HW9 Solution

1.

Proof: By Theorem 6.1.2. Since $f^{(n+1)} = 0$, the pointwise interpolation error $\equiv 0$. Therefore $p \equiv f$.

2. Problem 6.3.1

Soln:
$$p(x) = 2 - 9x + 3x^2 + 7x^2(x-1) + 5x^2(x-1)^2$$
.

3.

Soln:

Define the function
$$g(t) = f(t) - P_{m+n+1}(t) - \frac{f(x) - P_{m+n+1}(x)}{\prod_{i=0}^{n} (x-x_i) \prod_{k=0}^{m} (x-x_{i_k})} \prod_{i=0}^{n} (t-x_i) \prod_{k=0}^{m} (t-x_{i_k}).$$

 $x, x_0, x_1, ..., x_n$ are zeros of $g(t)$.

Using Rolle's theorem, g'(t) has at least n+1 zeros among $x, x_0, x_1, ..., x_n$. Since x_{i_k} are also zeros of g'(t), there are at least m+n+2 zeros. Use Rolle's theorem repeatly, $g^{(m+n+2)}$ has at least one zero ξ .

Let
$$t = \xi$$
, plug into $g(t) = ...$, and solve for $f(x) - P_{m+n+1}(x)$. $\Rightarrow f(x) - P_{m+n+1}(x) = \frac{f^{(m+n+2)}(\xi)}{(m+n+2)!} \prod_{i=0}^{n} (x-x_i) \prod_{k=0}^{m} (x-x_{i_k})$.

4. Problem 6.8.15

Proof: Let $u_1, u_2, ..., u_n$ be orthonoronal and $u_k \neq 0$ for each k. Suppose that $\sum_j c_j u_j = 0$. By taking inner product with u_k we get $c_k < u_k, u_k >= 0$. Here $c_k = 0$.

5. Problem 5.3.5

Proof:

a.
$$P(x+y) = \sum_{i=1}^{n} \langle x+y, u_i \rangle u_i = \sum_{i=1}^{n} \langle x, u_i \rangle u_i + \sum_{i=1}^{n} \langle y, u_i \rangle u_i = P(x) + P(y)$$
.

b.
$$P(P(x)) = \sum_{i=1}^{n} \langle \sum_{j=1}^{n} \langle x, u_j \rangle u_j, u_i \rangle u_i = \sum_{i=1}^{n} \langle x, u_i \rangle u_i = Px.$$

c. if
$$x \in U$$
, $x = \sum_{i=1}^{n} \langle x, u_i \rangle u_i = Px$.

d.
$$||Px||_2^2 = \langle Px, Px \rangle = \sum_{i=1}^n |\langle x, u_i \rangle|^2$$
. $||x||_2^2 = ||x - Px||_x^2 + ||Px||_2^2 \ge ||Px||_2^2 = \sum_{i=1}^n |\langle x, u_i \rangle|^2$.