7.6 The Conjugate Gradient Method
Assumption: Ax = b, A is positive definite.
Definition: Inner production of vectors x and y is < x,y >= xty.
Let A be positive definite, < x, Ay >= x'Ay = xtAly = (Ax)ty =< Ax,y >.

Definition: A quadratic form is a scale, quadratic function of a vector with the form
1
flx) = ExtAx —bix+c

where A is a matrix, x and b are vectors, and c is a scalar constant.
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Example. Let A = [ ] b = [—28] ¢ = 0.Thesolutionxto Ax =bisx = [_22]

Figure: The graph of a quadratic form f(x). The minimum point of this
surface is the solution to Ax = b.




The gradient of a quadratic form is defined to be
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If A is symmetric, f'(x) reducesto f'(x) = Ax — b.
Therefore, the solution to Ax = b is a critical point of f(x).

Theorem. The vector x* is a solution to the positive definite linear system Ax = b if and only if x* produces
the minimal value of g(x) =< x,Ax > -2 < x,b >.

Proof Letx and v # 0 be fixed vectors and t a real number variable.
gx+tv) =<x+tv,Alx+tv) > -2<x+tv,b>
=<x,Ax>-2<x,b>+2t <v,Ax > -2t <v,b> +t?> < v,Av >
So gx+tv) =gx)—2t<v,b—Ax > +t?> < v,Av >
Define h(t) = g(x + tv)
Then h(t) assumes a minimal value when h'(t) = 0.

h(t)=—-2<wv,b—Ax > +2t <v,Av >
<v,b—Ax>

The minimum occurs when £ =
<v,Av>



<v,b— Ax >*
< v Av >
For any vector v # 0, we have g(x + tv) < g(x) unless < v, b — Ax >= 0.
Suppose x* satisfies Ax* = b, then < v,b — Ax* >= 0 for any v. Thus x* minimizes g(x).

h(t) = glx +tv) = g(x) -

On the other hand, suppose that x* is a vector minimizes g(x). Then for any vector v, g(x* + tv) = g(x*).
Thus < v,b — Ax* >= 0. This implies that b — Ax™ = 0.

The Method of Steepest Descent
a) Start with an arbitrary initial guess x(® to the solution x* to Ax = b
b) Let v = (O = p — Ax(®.
Compute
<v®D p— Ax® >
b= < v ApD >
x@ = x© 4 ¢, p®
Remark: the gradient of g(x) is Vg(x) = 2(Ax — b) = —2r. The direction of greatest decrease in the value of
g(x) is —=Vg(x).
c) v® =7 = p — AxD

<v@ b—Ax® >
N OW T OES
x(z) - x(l) + tzv(z)

d) Repeat the above process.



Remark: The Method of Steepest Descent does not lead to fastest convergence.

Definition: A set of nonzero vectors {vV, ..., v} that satisfy < v®, AvY) >=0, if i#j
is said to be A-orthogonal.

Theorem. Let {v™,...,v™} be an A-orthogonal set of nonzero vectors associated with the positive definite
matrix 4, and let x(®) be arbitrary. Define

< v p— Ax*1 >
T, Ap® >

200 = x(k=1) 4 ¢ 1,00

for k = 1,2, ...,n. Then, assuming exact arithmetic, Ax(™ = b.

Conjugate Gradient Method

Theorem. The residual vectors ™), where k = 1,2, ...,n, for a conjugate direction method, satisfy the
equation < r®,pU) >=0, foreach j =1,2,..,k.

Algorithm:
a) Start with an arbitrary initial guess x(® to the solution x*to Ax = b
Set
r® =p — Ax®
D) = (0



b) for k = 1,2,3, ...

Preconditioning

< T(k_l), r(k—l) >

=T 40 >
x(k) — x(k_l) + tkv(k)

r(k) = r(k_l) — tkAv(k)

< r(k),r(k) >

Sk T2 P Ue—1) (k-1) >

v(k+1) = r(k) + Skv(k)

Motivation: When A is ill-conditioned, conjugate gradient method is highly sensitive to rounding errors.

Instead of solving Ax = b directly, consider to solveA¥ = b, where A = C"*A(C~ 1),

Here C is a nonsingular matrix.

To see Ax = b and AX = b are equivalent,

AX = CTTA(CTHICtx = C™1Ax = C™1b.

Preconditioned Conjugate Gradient Method
Since ¥K) = ctx(®) and ¥ = p — Ax®) = ¢~ 1 *)

Let 75 = cty® and wk = 1)

~

X =

Ctxand b = C~1b.



A) Start with an arbitrary initial guess x(°) to the solution x* to Ax = b
Set
r©® =p — Ax®
w(© — =15:(0)
(D) = (0
B) fork =1,2,3, ..
< wk=D -1 5

=T v S

x(k) = x(k_l) -|_ fkv(k)

r(k) = r(k_l) — kav(k)

< W(k),w(k) >
< wk—1) =1 >

v(k'l'l) — C_lw(k) + §kv(k)

Sk



