3.1 Interpolation and Lagrange Polynomial

Interpolation

• **Problem to be solved:** Given a set of n+1 sample values of an unknown function f, we wish to determine a polynomial of degree n so that

\boldsymbol{x}	f(x)
0	0
1	0.84
2	0.91
3	0.14
4	-0.76
•••	

Weierstrass Approximation theorem

Suppose $f \in C[a,b]$. Then $\forall \epsilon > 0$, \exists a polynomial P(x): $|f(x) - P(x)| < \epsilon$, $\forall x \in [a,b]$.

Remark:

- 1. The bound is uniform, i.e. valid for all x in [a, b]
- 2. The way to find P(x) is unknown.

- Question: Can Taylor polynomial be used here?
- Taylor expansion is accurate in the neighborhood of one point.
 We need to the (interpolating) polynomial to pass many points.
- **Example**. Taylor approximation of e^x for $x \in [0,3]$

Linear Lagrange Interpolating Polynomial Passing through 2 Points

• **Problem:** Construct a functions passing through two points $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

First, define
$$L_0(x) = \frac{x - x_1}{x_0 - x_1}$$
, $L_1(x) = \frac{x - x_0}{x_1 - x_0}$

Note:
$$L_0(x_0) = 1$$
; $L_0(x_1) = 0$

$$L_1(x_0) = 0; \ L_0(x_1) = 1$$

Then define the interpolating polynomial

$$P(x) = L_0(x)f(x_0) + L_1(x)f(x_1)$$

Note:
$$P(x_0) = f(x_0)$$
, and $P(x_1) = f(x_1)$

Claim: P(x) is the unique linear polynomial passing through $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

n-degree Polynomial Passing through n+1 Points

• Constructing a polynomial passing through the points $(x_0, f(x_0)), (x_1, f(x_1)), (x_2, f(x_2)), ..., (x_n, f(x_n)).$

Define Lagrange basis functions

$$L_{n,k}(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_k - x_i} = \frac{x - x_0}{x_k - x_0} \dots \frac{x - x_{k-1}}{x_k - x_{k-1}} \cdot \frac{x - x_{k+1}}{x_k - x_{k+1}} \dots \frac{x - x_n}{x_k - x_n} \text{ for } k = 0, 1 \dots n.$$

Remark: $L_{n,k}(x_k) = 1$; $L_{n,k}(x_i) = 0$, $\forall i \neq k$.

• $L_{6,3}(x)$ for points $x_i = i$, i = 0, ..., 6.

• Theorem. If x_0, \dots, x_n are n+1 distinct numbers and f is a function whose values are given at these numbers, then a unique **polynomial** P(x) of **degree at most** n exists with $P(x_k) = f(x_k)$, for each k = 0, 1, ... n. $P(x) = f(x_0)L_{n,0}(x) + \dots + f(x_n)L_{n,n}(x).$ Where $L_{n,k}(x) = \prod_{i=0, i \neq k}^{n} \frac{x - x_i}{x_{\nu} - x_i}$.

Error Bound for the Lagrange Interpolating Polynomial

Theorem. Suppose $x_0, ..., x_n$ are distinct numbers in the interval [a, b] and $f \in C^{n+1}[a, b]$. Then for each x in [a, b], a number $\xi(x)$ (generally unknown) between $x_0, ..., x_n$, and hence in (a, b), exists with $f(x) = P(x) + \frac{f^{(n+)}(\xi(x))}{(n+1)!}(x-x_0)(x-x_1)...(x-x_n)$.

Where P(x) is the Lagrange interpolating polynomial.

Remark:

- 1. Applying the error term may be difficult. $(x-x_0)(x-x_1)...(x-x_n)$ is oscillatory. $\xi(x)$ is generally unknown.
- The error formula is important as they are used for numerical differentiation and integration.

Plot of
$$(x-0)(x-1)(x-2)(x-3)(x-4)$$

Example. Suppose a table is to be prepared for $f(x) = e^x$, $x \in [0,1]$. Assume the number of decimal places to be given per entry is $d \ge 8$ and that the difference between adjacent x-values, the step size is h. What step size h will ensure that linear interpolation gives an absolute error of at most 10^{-6} for all x in [0,1].