Math 20580 practice exam 3, Spring 2011

- 1. Let $A = \frac{1}{7} \begin{pmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{pmatrix}$. Find A^{-1} .
 - (a) A^T (b) $7\begin{pmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{pmatrix}$ (c) A^2
 - (d) A^3 (e) $\begin{pmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{pmatrix}$
- 2. Let $W = \text{Span}\left\{\begin{pmatrix} 1\\2\\3 \end{pmatrix}\right\}$. Find the orthogonal complement of W in \mathbb{R}^3 .
 - (a) $\operatorname{Span}\left\{\begin{pmatrix} -2\\1\\0\end{pmatrix}, \begin{pmatrix} -3\\0\\1\end{pmatrix}\right\}$ (b) $\operatorname{Span}\left\{\begin{pmatrix} -2\\1\\0\end{pmatrix}\right\}$
 - (c) Span $\left\{ \begin{pmatrix} 1\\2\\-3 \end{pmatrix}, \begin{pmatrix} -3\\2\\1 \end{pmatrix} \right\}$ (d) Span $\left\{ \begin{pmatrix} -5\\1\\1 \end{pmatrix} \right\}$
 - (e) Span $\left\{ \begin{pmatrix} -2\\1\\1 \end{pmatrix}, \begin{pmatrix} -3\\-2\\1 \end{pmatrix} \right\}$
- 3. Solve equation $y' = 9.8 \frac{y}{5}$ with initial condition y(0) = 50.
 - (a) $49 + e^{-\frac{t}{5}}$ (b) 50
- (c) $1 + 49e^{-\frac{t}{5}}$ (d) 49
- (e) 9.8
- 4. Let $\mathbf{y} = \begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$ and $W = \mathrm{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Use the fact that \mathbf{v}_1 and \mathbf{v}_2 are orthogonal to compute $\mathrm{Proj}_W \mathbf{y}$.
 - (a) $\begin{pmatrix} 0 \\ 2 \\ 4 \end{pmatrix}$ (b) $\begin{pmatrix} 6 \\ 2 \\ -1 \end{pmatrix}$ (c) $\begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$ (d) $\begin{pmatrix} 4 \\ 4 \\ 3 \end{pmatrix}$ (e) $\begin{pmatrix} -1 \\ 2 \\ 6 \end{pmatrix}$

5. Find \vec{u}_3 so that the subset $\left\{ \begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1 \end{pmatrix}, \vec{u}_3 \right\}$ becomes an orthogonal basis of W = 0

$$\operatorname{Span}\left\{ \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\-1\\-1\\1 \end{pmatrix}, \begin{pmatrix} 1\\3\\1\\7 \end{pmatrix} \right\}$$

- (a) $\begin{pmatrix} -3\\1\\-1 \end{pmatrix}$ (b) $\begin{pmatrix} 0\\0\\0 \end{pmatrix}$ (c) $\begin{pmatrix} 1\\3\\1 \end{pmatrix}$ (d) $\begin{pmatrix} 4\\2\\2 \end{pmatrix}$ (e) $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$

- 6. Find an orthonormal basis of the subspace $W = \text{Span}\left\{\begin{pmatrix} 1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\9\\9 \end{pmatrix}\right\}$.
 - (a) $\left\{\frac{1}{2}\begin{pmatrix}1\\1\\1\end{pmatrix}, \frac{1}{2}\begin{pmatrix}1\\-1\\-1\end{pmatrix}\right\}$ (b) $\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\-1\\-1\end{pmatrix}\right\}$ (c) $\left\{\begin{pmatrix}1\\1\\1\\1\end{pmatrix}, \begin{pmatrix}1\\9\\9\\1\end{pmatrix}\right\}$
- (d) $\left\{\frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 0\\9\\-9\\0 \end{pmatrix}\right\}$ (e) $\left\{\frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \begin{pmatrix} 1\\9\\9\\1 \end{pmatrix}\right\}$
- 7. Let $\mathbf{y} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ and $\mathbf{u} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$. Find orthogonal projection of \mathbf{y} onto \mathbf{u} .
 - (a) $\begin{pmatrix} 4 \\ 8 \end{pmatrix}$ (b) $\begin{pmatrix} 8 \\ 4 \end{pmatrix}$ (c) $\begin{pmatrix} 2 \\ 4 \end{pmatrix}$ (d) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (e) $\begin{pmatrix} 4 \\ 2 \end{pmatrix}$

- 8. Find a least-square solution of inconsistent system $A\mathbf{x} = \mathbf{b}$ for $A = \begin{pmatrix} 0 & 4 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$ and $\mathbf{b} = \begin{pmatrix} 0 & 4 \\ 2 & 0 \\ 1 & 1 \end{pmatrix}$
 - $\begin{pmatrix} 2 \\ 0 \\ 11 \end{pmatrix}$.

 - (a) $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ (b) $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ (c) $\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}$ (d) $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ (e) $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

- 9. Solve the initial value problem of $ty' + 2y = 4t^2$ with the initial condition y(1) = 3.

 - (a) $t^2 + \frac{2}{t^2}$ (b) $2t^2 + \frac{1}{t^2}$ (c) $t^2 + \frac{1}{t^2}$ (d) $t^2 \frac{2}{t^2}$ (e) $t^2 \frac{1}{t^2}$

- 10. Find all solutions to the separable equation $y' = \frac{x^2}{u(1+x^3)}$.
 - (a) $3y^2 2\ln|1 + x^3| = c$ (b) $3y^2 \ln|1 + x^3| = c$ (c) $2y^2 3\ln|1 + x^3| = c$

- (d) $y^2 2 \ln|1 + x^3| = c$ (e) 0
- 11. Find the distance between \mathbf{y} and W, where $\mathbf{y} = \begin{pmatrix} 3 \\ -1 \\ 1 \\ 12 \end{pmatrix}$, $\mathbf{v}_1 = \begin{pmatrix} 1 \\ -2 \\ -1 \\ 2 \end{pmatrix}$, $\mathbf{v}_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ 3 \end{pmatrix}$ and $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}.$
 - (a) 8
- (b) 0
- (c) 3
- (d) 1
- (e) 13
- 12. Suppose that a sum S_0 is invested at an annual rate of return r compounded continuously. Find the rate of return r that must be achieved if the initial investment is to double in 10 years.
 - (a) $\frac{\ln 2}{10}$
- (b) 20%
- (c) 10%
- (d) 2
- (e) $\frac{\ln 10}{2}$

13. Let $y = \phi(t)$ be the solution of the initial value problem:

$$y'' - 3y' + 2y = 0,$$
 $y(0) = 0,$ $y'(0) = 1.$

Find $\phi(\ln 2)$.

- (a) 2
- (b) 1
- (c) 0
- (d) 3
- (e) 4

Partial Credit Problems:

- 14. Find the solution of $\frac{dy}{dt} = \frac{1}{2}(1-y)y$ with y(0) = 4 and find $\lim_{t \to \infty} y(t)$.
- 15. Find an integrating factor for the equation $(xy + x + 1)dx + (x^2 + xy)dy = 0$ and then solve the equation.
- 16. Find the smallest value for $||A\mathbf{x} \mathbf{b}||$, where \mathbf{x} belongs to \mathbb{R}^2 , $A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$, and $\mathbf{b} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$
 - $\begin{pmatrix} 0 \\ 0 \\ 6 \end{pmatrix}$. (Hint: First find **x** which realizes the smallest value for $||A\mathbf{x} \mathbf{b}||$ by solving a least square problem).