
1

Summary of Pseudo-code Language Constructions

An algorithm is an ordered sequence of unambiguous and well-defined instructions that performs

some tasks. Pseudo-code allows ones to focus on the logic of the algorithm without being

distracted by details of language syntax. At the same time, the pseudo-code needs to be

complete. It describes the entire logic of the algorithm so that implementation is a task of

translating line by line into source code.

Three Categories of Algorithmic Operations

Three basic constructs for flow of control are sufficient to implement any “proper” algorithm.

1. sequential operations (Sequence) - instructions are executed in order

2. conditional operations (If-Then-Else) - a control structure that asks a true/false question and

then selects the next instruction based on the answer

3. iterative (loop) operations (While) - a control structure that repeats the execution of a block

of instructions

Although these constructs are sufficient, it is often useful to include three more constructs:

4. Repeat-Until is a loop with a simple conditional test at the bottom.

5. Case is a multiway branch (decision) based on the value of an expression. Case is a

generalization of If-Then-Else.

6. For is a “counting” loop.

Pseudo-code Structure:

INPUT:

OUTPUT:

Step1:

Step2:

etc…

Computation/Assignment

 set the value of "variable" to :"arithmetic expression" or

 "variable" equals "expression" or

 "variable" = "expression"

Input/Output

 get "variable", "variable", ...

 display "variable", "variable", ...

Conditional

2

 if "condition" then

 (subordinate) statement 1

 etc ...

 else

 (subordinate) statement 2

 etc ...

Iterative

 while "condition"

 (subordinate) statement 1

 (subordinate) statement 2 ...

 for "iteration bounds"

 (subordinate) statement 1

 (subordinate) statement 2 ...

