turn interpolated or extrapolated from the smile using the pre-
viously described quadratic function.

For the American options, we follow a similar procedure as in the
hedging of European call options. For the end of each trading day before
the maturity date of that month, we choose three current month matur-
ing American calls and puts nearest to ATM strike price. We calculate the
model prices using three trees, with the possibility of early exercise being
checked at each node in the tree. The model prices are those compared

with the market closing price. Both Average Percentage Pricing Error

(APPE) and RMSE are computed. The formula for APPE is as follows:

P
APPE = Tm X 100%

where P is the market price and P,, is the model price. APPE’s across
time will be compared with 0 to detect any possible pattern of over-
pricing or under-pricing. The results are summarized in Table V.

Overall, IVT outperforms the other two in terms of smaller Root
Mean Square Errors for each of the six months and for all categories of
American calls and nearly all of American puts. Both IVT and GBT price
the current-month maturing calls more accurately in terms of average
percentage pricing error than standard binomial tree (SBT), which
assumes constant volatility. There appears to be under-pricing for both
SBT and IVT in all three categories of American calls. However, the
average percentage pricing error for calls is negative for GBT, which
indicates overpricing.
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TABLE V
Pricing of Current Month Maturing American Options

SBT T GBT

Average

Moneyness  Price APPE RMSE APPE RMSE APPE RMSE

Panel A: Call Options (C1)

I™ 117.99 4.09% 9.42 3.02% 4.20 —2.93% 12.34
ATM 87.67 4.09% 7.92 3.00% 2.84 —-2.07% 7.19
OTM 61.78 3.61% 6.23 2.21% 2.13 —1.23% 714
Panel B: Put Options (P1)

OT™M 60.50 0.83% 9.81 5.91% 8.82 1.37% 12.19
ATM 81.92 1.25% 10.19 5.26% 8.81 4.11% 8.69
IT™ 107.84 0.84% 12.23 3.69% 10.62 5.80% 10.86

Notes. We compare IVT and GBT with SBT in the pricing of current month maturing American options (C1 for
call and P1 for put). The average percentage pricing error (APPE) and RMSE are calculated and averaged
across five sampling months. The results are categorized according to the moneyness of the options (ITM for
in-the-money, ATM for at-the-money, and OTM for out-of-the-money).

The APPE is as follows.

m

APPE = X 100%

where P is the market price and P,, is the model price.

IVT seems to be more accurate in the pricing of American call
options. Since IVT is constructed from the European calls and is able to
price the current-month maturing European call well, then the existence
of consistent underpricing of the current month maturing American calls
may have two explanations. (1) IVT does not adequately capture the
entire early exercise premium. This could be due to a so-called “wild
card” option. The daily settlement price is based on the average level of
the FTSE 100 Index between 4:20 PM and 4:30 PM (London time),
but the exercise can be delayed to 4:45 PM. During the period from
4:30 PM to 4:45 PM, the arrival of price sensitive information does not
affect the cash settlement available to the holders of FSTE-100
American options who choose to exercise that day, but does influence
the opening value of such options if they are held till the following busi-
ness day. This feature can be considered as a put option on the American
index option itself. It proves to be an important factor in the pricing of
short-term American options. However, all three models fail to account
for this feature, which may lead to underpricing. (2) The American call
options are overpriced relative to the European counterparts. IVT, which
fits ITM European calls well, performs not as well for the American
counterparts. However, with all options’ time to maturity less than
20 days, such errors seem too large to be explained by the inability of
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IVT to capture the entire early exercise premium or even the “wild card”
option as described above.

The pricing of the American put option produces less accurate
results than that of the American call. One reason is that the early exer-
cise premium of American puts is greater than for similar calls, as shown
in Zivney's empirical study (1991). Put options can have rational early
exercise even if there is no payout from the underlying. Another reason is
that the information for constructing the tree is extracted from only call
options. As the in-sample test shows, calls and puts do not appear to con-
tain exactly identical information. The results are mixed. No model
seems to dominate in both criteria: mean percentage mispricing error
and RMSE for all categories. For ATM American puts, SBT gives the
smallest APPE and GBT gives the smallest RMSE. For OTM American
puts, SBT again gives the smallest APPE but IVT gives the smallest
RMSE. As for the moneyness bias, GBT and IVT appear to consistently
under-price the American puts while SBT does not appear to carry this
bias for ITM puts.

Overall, IVT is found to produce the best results for American call
options with earlier maturity than the maturity span of the implied trees.
GBT appears to produce better results for American ATM put pricing for
any maturity.

Deltas for three categories of current month maturing options are cal-
culated from the trees for the 57 sampling days. They are European
calls, American calls and American puts. The results are summarized in
Table VI.

Deltas calculated from IVT are consistently lower (higher) than
Black-Scholes deltas for both European and American calls (puts) in
absolute term. The reverse holds true for GBT deltas.

CONCLUSIONS

This paper implements the generalized binomial tree and tests it empiri-
cally compared to both the Black-Scholes model and the implied volatil-
ity tree. We highlight many empirical issues and attempt the use of
different weight functions to model the GBT. We then compare the
performance of the GBT to IVT and BLS models. The key findings are
summarized as follows.

It is found that different methods to imply the future underlying
risk-neutral probability distribution produce almost the same result,
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TABLE VI
Deltas Calculated Using Different Tree Models

Average Delta

Type of Option Moneyness BLS/SBT IvVT GBT
cl IT™ 0.65 0.61 0.74
ATM 0.49 0.45 0.66
O™ 0.39 0.35 0.61
C1 IT™ 0.64 0.57 0.71
ATM 0.48 0.47 0.67
OT™M 0.38 0.38 0.63
P1* OT™M 0.37 0.44 0.29
ATM 0.53 0.54 0.33
IT™ 0.63 0.64 0.37

Notes. The deltas are calculated for IVT and GBT, and are compared with that of BLS in the case of European
options and SBT for American options. The results are categorized according to the moneyness of the options.
(ITM: in-the-money. ATM: at-the-money. OTM: out-of-the-money.) c1: Current month maturing European call.
C1: Current month maturing American call. P1: Current month maturing American put.

*Strictly speaking, deltas for puts are negative. However, following normal convention, these are expressed in
absolute terms.

which is consistent with Rubinstein and Jackwerth’s study (1996). In
addition, a concave linear function is found to be better in fitting the
earlier maturing European FTSE-100 calls.

Both the GBT and IVT trees seem to show biases in in-sample fit.
More specifically, both trees can fit European calls relatively well, but
produce much larger errors in pricing otherwise identical European
puts. IVT is good at fitting near-month European call options with ear-
lier maturity than the maturity span of the implied trees. GBT performs
better for far-month European puts whose maturity is the same as the
European calls used to determine the ending-node probability distribu-
tions. This result appears to be due to the differing methods of tree
construction.

The construction of IVT is highly sensitive to the interpolation and
extrapolation techniques, especially when: (1) different volatility smiles
assume very different shapes, (2) the number of steps of the tree is large,
and (3) the volatility of the underlying is large. These are weaknesses in
the IVT method that tends to produce less accuracies in puts than
in calls when the latter are used for matching the volatility smile. On the
other hand, the construction of the GBT when parameterized tends to
produce less accuracies when pricing options in near-month than in far-
month that are closer to the maturity span of the tree. This is perhaps
due to the fact that because the GBT already fits exactly the call prices
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with maturity at the ending-nodes, pricing of options nearer to the end
produces superior results.

Compared to the Black-Scholes model, IVT consistently produces
smaller deltas for both European and American calls, while GBT’s
deltas are much larger due to its highly skewed weight function. The
results for both European and American puts (in absolute term) are
reversed.

In hedging near-month European calls using the simplest delta
hedge, IVT gives the smallest hedging error. Both IVT and Black-
Scholes model consistently show negative total hedging errors. This
seems to call for more sophisticated hedging strategies and perhaps more
than one instrument to hedge higher order risks.

IVT and GBT are constructed using European call options. When
they are used to price the American counterparts, IVT is found to out-
perform both SBT and GBT in pricing the American calls with earlier
maturity than the maturity span of the implied trees. GBT appears
to produce better results for American ATM put pricing for any matu-
rity. The methods appear to produce under-pricing of the American
options.

Jackwerth and Rubinstein (2001) undertake a preliminary study of
S&P index options by comparing a large variety of models in explaining
otherwise identical observed option prices, but with different strike
prices, or with different times-to-expiration, or at different points in time.
They find traders’ naive predictive models perform best in out-of-sample
forecast. An interesting extension is to employ GBT and IVT trees for
out-of-sample forecasting. Since forecasting issues need a whole differ-
ent set of assumptions and diverge from the in-sample comparisons and
calibrations for American option done in this paper, this should be done
as a separate study.

The implied tree model can also be compared with other determin-
istic volatility models, such as the more traditional CEV model of Cox
and Ross (1976), and the more recent kernel model of Ait-Sahalia and
Lo (1998). Besides, they can also be tested against other trees with
stochastic volatility.

This paper has performed some interesting empirical comparisons
of the relative performance of GBT, IVT, and Standard Black-Scholes
models. The holistic theme of the comparison in GBT and IVT is to study
how forward propagation of the tree by IVT versus backward propagation
by GBT, and the different ways in which the identifying restrictions are
set up in estimating the nodal security values and transitional probabili-
ties affect the pricing of other derivatives based on the same trees.
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The results are important to practitioners as they indicate that
different methods should be used for different applications, and some
cautions should be exercised.
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