Orthogonal Decomposition (Section 6.3)

Theorem 8 (Orthogonal decomposition Theorem). Let W be a subspace of \mathbb{R}^n . Then each vector **y** in \mathbb{R}^n can be written **uniquely** in the form of

$$y = \hat{y} + z$$

where \hat{y} is in W and z is orthogonal to W. If $\{u_1, ..., u_p\}$ is **an orthogonal basis** of W, then

$$proj_{W} y = \hat{y} = \frac{y \bullet u_{1}}{u_{1} \bullet u_{1}} u_{1} + \frac{y \bullet u_{2}}{u_{2} \bullet u_{2}} u_{2} + \dots + \frac{y \bullet u_{p}}{u_{p} \bullet u_{p}} u_{p}$$
$$z = y - \hat{y}$$

Properties of orthogonal projections

1. If **y** is in W = Span{ $\mathbf{u}_1, ..., \mathbf{u}_p$ } with { $\mathbf{u}_1, ..., \mathbf{u}_p$ } an orthogonal basis of W, then $proj_W y = y$

2. The best approximation theorem. Let W be a subspace of Rⁿ, and \hat{y} the orthogonal projection of y onto W. Then \hat{y} is the closest point in W to y, in the sense that

$$\parallel y - \hat{y} \parallel < \parallel y - v \parallel$$

for all vectors ${f v}$ in W distinct from $\hat{f y}$.