HW8

1. Problem 6.1.9

Prove that if \(g \) interpolates the function \(f \) at \(x_0, x_1, ..., x_{n-1} \) and if \(h \) interpolates \(f \) at \(x_1, x_2, ..., x_n \), then the function \(g(x) + \frac{x_0-x}{x_n-x_0}[g(x) - h(x)] \) interpolates \(f \) at \(x_0, x_1, ..., x_{n-1}, x_n \).

2. Problem 6.1.10

Prove that the coefficient of \(x^n \) in the Lagrange form of the interpolation polynomial \(p_n \) is \(\sum_{i=0}^{n} y_i \prod_{j=0, j \neq i}^{n} (x_i - x_j)^{-1} \).

3. Problem 6.1.23

Consider the data \(x \) \(-\sqrt{3}/5\) \(0 \) \(\sqrt{3}/5 \). What is the Newton form of the interpolation polynomial and the Lagrange form of the interpolation polynomial for these data?

4. Given the point values of the function \(y = 2^x \)

\[
\begin{array}{c|cccc}
 x & 0 & 1 & 2 \\
 2^x & 1 & 2 \\
\end{array}
\]

what is the Lagrange form of the interpolation polynomial. Use this interpolation polynomial to compute \(2^{0.3} \) approximately, and estimate the absolute error.

5. Problem 6.2.3

Let \(f \in C^n[a,b] \). Prove that if \(x_0 \in (a,b) \) and if \(x_1, x_2, ..., x_n \) all converge to \(x_0 \), then \(f[x_0, x_1, ..., x_n] \) will converge to \(f^{(n)}(x_0)/n! \).

6. Problem 6.2.6

Prove that the divided differences are linear maps on functions. That is, \((\alpha f + \beta g)[x_0, x_1, ..., x_n] = \alpha f[x_0, x_1, ..., x_n] + \beta g[x_0, x_1, ..., x_n] \). (Hint: proof by induction).