HW8

1. Problem 6.1.9

Prove that if g interpolates the function f at $x_0, x_1, ..., x_{n-1}$ and if h interpolates f at $x_1, x_2, ..., x_n$, then the function $g(x) + \frac{x_0 - x}{x_n - x_0} [g(x) - h(x)]$ interpolates f at $x_0, x_1, ..., x_{n-1}, x_n$. 2. Problem 6.1.10

Prove that the coefficient of x^n in the Lagrange form of the interpolation polynomial p_n is $\sum_{i=0}^n y_i \prod_{j=0, j \neq i}^n (x_i - x_j)^{-1}$.

3. Problem 6.1.23

Consider the data $\frac{x}{f(x)} - \sqrt{3/5} = 0 = \sqrt{3/5}$. What is the Newton form of the interpolation polynomial and the Lagrange form of the interpolation polynomial for these data?

4. Given the point values of the function $y = 2^x$

 $\frac{x}{2^{x}}$ $\frac{0}{1}$, what is the Lagrange form of the interpolation polynomial. Use this interpolation polynomial to compute 2^{0.3} approximately, and estimate the abslute error.

5. Problem 6.2.3

Let $f \in C^n[a,b]$. Prove that if $x_o \in (a,b)$ and if $x_1, x_2, ..., x_n$ all converge to x_0 , then $f[x_0, x_1, ..., x_n]$ will converge to $f^{(n)}(x_0)/n!$.

6. Problem 6.2.6

Prove that the divided differences are linear maps on functions. That is, $(\alpha f + \beta g)[x_0, x_1, ..., x_n] = \alpha f[x_0, x_1, ..., x_n] + \beta g[x_0, x_1, ..., x_n]$. (Hint: proof by induction).