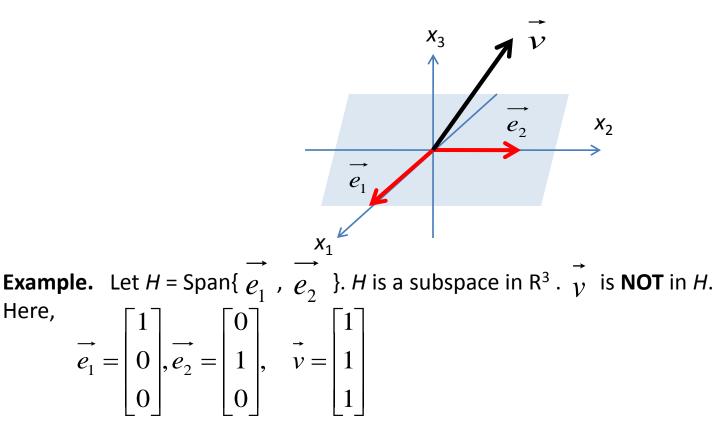
Subspace of Rⁿ (Section 2.8)

Definition: A subspace of \mathbb{R}^n is any set H in \mathbb{R}^n that satisfies:

a. The zero vector is in *H*. b. For each \vec{u} and \vec{v} in *H*, the sum $\vec{u} + \vec{v}$ is in *H*. c. For each \vec{u} and each scalar *c*, \vec{cu} is in *H*.

In short: all linear combinations cu + dv are in H.



Dimension and rank (Section 2.9)

Fact: A vector in subspace *H* can be represented in **only one way** as a linear combination of basis vectors of *H*. **Example**. Let $\{\mathbf{e}_1, \mathbf{e}_2\}$ be a basis for subspace $H = \text{Span}\{\mathbf{e}_1, \mathbf{e}_2\}$ in \mathbb{R}^3 . $\mathbf{e}_1 = \begin{vmatrix} 1 \\ 0 \\ 0 \end{vmatrix}, \mathbf{e}_2 = \begin{vmatrix} 0 \\ 1 \\ 0 \end{vmatrix}$

$$\boldsymbol{b} = \begin{bmatrix} 2\\3\\0 \end{bmatrix} \qquad \boldsymbol{b} = 2\boldsymbol{e}_1 + 3\boldsymbol{e}_2$$

Definition: Let the set $B = {\mathbf{b}_1, ..., \mathbf{b}_p}$ be a basis for subspace *H*. For each *x* in *H*, *x* = $c_1 b_1 + c_2 b_2 + ... + c_p b_p$. The coordinates of x relative to the basis B are the weights $c_1, c_2, ..., c_p$. The vector in R^p

$$[\boldsymbol{x}]_{\boldsymbol{B}} = \begin{bmatrix} \boldsymbol{c}_1 \\ \vdots \\ \boldsymbol{c}_p \end{bmatrix}$$

is called the **coordinate vector of** x (*relative to B*) or the *B*-coordinate vector of x