Characterizations of invertible matrix (Section 2.3)

Theorem 2.8 (Invertible matrix theorem) Let A be a $n \times n$ matrix. Then the following statements are either all true or all false.

- a. A is an invertible matrix.
- b. A is row equivalent to the $n \times n$ identity matrix.
- c. A has n pivot positions.
- d. The equation $A\mathbf{x} = \mathbf{0}$ has only trivial solution.
- e. The columns of A form a linearly independent set.
- f. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ is **one-to-one**.
- g. The equation Ax = b has at least one solution for each b in Rⁿ (This could be stated as "Ax = b has a unique solution for each b in Rⁿ").
- h. The columns of A span Rⁿ.
- i. The linear transformation $\mathbf{x} \rightarrow A\mathbf{x}$ maps \mathbb{R}^n onto \mathbb{R}^n
- j. There is a $n \times n$ matrix C such that CA = I (I is the $n \times n$ identity matrix).
- k. There is a $n \times n$ matrix D such that AD = I (I is the $n \times n$ identity matrix).
- i. A^{T} is an invertible matrix.

Example.
$$A = \begin{bmatrix} 2 & 7 \\ 0 & 3 \end{bmatrix}$$

Characterizations of invertible matrix (Section 2.3)cont'd

Example 1. Use **Theorem 2.8** to decide if A is invertible:

$$A = \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ 5 & -1 & 9 \end{bmatrix}$$

Solution. Use **Theorem 2.8.c** and row reduction alg.

$$A \sim \begin{bmatrix} 1 & 0 & -2 \\ 3 & 1 & -2 \\ 5 & -1 & 9 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 4 \\ 0 & 0 & 3 \end{bmatrix}$$

Invertible Linear transformation. A linear transformation $T : \mathbb{R}^n \to \mathbb{R}^n$ is **invertible** if there exists a mapping (which is also a linear transformation as we shall see later) $S : \mathbb{R}^n \to \mathbb{R}^n$ such that:

- 1. $S(T(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n
- 2. $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n

Characterizations of invertible matrix (Section 2.3)cont'd

Theorem 2.9 Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation and let A be the standard matrix for T. Then T is **invertible** if and only if A is an invertible matrix. In that case, the linear transformation $S : \mathbb{R}^n \to \mathbb{R}^n$ given by $S(A) = A^{-1}\mathbf{x}$ is the unique function satisfying:

- 1. $S(T(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n
- 2. $T(S(\mathbf{x})) = \mathbf{x}$ for all \mathbf{x} in \mathbb{R}^n

Example 2. Let $T : \mathbb{R}^n \rightarrow \mathbb{R}^n$ be an one-to-one linear transformation. (1) Is T invertible? (2) Does T map \mathbb{R}^n onto $\mathbb{R}^{n?}$

Solution: Let A be the standard matrix of T.

(1) Columns of A are linearly independent (by Theorem 1.12) \rightarrow A is invertible (by Theorem 2.8) \rightarrow T is invertible.

(2) A is invertible \rightarrow T is onto (by Theorem 2.8 as well).