Orthogonal Decomposition (Section 6.3)

Theorem 8 (Orthogonal decomposition Theorem). Let \(W \) be a subspace of \(\mathbb{R}^n \). Then each vector \(y \) in \(\mathbb{R}^n \) can be written uniquely in the form of

\[
y = \hat{y} + z
\]

where \(\hat{y} \) is in \(W \) and \(z \) is orthogonal to \(W \). If \(\{u_1, \ldots, u_p\} \) is an orthogonal basis of \(W \), then

\[
\text{proj}_W y = \hat{y} = \frac{y \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{y \cdot u_2}{u_2 \cdot u_2} u_2 + \ldots + \frac{y \cdot u_p}{u_p \cdot u_p} u_p
\]

\[
z = y - \hat{y}
\]

Properties of orthogonal projections
1. If \(y \) is in \(W = \text{Span}\{u_1, \ldots, u_p\} \) with \(\{u_1, \ldots, u_p\} \) an orthogonal basis of \(W \), then \(\text{proj}_W y = y \)

2. The best approximation theorem. Let \(W \) be a subspace of \(\mathbb{R}^n \), and \(\hat{y} \) the orthogonal projection of \(y \) onto \(W \). Then \(\hat{y} \) is the closest point in \(W \) to \(y \), in the sense that

\[
\| y - \hat{y} \| < \| y - v \|
\]

for all vectors \(v \) in \(W \) distinct from \(\hat{y} \).