Answer Key 1

MATH 20580: Introduction to Linear Algebra and Differential Equations Practice Exam 3 April 21, 2011

1		1		1	
	la.	h		d	e
Τ.	_ Ct		•	Q.	

7. • b c d e

8. a b c d •

9. a b • d e

10. a b c d •

11. a • c d e

MATH 20580: Introduction to Linear Algebra and Differential Equations Practice Exam 3 $\,$ April 21, 2011

1. a b c d e	7. a b c d e
2. a b c d e	8. a b c d e
3. a b c d e	9. a b c d e
4. a b c d e	10. a b c d e

- - (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) 0 (e) $\frac{\pi}{6}$

- 2. Let $\mathbf{y} = \begin{bmatrix} 6 \\ 7 \end{bmatrix}$ and $\mathbf{u} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$. Find the orthogonal projection of \mathbf{y} onto \mathbf{u} .

 - (a) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (b) $\begin{bmatrix} 4 \\ 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ (d) $\begin{bmatrix} 4 \\ 8 \end{bmatrix}$ (e) $\begin{bmatrix} 8 \\ 4 \end{bmatrix}$

- 3. Let $\mathbf{y} = \begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$, $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 3 \\ 2 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$ and $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$. Use the fact that
- (a) $\begin{bmatrix} 0 \\ 2 \\ 6 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} -1 \\ 2 \\ 6 \end{bmatrix}$ (d) $\begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$ (e) $\begin{bmatrix} 2 \\ -1 \\ 6 \end{bmatrix}$

- 4. Let $\mathbf{y} = \begin{bmatrix} 3 \\ -1 \\ 1 \\ 13 \end{bmatrix}$ and $W = \operatorname{Span} \left\{ \begin{bmatrix} 1 \\ -2 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} -4 \\ 1 \\ 0 \\ 3 \end{bmatrix} \right\}$. Find the distance between \mathbf{y} and
 - (a) 13
- (b) 0
- (c) 1
- (d) 3
- (e) 8

- 5. Let $A = \begin{bmatrix} 0 & 4 \\ 2 & 0 \\ 1 & 1 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 2 \\ 0 \\ 11 \end{bmatrix}$. Find a least-squares solution of the inconsistent

- (a) $\begin{bmatrix} 2 \\ 1 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (c) $\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$ (d) $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (e) $\begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix}$
- 6. Let $\mathbf{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} -1\\-1\\1\\1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} 1\\3\\1\\7 \end{bmatrix}$, and let $W = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$. Find a vector \mathbf{u}_3 so that the subset $\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{u}_3\}$ is an orthogonal basis of W.
- (a) $\begin{bmatrix} 4 \\ 2 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ (c) $\begin{bmatrix} -3 \\ 1 \\ -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ (e) $\begin{bmatrix} 1 \\ 3 \\ 1 \end{bmatrix}$
- 7. Find an orthonormal basis of the subspace $W = \text{Span} \left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\9\\9\\1 \end{bmatrix} \right\}$.
 - (a) $\frac{1}{2} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}, \frac{1}{2} \begin{vmatrix} 1 \\ -1 \\ -1 \end{vmatrix}$ (b) $\frac{1}{2} \begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 0 \\ 9 \\ -9 \end{vmatrix}$ (c) $\begin{vmatrix} 1 \\ 1 \\ 1 \end{vmatrix}, \begin{vmatrix} 1 \\ 9 \\ 9 \end{vmatrix}$

- (d) $\begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \\ -1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 9 \\ 9 \\ 1 \end{bmatrix}$

- 8. Let $A = \frac{1}{7} \begin{bmatrix} 2 & 6 & 3 \\ 3 & 2 & -6 \\ 6 & -3 & 2 \end{bmatrix}$. Find A^{-1} .
 - (a) A^{3}

- (b) $\begin{vmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{vmatrix}$
- (c) A^2

(d) 0

- (e) $\frac{1}{7} \begin{bmatrix} 2 & 3 & 6 \\ 6 & 2 & -3 \\ 3 & -6 & 2 \end{bmatrix}$
- 9. Solve the initial value problem of $ty' + 2y = 4t^2$, y(1) = 3.

- (a) $t^2 + \frac{1}{t^2}$ (b) $t^2 \frac{1}{t^2}$ (c) $t^2 + \frac{2}{t^2}$ (d) $2t^2 + \frac{1}{t^2}$ (e) $t^2 \frac{2}{t^2}$

- 10. Solve the initial value problem $y' = 9.8 \frac{y}{5}$, y(0) = 50.
 - (a) $1 + 49e^{-t/5}$
- (b) $(9.8t + 50)e^{-t/5}$
- (c) 50 t/5

(d) 49 + t/5

- (e) $49 + e^{-t/5}$
- 11. Solve the separable differential equation $y' = \frac{x^2}{u(1+x^3)}$.

 - (a) $3y^2 \ln|1 + x^3| = c$ (b) $3y^2 2\ln|1 + x^3| = c$ (c) $2y^2 3\ln|1 + x^3| = c$

- (d) $y^2 2 \ln|1 + x^3| = c$
- (e) 0

- 12. Suppose a sum of money is deposited in a account and left to accrue interest at an annual rate of r compounded continuously. Find the value of r so that the money in the account will double in 10 years.
 - (a) $\frac{\ln 2}{10}$

- (b) 10% (c) 2 (d) $\frac{\ln 10}{2}$ (e) 20%
- 13. Find the solution of the initial value problem $\frac{dy}{dt} = \frac{1}{2}(1-y)y$, y(0) = 4. Then find $\lim_{t \to \infty} y(t)$.

14. Find an integrating factor for the equation $(3xy + y + 1)dx + (x^2 + xy)dy = 0$ and then solve the equation.

15. Let $A = \begin{bmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 6 \end{bmatrix}$. Find the minimum value of $||A\mathbf{x} - \mathbf{b}||$ for all vectors \mathbf{x}

[Hint: The least-squares solution is given by $(A^TA)^{-1}A^T\mathbf{b}$.]