Linear Transformation (Sections 1.8, 1.9)

General view: Given an input, the transformation produces an output. In this sense, a function is also a transformation.

Example. Let
$$A = \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix}$$
 and $\mathbf{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$. Describe matrix-vector multiplication $A\mathbf{x}$

in the language of transformation.

$$A\mathbf{x} = \begin{bmatrix} 4 & -3 & 1 & 3 \\ 2 & 0 & 5 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 5 \\ 8 \end{bmatrix} \equiv \mathbf{b}$$

Vector **x** is transformed into vector **b** by left matrix multiplication

Definition and terminologies.

Transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each vector \mathbf{x} in \mathbb{R}^n a vector $T(\mathbf{x})$ in \mathbb{R}^m .

- Notation: $T: \mathbb{R}^n \to \mathbb{R}^m$
- \mathbb{R}^n is the *domain* of T
- \mathbb{R}^{m} is the *codomain* of *T*
- *T*(**x**) is the *image* of vector **x**
- The set of all images $T(\mathbf{x})$ is the *range* of T
- When $T(\mathbf{x}) = A\mathbf{x}$, A is a $m \times n$ size matrix. Range of $T = \text{Span}\{\text{ column vectors of }A\}$ (HW1.8.7)

See class notes for other examples.

Linear Transformation --- Existence and Uniqueness Questions (Section 1.9)

Definition 1: $T: \mathbb{R}^n \to \mathbb{R}^m$ is **onto** if each **b** in \mathbb{R}^m is **the image of at least one x** in \mathbb{R}^n .

- i.e. codomain R^m = range of T
- When solve $T(\mathbf{x}) = \mathbf{b}$ for \mathbf{x} (or $A\mathbf{x}=\mathbf{b}$, A is the standard matrix), there exists at least one solution (Existence question).

Definition 2: $T: \mathbb{R}^n \rightarrow \mathbb{R}^m$ is **one-to-one** if each **b** in \mathbb{R}^m is **the image of at most one x** in \mathbb{R}^n .

• i.e. When solve $T(\mathbf{x}) = \mathbf{b}$ for \mathbf{x} (or $A\mathbf{x}=\mathbf{b}$, A is the standard matrix), there exists either a unique solution or none at all (Uniqueness question).

See class notes for Example 4.

Linear Transformation --- Existence and Uniqueness Questions (Section 1.9) cont'd

Facts to determine whether linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$ onto or one-to-one or both.

Theorem 11: $T: \mathbb{R}^n \to \mathbb{R}^m$ is **one-to-one** if and only if $T(\mathbf{x}) = \mathbf{0}$ has only trivial solution.

• Comment: $A\mathbf{x} = \mathbf{0}$ (A is the standard matrix of T) \rightarrow Columns of A are linearly independent.

Theorem 12: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation and let A be the standard matrix. Then:

- a. T maps R^n onto R^m if and only if columns of A spans R^m .
- b. *T* is **one-to-one** if and only if the columns of *A* are *linearly independent*.
- Comment: (a) is true by Theorem 4. (b) is true by Theorem 11.

See class notes for other Example 5.

Matrix Operations (Section 2.1)

Matrix notation. Let A be a m × n matrix. Let $\mathbf{a}_1, ..., \mathbf{a}_n$ be columns (or column vectors) of A. A=[$\mathbf{a}_1, \mathbf{a}_2 ..., \mathbf{a}_n$]

Denote a_{ij} the entry at the *i*th row and *j*th column of A.

$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & \vdots & & \vdots \\ a_{m1} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$
$$\begin{pmatrix} \uparrow & & \uparrow & & \uparrow \\ a_{1} & & a_{1} & & a_{n} \end{bmatrix}$$

Matrix-matrix addition. Let A and B be m × n matrices. (A + B by adding corresponding entries.)

Example 1.
$$A = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix}$$
 $B = \begin{bmatrix} 1 & 1 & 1 \\ 3 & 5 & 7 \end{bmatrix}$ $C = \begin{bmatrix} 2 & -3 \\ 0 & 1 \end{bmatrix}$
 $A + B = \begin{bmatrix} 4+1 & 0+1 & 5+1 \\ -1+3 & 3+5 & 2+7 \end{bmatrix} = \begin{bmatrix} 5 & 1 & 6 \\ 2 & 8 & 9 \end{bmatrix}$

A and C (or B and C) can not be added together because of different sizes.

Scalar multiple of matrix. Let A be a m × n matrix, *r* be a number. *r*A is the scalar multiple by *r* times each entry of A

Define: -A = (-1)A.

Example 2.

$$2B = \begin{bmatrix} 2(1) & 2(1) & 2(1) \\ 2(3) & 2(5) & 2(7) \end{bmatrix} = \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix}$$

$$A - 2B = \begin{bmatrix} 4 & 0 & 5 \\ -1 & 3 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 2 & 2 \\ 6 & 10 & 14 \end{bmatrix} = \begin{bmatrix} 2 & -2 & 3 \\ -7 & -7 & -12 \end{bmatrix}$$

Theorem 2.1. Let A, B and C be matrices of same size. Let r and s be scalars (numbers).

- a. A+B = B+A.
- b. (A+B) + C = A + (B + C)
- c. A + 0 = A (0 represents matrix whose entries are all zeros)
- $d. \quad r(A + B) = rA + rB$
- e. (r+s)A = rA + sA
- $f. \quad r(sA) = (rs)A$

Matrix-matrix multiplication. Let A be $m \times n$ matrix. Let B be $n \times p$ matrix with columns \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_p . Let \mathbf{x} be a vector in \mathbb{R}^p (we will see why we choose these sizes for these matrices and the vector soon).

AB is based on A(Bx).

 $B\mathbf{x} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p.$ $A(B\mathbf{x}) = A(x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + \dots + x_p \mathbf{b}_p)$ $= x_1 A \mathbf{b}_1 + x_2 A \mathbf{b}_2 + \dots + x_p A \mathbf{b}_p$ $= [A \mathbf{b}_1, A \mathbf{b}_2, \dots, A \mathbf{b}_p] \mathbf{x}$

Definition. Let A be m×n matrix. Let B be n×p matrix with columns \mathbf{b}_1 , \mathbf{b}_2 , ..., \mathbf{b}_p . AB is a m×p matrix whose columns are A \mathbf{b}_1 , A \mathbf{b}_2 , ..., A \mathbf{b}_p

$$AB = A[\mathbf{b}_1, \mathbf{b}_2, ..., \mathbf{b}_p] = [A\mathbf{b}_1, A\mathbf{b}_2, ..., A\mathbf{b}_p]$$

See class notes for examples