5.4 Runge-Kutta Method (cont'd)

Modified Euler Method (Another Runge-Kutta methods of order two)

Consider the IVP

$$y' = f(t, y), \quad a \le t \le b, \ y(a) = \beta.$$

with step size $h = \frac{b-a}{N}$.

$$w_0 = \beta$$

$$w_{i+1} = w_i + \frac{h}{2}(f(t_i, w_i) + f(t_{i+1}, w_i + hf(t_i, w_i))),$$
 for each $i = 0, 1, 2, \dots, N-1$.

Local truncation error is $O(h^2)$.

Two stage formula:

$$w_0 = \beta$$

$$k_1 = f(t_i, w_i)$$

$$k_2 = f(t_{i+1}, w_i + hk_1)$$

$$w_{i+1} = w_i + \frac{h}{2}[k_1 + k_2]$$

Example. Use the Modified Euler method with $N=10, h=0.2, t_i=0.2i$ and $w_0=0.5$ to solve the IVP $y'=y-t^2+1, 0 \le t \le 2, y(0)=0.5.$

Heun's Method (Runge-Kutta Method of order three)

Idea: Approximate $T^3(t, y)$ with $O(h^3)$ error by $f(t + \alpha_1, y + \delta_1 f(t + \alpha_2, y + \delta_2 f(t, y)))$

$$w_0 = \beta$$

$$w_{i+1} = w_i + \frac{h}{4} \left(f(t_i, w_i) + 3f(t_i + \frac{2h}{3}, w_i + \frac{2h}{3} f\left(t_i + \frac{h}{3}, w_i + \frac{h}{3} f(t_i, w_i)\right) \right), \quad \text{for each } i$$

$$= 0, 1, 2, \dots, N - 1.$$

Runge-Kutta Method of order four

$$w_{0} = \beta$$

$$k_{1} = hf(t_{i}, w_{i})$$

$$k_{2} = hf\left(t_{i} + \frac{h}{2}, w_{i} + \frac{1}{2}k_{1}\right)$$

$$k_{3} = hf\left(t_{i} + \frac{h}{2}, w_{i} + \frac{1}{2}k_{2}\right)$$

$$k_{4} = hf(t_{i+1}, w_{i} + k_{3})$$

$$w_{i+1} = w_i + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4),$$
 for each $i = 0, 1, 2, \dots, N-1$.