Sufficient condition for a matrix to be diagonalizable

Theorem 5.6 An \(n \times n \) matrix with \(n \) distinct eigenvalues is diagonalizable.

Example. Determine if the following matrix is diagonalizable.

\[
A = \begin{bmatrix}
5 & -8 & 1 \\
0 & 0 & 7 \\
0 & 0 & -2
\end{bmatrix}
\]

Solution: Eigenvalues of \(A \) are 5, 0, -2. Since \(A \) is a 3 \(\times \) 3 matrix with three distinct eigenvalues, \(A \) is diagonalizable.

Theorem 5.7 Let \(A \) be a \(n \times n \) matrix whose distinct eigenvalues are \(\lambda_1, ..., \lambda_p \).

a. For \(1 \leq k \leq p \), the dimension of the eigenspace for \(\lambda_k \) is less than or equal to the multiplicity of the eigenvalue \(\lambda_k \).

b. The matrix \(A \) is diagonalizable if and only if the sum of the dimensions of the distinct eigenspaces equals \(n \), and this happens if and only if the dimension of the eigenspace for each \(\lambda_k \) equals the multiplicity of \(\lambda_k \).

c. If \(A \) is diagonalizable and \(B_k \) is a basis for the eigenspace corresponding to \(\lambda_k \) for each \(k \), then the total collection of vectors in the sets \(B_1, ..., B_p \) forms an eigenvector basis for \(\mathbb{R}^n \).