Key concept: Let \(y_1(t) \) and \(y_2(t) \) are two solutions of \(L[y] = y'' + p(t)y' + q(t)y = 0, \ \alpha < t < \beta \). \(y_1(t) \) and \(y_2(t) \) form a fundamental set of solutions to the differential equation (or \(y(t) = c_1y_1(t) + c_2y_2(t) \) is a general solution) if \(W(y_1, y_2)(t_0) \) is NOT zero for some point \(t_0 \), where \(\alpha < t_0 < \beta \).

Theorem 3.2.5 Consider the differential equation \(L[y] = y'' + p(t)y' + q(t)y = 0 \), whose coefficients \(p(t) \) and \(q(t) \) are continuous on an open interval \(I: \alpha < t < \beta \). Choose some point \(t_0 \) in \(I \).

Let \(y_1(t) \) be the solution of \(L[y] = 0 \) that also satisfies the initial conditions \(y(t_0) = 1, y'(t_0) = 0 \).

Let \(y_2(t) \) be the solution of \(L[y] = 0 \) that also satisfies the initial conditions \(y(t_0) = 0, y'(t_0) = 1 \).

Then \(y_1(t) \) and \(y_2(t) \) form a fundamental set of solutions of \(L[y] = 0 \).
Theorem 3.2.6 (Abel’s Theorem). If $y_1(t)$ and $y_2(t)$ are solutions of the differential equation $L[y] = y'' + p(t)y' + q(t)y = 0$, whose coefficients $p(t)$ and $q(t)$ are continuous on an open interval $I: \alpha < t < \beta$. Then the Wronskian $W(y_1, y_2)(t)$ is given by $W(y_1, y_2)(t) = C \exp\left[- \int p(t)dt\right]$, where C is a certain constant that depends on $y_1(t)$ and $y_2(t)$ but NOT on t. Further, $W(y_1, y_2)(t)$ either is zero for all t in I (if $C = 0$) or else is never zero in I (if $C \neq 0$).