1.2 Round-off Errors and Computer Arithmetic

IEEE floating point numbers

- Binary number: $(...b_3b_2b_1b_0.b_{-1}b_{-2}b_{-3}...)_2$
- Binary to decimal:

$$(\dots b_3 \dot{b}_2 b_1 b_0 \dots b_{-1} b_{-2} b_{-3} \dots)_2 = (\dots b_3 2^3 + b^2 2^2 + b_1 2^1 + b_0 2^0 + b_{-1} 2^{-1} + b_{-2} 2^{-2} + b_{-3} 2^{-3} \dots)_{10}$$

- Double precision (long real) format
 - Example: "double" in C
- A 64-bit (binary digit) representation
 - 1 sign bit (s), 11 exponent bits characteristic (c), 52 binary fraction bits mantissa (f)

Х	XXXXXXXXXX	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
S	С	f

Represented number:

$$(-1)^{s}2^{c-1023}(1+f)$$

1023 is called exponent bias

$$0 \le characteristic(c) \le 2^{11} - 1 = 2047$$

- Smallest normalized positive number on machine has s=0, c=1, f=0: $2^{-1022} \cdot (1+0) \approx 0.22251 \times 10^{-307}$
- Largest normalized positive number on machine has $s = 0, c = 2046, f = 1 2^{-52}$: $2^{1023} \cdot (1 + 1 2^{-52}) \approx 0.17977 \times 10^{309}$
- Underflow: $numbers < 2^{-1022} \cdot (1+0)$
- Overflow: $numbers > 2^{1023} \cdot (2 2^{-52})$
- Machine epsilon $(\epsilon_{mach}) = 2^{-52}$: this is the difference between 1 and the smallest machine floating point number greater than 1.

Decimal machine numbers

• k-digit decimal machine numbers:

$$\pm 0. d_1 d_2 \dots d_k \times 10^n$$
, $1 \le d_1 \le 9$, $0 \le d_i \le 9$

 Any positive number within the numerical range of machine can be written:

$$y = 0. d_1 d_2 ... d_k d_{k+1} d_{k+2} ... \times 10^n$$

Chopping and Rounding Arithmetic:

Step 1: represent a positive number y by

$$0.d_1d_2...d_kd_{k+1}d_{k+2}...\times 10^n$$

Step 2:

Chopping: chop off after k digits:

$$fl(y) = 0. d_1 d_2 ... d_k \times 10^n$$

- Rounding: add $(5 \times 10^{-(k+1)}) \times 10^n$ to y, then chopping
 - a) If $d_{k+1} \ge 5$, add 1 to d_k to get fl(y)
 - b) If $d_{k+1} < 5$, simply do chopping

Errors and significant digits

Definition

If p^* is an approximation to p, the absolute error is $|p - p^*|$, and the relative error is $|p - p^*|/|p|$, provided that $p \neq 0$.

Definition

The number p^* is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$\frac{|p - p^*|}{|p|} \le 5 \times 10^{-t}.$$

Finite-digit arithmetic

Machine addition, subtraction, multiplication, and division:

$$x \oplus y = fl(fl(x) + fl(y)), \quad |x \otimes y = fl(fl(x) \times fl(y))|$$

 $x \ominus y = fl(fl(x) - fl(y)), \quad x \ominus y = fl(fl(x) \div fl(y))$

"Round input, perform exact arithmetic, round the result"

Catastrophic events

- a) Subtracting nearly equal numbers this leads to fewer significant digits.
- b) Dividing by a number with small magnitude (or multiplying by a number with large magnitude).

Avoiding loss of accuracy by reformulating calculations

Quadratic formula to find roots of $ax^2 + bx + c =$ 0, where $a \neq 0$.

1.
$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
2. $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

2.
$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

Key: Magnitudes of b and $\sqrt{b^2 - 4ac}$ decide whether we need to reformulate the formula.