Sections 5.3

Sufficient condition for a matrix to be diagonalizable

Theorem 5.6 An *n*×*n* matrix with *n* distinct eigenvalues is diagonalizable.

Example. Determine if the following matrix is diagonalizable.

$$A = \begin{bmatrix} 5 & -8 & 1 \\ 0 & 0 & 7 \\ 0 & 0 & -2 \end{bmatrix}$$

Solution: Eigenvalues of **A** are 5, 0, -2. Since **A** is 3 × 3 matrix with three distinct eigenvalues, **A** is diagonalizable.

Theorem 5.7 Let A be $n \times n$ matrix whose distinct eigenvalues are λ_1 , ..., λ_{p_n} a. For $1 \le k \le p$, the dimension of the eigenspace for λ_k is less than or equal to the multiplicity of the eigenvalue λ_{k_n}

b. The matrix **A** is diagnolizable if and only if the sum of the dimensions of the distinct eigenspaces equals *n*, and this happens if and only if <u>the dimension of the eigenspace for</u> <u>each λ_k equals the multiplicity of λ_k </u>.

c. If **A** is diagonalizable and B_k is a basis for the eigenspace corresponding to λ_k for each k, then the total collection of vectors in the sets B_1 , ... B_p forms an eigenvector basis for $\underline{R^n}$.