6.1 Linear Systems of Equations
To solve a system of linear equations

El: a11x1 + a12x2 + .- alnxn = bl
EZ: alel + azzxz + - aann == bz

E, i apixqs + anaxy + - aunXxy = by
for x4, x,, ..., x,, by Gaussian elimination with backward substitution.

aj; A2 - Gnrxg b,

arq ar, aZTL le“ _ bz

Ap1 Gz ... Gpp]n by,
Three elementary row operations.

1. Multiply one row by a nonzero number: (AE;) — (E;)
2. Interchange two rows: : (E;) < (E;)

3. Add a multiple of one row to a different row: (E; + AE;) - (E;)
Echelon form (upper triangular form)
A matrix is in row-echelon form if

1. All rows consisting entirely of zeros are at the bottom
2. Each leading entry (first nonzero entry from left) of a row is in a column to the right of the leading entry of the row above
it.

3. All entries in a column below a leading entry are zeros.

Matrix form:
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Backward substitution

1 6
Example 1. To solve lo ] l ] = l 4 ]
0 —5/2 -3

Solution: From — —x3

(e

X2 = -
375

Then from 2x, + x5 = 4

2x2+ =4
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X2 =E
Lastly from x; + x, + 2x; =6
x+2+2(3)=6

g =1
17 5

Gaussian Elimination with Backward Substitution

1. Write the system of linear equations as an augmented matrix [A | b].
2. Perform elementary row operations to put the augmented matrix in the echelon form
3. Solve the echelon form using backward substition



2x2 + .X3 - 4‘
Example 2. Solve the system of linear equations x; + x, + 2x3 = 6
2x1 + xz + X3 = 7
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Now use backward substation to solve for values of x;, x,, x5 (see Example 1).

Remark: Gaussian elimination is computationally expensive. The total number of multiplication and divisions is about n3/3,
where n is the number of unknowns.



6.2 Pivoting Strategies
Motivation: To solve a system of linear equations
Ei: apix1 +agpx, + - agpx, = by
Ey: azyx1 + A22%7 + - AypXn = by

E,: apx + appxy + -+ Xy, = by,

. .. . k . .
for x4, x5, ..., x,, by Gaussian elimination where a,({k) are numbers with small magnitude.

Q9

. .. . . . k) - k .- a;
e In Gaussian elimination, if a pivot element a,({k) Is small compared to an element a}k) below, the multiplier m;, = {—,’j)
Ak

will be large, leading to large round-off errors.

Example 1. Apply Gaussian elimination to solve

E1:  0.003000x; + 59.14x, = 59.17

E2: 5.291x, — 6.130x, = 46.78

using 4-digit arithmetic with rounding (The exact solution is x; = 10.00, x, = 1.000).

Ideas of Partial Pivoting.
Partial pivoting finds the smallest p > k such that

W) = max |a(k)

a )
| pk k<isn ' K

and interchanges the rows (Ey) < (E})



Example 2. Apply Gaussian elimination with partial pivoting to solve
E1:  0.003000x; + 59.14x, = 59.17

E2: 5.291x, — 6.130x, = 46.78
using 4-digit arithmetic with rounding.
Solution:

Step 1 of partial pivoting
max{|a§11>|, |a§11>|} = {]0.003000],15.291]} = 5.291 = |a?)|.
So perform (E;) < (E,) to make 5.291 the pivot element.

E1: 5.291x; — 6.130x, = 46.78
E2: 0.003000x; + 59.14x, = 59.17

_a?  0.003000
=2l =
oD 529

My, = 0.0005670

Perform (E, — my,E;) — (Es)
5.291x, — 6.130x, = 46.78
59.14x, ~ 59.14
Backward substitution with 4-digit rounding leads to x; = 10.00; x, = 1.000.

Gaussian Elimination with Partial Pivoting (Algorithm 6.2)
E; A11X1 + QpXp + o QX = Ay
E, A21X1 + Az2Xp + -+ ApXy = Az ptq

En Ap1X1 T ApaXy + o+ AupXp = Ay pyq
INPUT: number of equations n; augmented matrix A = [a;;]. Here 1< i< N; 1< j<N+1
OUTPUT: solution x4, x5, ..., X,



STEP1 Fori=1,..,nset NROW(i)=i.
STEP2Fori=1,...,n—1do STEPs3-6
STEP 3 Let p be the smallest integer withi < p < n and

|aNROW(p),i| = MaX;<j<n |Ayrow(jy,il-
STEP 4 If ayrow(p),: = 0 then OUTPUT(‘no unique solution exists’);
STOP.
STEP5 If NROW (i) # NROW (p) then set NCOPY = NROW (i);
NROW (i) = NROW (p);
NROW (p) = NCOPY.
STEP6 For j=i+1,..,ndoSTEPs 7 and 8.

a ~ 2
STEP 7  Setmypow(jyi = — 2
’ ANROW(j),i

STEP 8 Perform (ENROW(j) - mNROW(j),iENROW(i)) - (Enrow()))
STEP 9 If ayrowm)n = 0 then OUTPUT(‘no unique solution exists’);
STOP.
STEP 10 Setx, = ayrowm)n+1/Anrowmn /! Start backward substitution
STEP11 Fori=n—1,.., 1
set x; = (Anrow()n+1 — Lj=i+1 ANROW(D),j%))/ ANROW (0),i
STEP 12 OUTPUT(xy, x5, ..., Xp);
STOP.



Example 3. Apply Gaussian elimination with partial pivoting to solve
E1l: 30.00x; + 591400x, = 591700

E2: 5.291x; — 6.130x, = 46.78

using 4-digit arithmetic with rounding.

Solution:

my, =22 =221 = 01764
a;, 30.00
30.00x, + 591400x, = 591700

—104300x, ~ —104400
Using backward substitution with 4-digit arithmetic leads to x;, = —10.00, x, = 1.001.

Scaled Partial Pivoting
o |f there are large variations in magnitude of the elements within a row, scaled partial pivoting should be used.

e Define a scale factor s; for each row

Si = 1max |aij|
<jsn
e Atstep i, find p (the element which will be used as pivot) such that
% = MaXj<k<n IC;—"" and interchange the rows (E;) < (E,)
14 k
NOTE: The effect of scaling is to ensure that the largest element in each row has a relative magnitude of 1 before the
comparison for row interchange is performed.

Example 3. Apply Gaussian elimination with scaled partial pivoting to solve
E1:  30.00x; +591400x, = 591700

E2: 5.291x; — 6.130x, = 46.78
using 4-digit arithmetic with rounding.
Solution:

s; = 591400

s, =6.130



Consequently

laal _ 3000 _ 5 ci73 5 10-4
s; 591400
lay;| 5.291
= = 0.8631
s,  6.130

5.291 should be used as pivot element. So (E;) < (E3)
5.291x; — 6.130x, = 46.78
30.00x; + 591400x, = 591700

x, = 10.00, x, = 1.000.

Solve

Gaussian Elimination with Scaled Partial Pivoting (Algorithm 6.3)
The only steps in Alg. 6.3 that differ from those of Alg. 6.2 are:
STEP1 Fori=1,..,nsets; = max;cj<p |a;|;
If s; = 0 then OUTPUT(‘no unique solution exists’);
STOP.
set NROW(i)=i.
STEP2Fori=1,..,n—1do STEPs3-6
STEP 3 Let p be the smallest integer with i < p < n and

|aNROW(p),i| — max lanrow (j,il
— = isjsn o

SNROW (p) SNROW ()



