Answer Key 1

MATH 20580: Introduction to Linear Algebra and Differential Equations Practice Final May 13, 2011

- 1. a b c d •
- 13. a c d e
- 2. a b d e
- 14. a b c d •
- 3. a b c d •
- 15. a b c e
- 4. a b c d •
- 16. a b c d •
- 5. a b d e
- 17. a b d e
- 6. a c d e
- 18. a b c e
- 7. | a | | b | | c | | | | e
- 19. a b c e
- 8. a b d e
- 20. b c d e
- 9. b c d e
- 21. a b d e
- 10. a b c d •
- 22. a c d e
- 11. a b c e
- 23. b c d e
- 12. b c d e
- 24. a b d e

MATH 20580: Introduction to Linear Algebra and Differential Equations Practice Final May 13, 2011

b $^{\rm c}$ d e 13. a b \mathbf{c} d е 1. a d b d b 2. a c е 14. a \mathbf{c} e d b d 3. b \mathbf{c} e 15. a \mathbf{c} a е b d b d \mathbf{c} 16. a \mathbf{c} 4. e e b d b d 5. $^{\rm c}$ e 17. a \mathbf{c} е b d b d 6. a c e 18. a \mathbf{c} е d b b 19. d a c e a \mathbf{c} е d d b b 8. \mathbf{c} e 20. a \mathbf{c} е d b d b \mathbf{c} 21. a \mathbf{c} е a e d b b d 10. a $^{\rm c}$ е 22. a \mathbf{c} е b d b d 11. a |c|e 23. a \mathbf{c} e b d b d 12. a \mathbf{c} e 24. a \mathbf{c}

- 1. Let $y_1(t)$ and $y_2(t)$ be a fundamental set of solutions of $y'' + y' + \frac{\sin t}{t}y = 0$ satisfying the initial conditions $y_1(0) = 1, y_1'(0) = 0$ and $y_2(0) = 0, y_2'(0) = 1$. Then the Wronskian $W(t) = [y_1(t)y_2'(t) - y_1'(t)y_2(t)]$ is equal to
 - (a) $\sin t$
- (b) e^t (c) $\frac{\sin t}{t}$. (d) 1
- (e) e^{-t}

- 2. Suppose $\phi(t) = A_0 + A_1t + A_2t^2$ is a solution to $y'' + 4y = 4t^2$ for some constants $A_0, A_1, A_2, A_3, A_4, A_5$ A_2 . Find A_0 .
 - (a) 4
- (b) 1
- (c) -1/2 (d) 0
- (e) -1

- 3. Find the value of h so that the linear system $\begin{bmatrix} 1 & 5 & -3 \\ 1 & 4 & -1 \\ 2 & 7 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} -4 \\ -3 \\ h \end{bmatrix}$ has a solution.
 - (a) 5
- (b) 2
- (c) 1
- (d) 3
- (e) -5

- 4. Suppose that $\phi(t) = At^s e^{-t} + B$ is a solution to $y'' 3y' 4y = -5e^{-t} 4$ for some constants A, B, and s. Find A.
 - (a) 4
- (b) -4 (c) -2/5 (d) -1
- (e) 1

- 5. Let $A = \begin{bmatrix} 1 & 4 \\ 2 & 7 \end{bmatrix}$. Find adj (A).

 - (a) $\begin{bmatrix} 7 & 4 \\ 2 & 1 \end{bmatrix}$ (b) $\begin{bmatrix} 7 & -2 \\ -4 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 7 & -4 \\ -2 & 1 \end{bmatrix}$

- $(d) \begin{bmatrix} -7 & 4 \\ 2 & -1 \end{bmatrix}$ (e) $\begin{bmatrix} -7 & -4 \\ -2 & -1 \end{bmatrix}$
- 6. Find the reduced row echelon form of $\begin{bmatrix} 3 & -1 & 3 \\ 6 & 0 & 12 \\ 2 & 1 & 7 \end{bmatrix}$.

 - (a) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
 - (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ (e) $\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 2 \\ 0 & 1 & 3 \end{bmatrix}$
- 7. Find the integrating factor for $dx + \left(\frac{x}{y} \sin(y) + y^2\right) dy = 0$.
 - (a) $\sin y$
- (b) y^2
- (c) 1
- (d) y
- (e) x
- 8. Let $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \operatorname{proj}_V \mathbf{u}$ where $\mathbf{u} = \begin{bmatrix} 1 \\ 3 \\ 1 \\ 7 \end{bmatrix}$ and $V = \operatorname{Span} \left\{ \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \frac{1}{2} \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} \right\}$. Then x_1
 - (a) 2
- (b) 1
- (c) 4
- (d) 3
- (e) 0

- 9. Which of the following is an orthonormal basis of \mathbb{R}^2 ?
 - (a) $\frac{1}{5} \begin{bmatrix} 3\\4 \end{bmatrix}$, $\frac{1}{5} \begin{bmatrix} -4\\3 \end{bmatrix}$

(b) $\frac{1}{5} \begin{bmatrix} 3\\4 \end{bmatrix}$, $\frac{1}{5} \begin{bmatrix} -4\\3 \end{bmatrix}$, 0

- (c) $\frac{1}{5} \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\frac{1}{5} \begin{bmatrix} -4 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$
- (d) $\begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\begin{bmatrix} -4 \\ 3 \end{bmatrix}$

- (e) $\frac{1}{5} \begin{bmatrix} 3\\4 \end{bmatrix}$
- 10. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 3 & 8 & 2 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} b_{11} & b_{12} & b_{13} \\ b_{21} & b_{22} & b_{23} \\ b_{31} & b_{32} & b_{33} \end{bmatrix}$. Then b_{11} is equal to
 - (a) 5
- (b) -2
- (c) -6
- (d) 1
- (e) 10
- 11. Let $\begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix}$ be a solution to $\begin{vmatrix} 1 & -2 & 1 \\ 0 & 2 & -8 \\ 4 & -5 & -9 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \\ x_3 \end{vmatrix} = \begin{vmatrix} 0 \\ 8 \\ 9 \end{vmatrix}$. Then x_1 is equal to
 - (a) 16
- (b) 9
- (c) 8
- (d) 29
- (e) 3
- 12. Suppose $y_1(t) = t$ is a solution of the differential equation $t^2y'' + 2ty' 2y = 0$. The method of reduction of order gives a second solution of the form $y_2 = v(t)y_1(t)$. Find v(t).
 - (a) t^{-3}
- (b) 1
- (c) $\frac{4}{t}$ (d) t^{-2}
- (e) t

13. Find the roots of the characteristic equation for y'' + 100y = 0.

(a) $-10 \pm 10i$

(b) $\pm 10i$

(c) -100, 0

(d) ± 10

(e) 0, 10

14. If A is a 4×4 matrix and det A = 2, then det(-2A) is

(a) 16

(b) -16 (c) -4 (d) -32

(e) 32

15. Determine which of the following form a fundamental set of solutions of linear differential equation $2t^2y'' + 3ty' - y = 0.$

(a) $t^{1/2}$, 0 (b) t, t^{-1} (c) t, 1 (d) $t^{1/2}$, t^{-1} (e) $t^{3/2}$, t

16. If $\mathcal{B} = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$ and $\mathbf{x} = \begin{bmatrix} 1 \\ 6 \end{bmatrix}$, then $[\mathbf{x}]_{\mathcal{B}}$ is equal to

(a) $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$ (b) $\begin{bmatrix} 1 \\ 6 \end{bmatrix}$ (c) $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (d) $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ (e) $\begin{bmatrix} -2 \\ 3 \end{bmatrix}$

17. The eigenvalues of $A = \begin{bmatrix} 1 & 3 & 3 \\ -3 & -5 & -3 \\ 3 & 3 & 1 \end{bmatrix}$ are

(a) 1, -5, 0 (b) -3, -5, -3 (c) 1, -2, -2 (d) 1, 3, 3 (e) 1, 3, 5

18. Let y(t) be the unique solution to the initial value problem y'' - y = 0, y(0) = 2, y'(0) = 0. Then y(1) is equal to

(a) 2e - 2 (b) $2e^{-1}$

(c) 2 (d) $e + e^{-1}$ (e) 2e

19. Let y(t) be the unique solution to $y' + \frac{2}{t}y = 4t$ with initial condition y(1) = 3. Then y(2) is equal to

(a) 8

(b) $\ln 2 + 2$ (c) $e^4 + 2$ (d) $4 + \frac{1}{2}$ (e) $8 + \frac{1}{4}$

20. Let $\phi(t) = v_1(t)\cos(3t) + v_2(t)\sin(3t)$ be a solution to $y'' + 9y = \frac{1}{\sin 3t}$. Then $v_2(t)$ is equal to

(a) $\frac{1}{9} \ln |\sin 3t|$ (b) $\frac{1}{3} \ln |\sin 3t|$ (c) $\frac{t}{3}$ (d) $\cos(3t)$ (e) $\frac{1}{\sin 3t}$

21. Suppose $y' = 2y^{100}(3 - y)$ and y(0) = 5. Find $\lim_{t \to \infty} y(t)$. [Hint: You do not need to solve for y(t) to find the limit.]

(a) 2

(b) 5

(c) 3

(d) 1

(e) 0

22. Let y(t) be the unique solution to the initial value problem y'' + 2y' + y = 0, y(0) = 1, y'(0) = 0. Then y(1) is equal to

(a) 0

(b) $2e^{-1}$ (c) 1 (d) $e + e^{-1}$ (e) 2e

- 23. Let y(t) be the unique solution to the equation $y' = y^2$ with y(0) = -1. Then y(1) is equal
 - (a) -1/2 (b) -1 (c) -4 (d) -3

- (e) 0

- 24. Find the determinant of $\begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & 1 \\ 0 & -2 & 0 \end{bmatrix}$.
 - (a) 1
- (b) -2 (c) 2
- (d) 5
- (e) 0