Spanning set theorem (Section 4.3)

Theorem 4.5. Let the set $S = {v_1, ..., v_p}$ be a set in *V*. Let $H = \text{Span} {v_1, ..., v_p}$.

- a. If one of the vectors in S, i.e. v_k is a linear combination of the remaining vectors in S, then the set formed from S by removing v_k still spans H.
- b. If $H \neq \{0\}$, some subset of S is a basis for H.

Example. Use Theorem 4.5 to find a basis for Col B, where
$$B = [b_1 \ b_2 \ \dots \ b_5] = \begin{bmatrix} 1 \ 4 \ 0 \ 2 \ 0 \\ 0 \ 0 \ 1 \ -1 \ 0 \\ 0 \ 0 \ 0 \ 1 \end{bmatrix}$$

Solution: Since
$$b_2 = 4b_1; b_4 = 2b_1 - b_3$$
,

Basis =
$$\{ b_1, b_3, b_5 \}$$

Theorem 4.6. The pivot columns of a matrix A form a basis for Col A.