Vector space (Section 4.1)

Examples of generalized vectors:

$$\begin{bmatrix} 1\\2\\4 \end{bmatrix}; \quad 1+\sin(t/2); \quad 1+3t+5t^3; \quad \begin{bmatrix} a & b\\c & d \end{bmatrix}$$

Example1. For $n \ge 0$, the set P_n of polynomials of degree at most n consists of all polynomials of the form: $p(t) = a_0 + a_1 t + a_2 t^2 + ... + a_n t^n$. Here $a_0, a_1, a_2, ..., a_n$ and variable t are real numbers.

The **degree** of **p** is the highest power of t in $a_0 + a_1t + a_2t^2 + ... + a_nt^n$ whose coefficient is not zero.

The **degree** of $p(t) = a_0 \neq 0$ is zero. p(t) = 0 is called the zero polynomial.

Example2. The set P₅ of polynomials of degree at most 5 consists of all polynomials of the form: $p(t) = a_0 + a_1 t + a_2 t^2 + ... + a_5 t^5$. Here $a_0, a_1, a_2, ..., a_5$ and variable t are real numbers. P₅ = { 0, 2, 1 + t, 2 + t², 3 - 5t + 10t⁴, 9 + 10t³ + 4t⁵, ...}.

Polynomial $40t^6$ is not in P₅.

Example 3. All real-valued functions defined on a set D (the set of real numbers or some interval on the real time) form a set V. Let D = R, $V = \{0, 1 + t, sin(2t) + 5t, ...\}$

Vector space (Section 4.1 cont'd)

Definition. A **vector space** is a nonempty set V of objects, on which two operations, "addition" and "multiplication by scalars (real numbers)" are defined. Moreover, **these two operations have to satisfy** the following 10 axioms.

For all vectors **u**, **v**, and **w** in V and scalars *c* and *d*:

- **1. u** + **v** is in V.
- **2.** u + v = v + u

3. (u + v) + w = u + (v + w)

- 4. There is **zero** vector **0** in V, such that $\mathbf{u} + \mathbf{0} = \mathbf{u}$.
- 5. For each **u** in V, there is a vector $-\mathbf{u}$ in V such that $\mathbf{u} + (-\mathbf{u}) = \mathbf{0}$. $-\mathbf{u}$ is called the negative of **u**.
- *6. c***u** is in V.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{v} + c\mathbf{u}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- *9.* c(du) = (cd)u
- **10.** 1**u** = **u**

Note: zero vector is unique. -u is unique for each u in V.

0**u** = **0** c**0** = **0** -**u** = (-1)**u**

Example. The set Rⁿ is a vector space.