Math 20580 practice exam 2, Spring 2011

- 1. Let S be the parallelogram determined by the vectors $\mathbf{b}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$ and let $A = \begin{pmatrix} 4 & 7 \\ 0 & 2 \end{pmatrix}$. Compute the area of the images of S under the mapping $\mathbf{v} \mapsto A\mathbf{v}$.
 - (a) 8 (b) -8 (c) 7 (d) 4 (e) 2

2. For what value(s) of h will **y** be in the subspace spanned by $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, if $\mathbf{v}_1 = \begin{pmatrix} 2\\ 3\\ 5 \end{pmatrix}$,

$$\mathbf{v}_2 = \begin{pmatrix} 1\\4\\5 \end{pmatrix}, \ \mathbf{v}_3 = \begin{pmatrix} 3\\1\\4 \end{pmatrix} \text{ and } \mathbf{y} = \begin{pmatrix} 3\\5\\h \end{pmatrix}.$$
(a) 8 (b) 5 (c) 4 (d) 1 (e) 2

3. Find a matrix A such that W = Col(A) where $W = \left\{ \begin{pmatrix} 7a+b\\ 6a-5b\\ 7b \end{pmatrix} \right\}$ and $\{a,b\}$ range over all real numbers.

(a) $\begin{pmatrix} 7 & 1 \\ 6 & -5 \\ 0 & 7 \end{pmatrix}$ (b) $\begin{pmatrix} 7 & 6 & 0 \\ 1 & -5 & 7 \end{pmatrix}$ (c) $\begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (e) $\begin{pmatrix} 7 & 1 \\ 6 & -5 \\ 7 & 0 \end{pmatrix}$ 4. Let $A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix}$. Then (a) rank(A) = 2 (b) Col(A) = R^3 (c) det A = 1(d) A^{-1} exists (e) rank(A) = 3 5. Let $\mathbf{b}_1 = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$, $\mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ and $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$. Find $[\mathbf{x}]_{\mathbf{B}}$. (a) $\begin{pmatrix} -1 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ (d) $\begin{pmatrix} 3 \\ 2 \end{pmatrix}$ (e) $\begin{pmatrix} 4 \\ 3 \end{pmatrix}$

6. Let
$$A = \begin{pmatrix} 7 & 2 & 3 \\ 1 & 5 & 3 \\ 8 & 7 & 6 \end{pmatrix}$$
. The rank of A is
(a) 2 (b) 3 (c) 4 (d) 1 (e) 0

7. Let $\mathbf{b}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\mathbf{b}_2 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$, $\mathbf{c}_1 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $\mathbf{c}_2 = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$, $\mathbf{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ and $\mathbf{C} = \{\mathbf{c}_1, \mathbf{c}_2\}$. If $P = [[\mathbf{b}_1]_{\mathbf{C}}, [\mathbf{b}_2]_{\mathbf{C}}]$ is the change-of-coordinates matrix from \mathbf{B} to \mathbf{C} , then find P. (a) $\begin{pmatrix} 5 & -3 \\ -3 & 2 \end{pmatrix}$ (b) $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ (c) $\begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}$ (d) $\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ (e) $\begin{pmatrix} 2 & -3 \\ 3 & 5 \end{pmatrix}$

8. Let $\{\lambda_1, \lambda_2\}$ be two eigenvalues of $A = \begin{pmatrix} 3 & 5 \\ 5 & 7 \end{pmatrix}$. Then the sum of two eigenvalues, $(\lambda_1 + \lambda_2)$, is equal to

(a) 10 (b) -4 (c) 3 (d) 7 (e) 5

9. Let
$$A = \begin{pmatrix} 3 & -2 & 5 \\ 1 & 0 & 7 \\ 0 & 0 & 2 \end{pmatrix}$$
. The eigenvalues of A are
(a) 1, 2, 2 (b) 1, -2, -2 (c) 1, 2, 3 (d) 2, 3, -2 (e) 0, 1, 2

10. Let $A = \begin{pmatrix} 3 & -5 \\ 1 & -1 \end{pmatrix}$. The complex eigenvalues of A are (a) $1 \pm i$ (b) $3 \pm i$ (c) $2 \pm i$ (d) 0, 1 (e) $\pm i$

11. The matrix $A = \begin{pmatrix} 3 & -5 \\ 1 & -1 \end{pmatrix}$ has a complex eigenvector: (a) $\begin{pmatrix} 5 \\ 2+i \end{pmatrix}$ (b) $\begin{pmatrix} 1 \\ 3i \end{pmatrix}$ (c) $\begin{pmatrix} 1 \\ i \end{pmatrix}$ (d) $\begin{pmatrix} -1 \\ 5i \end{pmatrix}$ (e) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ 12. Let $\mathbf{P}_2 = \{a_0 + a_1t + a_2t^2\}$ where $\{a_0, a_1, a_2\}$ range over all real numbers, and let $T : \mathbf{P}_2 \to \mathbf{P}_2$ be a linear transformation defined by

$$T(a_0 + a_1t + a_2t^2) = a_0 + a_1t + a_0t^2.$$

If $T(p(t)) = \lambda p(t)$ for some non-zero polynomial p(t) in \mathbf{P}_2 and some real number λ , then p(t) is called an eigenvector of T corresponding to λ . The linear transformation Thas an eigenvector:

(a) $1 + t + t^2$ (b) 1 + t (c) $t + t^2$ (d) 100 (e) 0

Partial credit problems:

13. Let
$$A = \begin{pmatrix} 1 & -4 & 2 \\ -1 & 7 & 0 \\ -2 & 8 & -9 \end{pmatrix}$$
. Use Cramer's rule to solve $A\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

14. Let $P_2 = \{a_0 + a_1t + a_2t^2\}$ where $\{a_0, a_1, a_2\}$ range over all real numbers, and let $T : P_2 \to P_0$ be a linear transformation given by $T(a_0 + a_1t + a_2t^2) = \int_0^1 (a_0 + a_1t + a_2t^2) dt$. Suppose that $\mathbf{B} = \{1, t, t^2\}$ is a basis of P_2 and $\mathbf{C} = \{1\}$ is a basis of P_0 . (1) Find a matrix A such that $[T(\mathbf{v})]_{\mathbf{C}} = A[\mathbf{v}]_{\mathbf{B}}$;

- (2) Find Nul(A) and Col(A).
- 15. Let $A = \frac{1}{4} \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$. Find $\lim_{k \to \infty} A^k$. (Hint: Find the Diagonalization D of A and use the formula $A^k = PD^kP^{-1}$).