Problem 1.1

2. Show that the function $f(x) = x\sin(1/x)$ with f(0) = 0, is continuous at 0 but not differentiable at 0.

16. If the series for ln(x) is truncated after the term involving $(x-1)^{1000}$ and is then used to compute ln(2), what bound on the error can be given?

26. Derive the Talyor series with remainder term for ln(1+x) about 1 (expansion point). Derive an inequality that gives the number of terms that must be taken to yield ln(4) with error less than 2^{-m} , where m is some given positive integer.

35. How many terms are required in the series $e = \sum_{k=0}^{\infty} \frac{1}{k!}$ to give e with an error of at most 6/10 unit in the 20th decimal place?

Problem 1.2

6. For the pair (x_n, α_n) , is it true that $x_n = \mathcal{O}(\alpha_n)$ as $x \to \infty$?

a.
$$x_n = 5n^2 + 9n^3 + 1, \ \alpha_n = n^2$$

b. $x_n = 5n^2 + 9n^3 + 1, \ \alpha_n = 1$

c.
$$x_n = \sqrt{(n+3)}, \, \alpha_n = 1$$

d.
$$x_n = 5n^2 + 9n^3 + 1, \ \alpha_n = n^3$$

e.
$$x_n = \sqrt{(n+3)}, \, \alpha_n = 1/n$$

8. The expression e^h , $(1 - h^4)^{-1}$, cos(h), and $1 + sin(h^3)$ all have the same limit as $h \to 0$. Express each in the following form with the best integer values of α and β . $f(h) = c + \mathcal{O}(h^{\alpha}) = c + o(h^{\beta})$

28. Prove that $x_n = x + o(1)$ if and only if $\lim_{n\to\infty} x_n = x$.

30. For fixed n, show that $\sum_{k=0}^{n} x^k = 1/(1-x) + \mathcal{O}(x^n)$ as $x \to 0$.