7.6 The Conjugate Gradient Method

Assumption: Ax = b, A is positive definite.

Definition: Inner production of vectors x and y is $\langle x, y \rangle = x^t y$. Let A be positive definite, $\langle x, Ay \rangle = x^t Ay = x^t A^t y = (Ax)^t y = \langle Ax, y \rangle$.

Definition: A quadratic form is a scale, quadratic function of a vector with the form

$$f(\boldsymbol{x}) = \frac{1}{2}\boldsymbol{x}^{t}A\boldsymbol{x} - \boldsymbol{b}^{t}\boldsymbol{x} + c$$

where A is a matrix, \boldsymbol{x} and \boldsymbol{b} are vectors, and \boldsymbol{c} is a scalar constant.

Example. Let
$$A = \begin{bmatrix} 3 & 2 \\ 2 & 6 \end{bmatrix}$$
, $\boldsymbol{b} = \begin{bmatrix} 2 \\ -8 \end{bmatrix}$, $\boldsymbol{c} = 0$. The solution \boldsymbol{x} to $A\boldsymbol{x} = \boldsymbol{b}$ is $\boldsymbol{x} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}$

Figure: The graph of a quadratic form f(x). The minimum point of this surface is the solution to Ax = b.

The gradient of a quadratic form is defined to be

$$f'(\mathbf{x}) = \begin{bmatrix} \frac{\partial f(\mathbf{x})}{\partial x_1} \\ \vdots \\ \frac{\partial f(\mathbf{x})}{\partial x_n} \end{bmatrix}$$
$$f'(\mathbf{x}) = \frac{1}{2}A^t\mathbf{x} + \frac{1}{2}A\mathbf{x} - \mathbf{b}$$

If A is symmetric, $f'(\mathbf{x})$ reduces to $f'(\mathbf{x}) = A\mathbf{x} - \mathbf{b}$.

Therefore, the solution to Ax = b is a critical point of f(x).

Theorem. The vector x^* is a solution to the positive definite linear system Ax = b if and only if x^* produces the minimal value of $g(x) = \langle x, Ax \rangle - 2 \langle x, b \rangle$.

Proof Let x and $v \neq 0$ be fixed vectors and t a real number variable.

$$g(x + tv) = < x + tv, A(x + tv) > -2 < x + tv, b >$$

= < x, Ax > -2 < x, b > +2t < v, Ax > -2t < v, b > +t² < v, Av >
So $g(x + tv) = g(x) - 2t < v, b - Ax > +t2 < v, Av >$

Define h(t) = g(x + tv)

Then h(t) assumes a minimal value when h'(t) = 0.

$$h'(t) = -2 < v, b - Ax > +2t < v, Av >$$

The **minimum** occurs when $\hat{t} = \frac{\langle v, b - Ax \rangle}{\langle v, Av \rangle}$

$$h(\hat{t}) = g(\boldsymbol{x} + \hat{t}\boldsymbol{v}) = g(\boldsymbol{x}) - \frac{\langle \boldsymbol{v}, \boldsymbol{b} - A\boldsymbol{x} \rangle^2}{\langle \boldsymbol{v}, A\boldsymbol{v} \rangle}$$

For any vector $v \neq 0$, we have $g(x + \hat{t}v) < g(x)$ unless $\langle v, b - Ax \rangle = 0$. Suppose x^* satisfies $Ax^* = b$, then $\langle v, b - Ax^* \rangle = 0$ for any v. Thus x^* minimizes g(x).

On the other hand, suppose that x^* is a vector minimizes g(x). Then for any vector v, $g(x^* + \hat{t}v) \ge g(x^*)$. Thus $\langle v, b - Ax^* \rangle = 0$. This implies that $b - Ax^* = 0$.

The Method of Steepest Descent

a) Start with an arbitrary initial guess $x^{(0)}$ to the solution x^* to Ax = bb) Let $v^{(1)} = r^{(0)} = b - Ax^{(0)}$.

Compute

$$t_{1} = \frac{\langle \boldsymbol{v}^{(1)}, \boldsymbol{b} - A\boldsymbol{x}^{(0)} \rangle}{\langle \boldsymbol{v}^{(1)}, A\boldsymbol{v}^{(1)} \rangle}$$
$$\boldsymbol{x}^{(1)} = \boldsymbol{x}^{(0)} + t_{1}\boldsymbol{v}^{(1)}$$

Remark: the gradient of g(x) is $\nabla g(x) = 2(Ax - b) = -2r$. The direction of greatest decrease in the value of g(x) is $-\nabla g(x)$.

c) $v^{(2)} = r^{(1)} = b - Ax^{(1)}$

$$t_{2} = \frac{\langle \boldsymbol{v}^{(2)}, \boldsymbol{b} - A\boldsymbol{x}^{(1)} \rangle}{\langle \boldsymbol{v}^{(2)}, A\boldsymbol{v}^{(2)} \rangle}$$
$$\boldsymbol{x}^{(2)} = \boldsymbol{x}^{(1)} + t_{2}\boldsymbol{v}^{(2)}$$

d) Repeat the above process.

Remark: The Method of Steepest Descent does not lead to fastest convergence.

Definition: A set of nonzero vectors $\{v^{(1)}, ..., v^{(n)}\}$ that satisfy $\langle v^{(i)}, Av^{(j)} \rangle = 0$, if $i \neq j$ is said to be A-orthogonal.

Theorem. Let $\{v^{(1)}, ..., v^{(n)}\}$ be an A-orthogonal set of nonzero vectors associated with the positive definite matrix *A*, and let $x^{(0)}$ be arbitrary. Define

$$t_{k} = \frac{\langle v^{(k)}, b - Ax^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}$$
$$x^{(k)} = x^{(k-1)} + t_{1}v^{(k)}$$

for k = 1, 2, ..., n. Then, assuming exact arithmetic, $A\mathbf{x}^{(n)} = b$.

Conjugate Gradient Method

Theorem. The residual vectors $\mathbf{r}^{(k)}$, where k = 1, 2, ..., n, for a conjugate direction method, satisfy the equation $\langle \mathbf{r}^{(k)}, \mathbf{v}^{(j)} \rangle = 0$, for each j = 1, 2, ..., k.

Algorithm:

a) Start with an arbitrary initial guess $x^{(0)}$ to the solution x^* to Ax = bSet

$$r^{(0)} = b - Ax^{(0)}$$

 $v^{(1)} = r^{(0)}$

4

b) for k = 1, 2, 3, ...

$$t_{k} = \frac{\langle \mathbf{r}^{(k-1)}, \mathbf{r}^{(k-1)} \rangle}{\langle \mathbf{v}^{(k)}, A\mathbf{v}^{(k)} \rangle}$$
$$\mathbf{x}^{(k)} = \mathbf{x}^{(k-1)} + t_{k}\mathbf{v}^{(k)}$$
$$\mathbf{r}^{(k)} = \mathbf{r}^{(k-1)} - t_{k}A\mathbf{v}^{(k)}$$
$$s_{k} = \frac{\langle \mathbf{r}^{(k)}, \mathbf{r}^{(k)} \rangle}{\langle \mathbf{r}^{(k-1)}, \mathbf{r}^{(k-1)} \rangle}$$
$$\mathbf{v}^{(k+1)} = \mathbf{r}^{(k)} + s_{k}\mathbf{v}^{(k)}$$

Preconditioning

Motivation: When A is ill-conditioned, conjugate gradient method is highly sensitive to rounding errors. Instead of solving $A\mathbf{x} = \mathbf{b}$ directly, consider to solve $\tilde{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$, where $\tilde{A} = C^{-1}A(C^{-1})^t$, $\tilde{\mathbf{x}} = C^t\mathbf{x}$ and $\tilde{\mathbf{b}} = C^{-1}\mathbf{b}$. Here C is a nonsingular matrix.

To see $A\mathbf{x} = \mathbf{b}$ and $\tilde{A}\tilde{\mathbf{x}} = \tilde{\mathbf{b}}$ are equivalent,

$$\widetilde{A}\widetilde{\boldsymbol{x}} = C^{-1}A(C^{-1})^{t}C^{t}\boldsymbol{x} = C^{-1}A\boldsymbol{x} = C^{-1}\boldsymbol{b}.$$

Preconditioned Conjugate Gradient Method

Since
$$\widetilde{\boldsymbol{x}}^{(k)} = C^t \boldsymbol{x}^{(k)}$$
 and $\widetilde{\boldsymbol{r}}^{(k)} = \widetilde{\boldsymbol{b}} - \widetilde{A} \widetilde{\boldsymbol{x}}^{(k)} = C^{-1} \boldsymbol{r}^{(k)}$
Let $\widetilde{\boldsymbol{v}}^{(k)} = C^t \boldsymbol{v}^{(k)}$ and $\boldsymbol{w}^{(k)} = C^{-1} \boldsymbol{r}^{(k)}$

A) Start with an arbitrary initial guess $x^{(0)}$ to the solution x^* to Ax = bSet

$$r^{(0)} = b - Ax^{(0)}$$

 $w^{(0)} = C^{-1}r^{(0)}$
 $v^{(1)} = r^{(0)}$

B) for k = 1, 2, 3, ...

$$\tilde{t}_k = \frac{\langle w^{(k-1)}, w^{(k-1)} \rangle}{\langle v^{(k)}, Av^{(k)} \rangle}$$

$$\boldsymbol{x}^{(k)} = \boldsymbol{x}^{(k-1)} + \tilde{t}_k \boldsymbol{v}^{(k)}$$
$$\boldsymbol{r}^{(k)} = \boldsymbol{r}^{(k-1)} - \tilde{t}_k A \boldsymbol{v}^{(k)}$$

$$\tilde{s}_{k} = \frac{\langle w^{(k)}, w^{(k)} \rangle}{\langle w^{(k-1)}, w^{(k-1)} \rangle}$$
$$v^{(k+1)} = C^{-1}w^{(k)} + \tilde{s}_{k}v^{(k)}$$