2.5 Accelerating Convergence

Aitken's Δ^2 Method

- Assume $\{p_n\}_{n=0}^{\infty}$ is a linearly convergent sequence with limit p.
- Further assume $\frac{|p_{n+1}-p|}{|p_n-p|} \approx \frac{|p_{n+2}-p|}{|p_{n+1}-p|}$ when n is large
- Solving for *p* yields:

$$p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n}$$

A little algebraic manipulation gives:

$$p \approx p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

• Define $\widehat{p_n} = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$
Remark: The new sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ converges to p faster

Definition

Aitken's Δ^2 Method: Given a sequence $\{p_n\}_{n=0}^{\infty}$ which converges to limit p. The new sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ defined by $\widehat{p_n} = p_n - \frac{(p_{n+1}-p_n)^2}{p_{n+2}-2p_{n+1}+p_n}$ converges more rapidly to p than does the sequence $\{p_n\}_{n=0}^{\infty}$.

Remark:

- 1. numerator $p_{n+1} p_n$ is a forward difference
- 2. denominator $p_{n+2} 2p_{n+1} + p_n$ is central difference.

Example. Consider the sequence $\{p_n\}_{n=0}^{\infty}$ generated by the fixed point iteration $p_{n+1} = \cos(p_n)$, $p_0 = 0$.

iteration	p_n	$\widehat{p_n}$
0	0.000000000000000	0.685073357326045
1	1.0000000000000000	0.7 28010361467617
2	0 .540302305868140	0.73 3665164585231
3	0 .857553215846393	0.73 6906294340474
4	0 .654289790497779	0.73 8050421371664
5	0.7 93480358742566	0.73 8636096881655
6	0.7 01368773622757	0.73 8876582817136
7	0.7 63959682900654	0.73 8992243027034
8	0.7 22102425026708	0.7390 42511328159
9	0.7 50417761763761	0.7390 65949599941
10	0.73 1404042422510	0.7390 76383318956
11	0.7 44237354900557	0.73908 1177259563*
12	0.73 5604740436347	0.73908 3333909684*

Remark: $\widehat{p_{11}}$ needs p_{13} ; $\widehat{p_{12}}$ needs p_{14} . p_{13} and p_{14} are not shown here.

Theorem. Suppose that $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges linearly to the limit p and that $\lim \frac{p_{n+1} - p}{2} < 1$ $n \rightarrow \infty p_n - p$ The Aitken's Δ^2 sequence $\{\widehat{p_n}\}_{n=0}^{\infty}$ converges to p faster than $\{p_n\}_{n=0}^{\infty}$ in the sense that $\lim \frac{\widehat{p_n} - p}{1 - p} = 0$ $n \rightarrow \infty p_n - p$

Steffensen's Method

• Steffensen's Method is a combination of fixed-point iteration and the Aitken's Δ^2 method:

Suppose we have a fixed point iteration:

$$p_0, \quad p_1 = g(p_0), \quad p_2 = g(p_1), \quad \dots$$

Once we have p_0 , p_1 and p_2 , we can compute

$$\hat{p}_0 = p_0 - \frac{(p_1 - p_0)^{2|}}{p_2 - 2p_1 + p_0}$$

At this point we "restart" the fixed point iteration with $p_0 = \hat{p}_0$, e.g.

$$p_3 = \hat{p}_0, \quad p_4 = g(p_3), \quad p_5 = g(p_4),$$

and compute

$$\hat{p}_3 = p_3 - \frac{(p_4 - p_3)^2}{p_5 - 2p_4 + p_3}$$

6

Example. Compare Fixed point iteration, Newton's method and Steffensen's method for solving: $f(x) = x^3 + 4x^2 - 10 = 0.$

Solution:

1. Fixed point iteration:
$$p_{n+1} = g(p_n) = \sqrt{\frac{10}{p_n+4}}$$

i	<i>p</i> n	$g(p_n)$	
0	1.50000	1.34840	
1	1.34840	1.36738	
2	1.36738	1.36496	
3	1.36496	1.3652	
4	1.36526	1.36523	
5	1.36523	1.36523	

2. Newton's method

i	xn	$f(x_n)$
0	1.50000	1.51600e-01
1	1.36495	-3.11226e-04
2	1.36523	-1.35587e-09

3. Steffensen's method

p_0	p_1	p_2	$\widehat{p_{0}}$	$ p_2 - \widehat{p_0} $
1.50000	1.34840	1.36738	1.36527	3.96903e-05
p_3	p_4	p_5	$\widehat{p_3}$	$ \boldsymbol{p_3} - \widehat{p_3} $
1.36527	1.36523	1.36523	1.36523	2.80531e-12