
Numerical Analysis
First midterm

Fall 2006

Name:_____________________________________________________

To receive credit you must show your work.

Problems

Problem 1 (20 points)
Let the base be B = 10, and the mantissa length be t = 3. Perform the following
computations and compute the relative error in each case:

(i) (100 + 0.4) + 0.4;
(ii) (0.4 + 0.4 ) + 100.

Soln:
 (i)          (100 + 0.4) + 0.4 = 100;  relative error = |100-100.8|/100.8 ≈  0.00794

(iii) (0.4 + 0.4) + 100 = 101; relative error = |101-100.8|/100.8 ≈  0.00198

Problem 2 (20 points)
Let a sequence nx  be defined inductively by )(1 nn xFx =+ . Suppose that

xxn →  as ∞→n , 0)()1( =xF , and F  is continuously differentiable. Prove that
)( 112 nnnn xxoxx −=− +++ .
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some ξ  between nx  and 1+nx .
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Problem 3 (20 points)
If we compute the root of function 2ln =− xx  within interval ),2[ ∞  by the bisection
method, how many steps are required if the absolute error is less than 6105.0 −× .
Soln:
Let the right end point be b, b is big enough so that the root is within ],2[ b . (You can plot
y = x-2 and y = ln(x). Then you will find that there is only one root within  ),2[ ∞ .
Since .105.0)2(2|| 6)1( −+− ×≤−≤− bcr n

n

.12log/)]105.0log()2[log( 6 −×−−≥⇒ −bn  (Recall Problem 3.1.4).

Problem 4 (20 points)



Suppose we solve for the positive root of 013 =−− xx using the fixed point iteration.

There are two iteration functions available: (1). 3 1+= xx , (2). 
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inferior to (2) (in terms of the rate of convergence)?
Soln:
These are  fixed point iterations. Assume the root is s, s > 0.
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is continuous in the nbhd of s, and 0|)(| )1( ≠sF , (1) converges linearly.
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long as 0x  is close to s, (2) converges quadratically.
(See remark of Theorem 3.4.2).

Problem 5 (20 points)

(a) Find the Doolittle’s and Crout’s factorization of matrix A = 
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.

(b) Let Tb )3,2,1(−= . Find a solution for Ax=b using Gaussian elimination.
(Hint, you can do (b) first.)
Soln:
(b) If we do (b) first, we will have
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UL  from Gaussian elimination. This is Doolittle’s

factorization.
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We have Crout’s factorization
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Problem 6 (Bonus, 10 points)
Assume 0)( =rf , in the nbhd. of r  ],[ δδ +− rr , )()2( xf  is continuous and

0)()1( ≠xf . Let a sequence nx  be generated by the secant method. Suppose
],[,1 δδ +−∈− rrxx nn , and rxx nn ,,1−  are not equal to each other, prove that
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max( rxx nn ,,1− ).
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Problem 7 (Bonus, 10 points)
Prove that for a n by n matrix A, A is nonsingular, if all leading principal minors of A are
nonsingular, A has a unique Doolittle’s factorization.
Soln:
Assume there are two Doolittle’s factorizations A = LU = L*U*.
Since A is nonsingular, IUULL == −− 11 ** , where I is identity matrix.
Therefore L = L*, U = U*.


