1.1 Review of Calculus

Limits and Continuity

Definition

A function f defined on a set X of real numbers has the *limit* L at x_0 , written $\lim_{x\to x_0} f(x) = L$, if, given any real number $\varepsilon > 0$, there exists a real number $\delta > 0$ such that

 $|f(x) - L| < \varepsilon$, whenever $x \in X$ and $0 < |x - x_0| < \delta$.

Definition

Let f be a function defined on a set X of real numbers and $x_0 \in X$. Then f is *continuous* at x_0 if

$$\lim_{x \to x_0} f(x) = f(x_0).$$

The function f is continuous on the set X if it is continuous at each number in X.

Limits of Sequence

Definition

Let $\{x_n\}_{n=1}^{\infty}$ be an infinite sequence of real of complex numbers. The sequence $\{x_n\}_{n=1}^{\infty}$ has the *limit* x is, for any $\varepsilon > 0$, there exists a positive integer $N(\varepsilon)$ such that $|x_n - x| < \varepsilon$, whenever $n > N(\varepsilon)$. The notation

$$\lim_{n \to \infty} x_n = x, \text{ or } x_n \to x \text{ as } n \to \infty,$$

means that the sequence $\{x_n\}_{n=1}^{\infty}$ converges to x.

Theorem

If f is a function defined on a set X of real numbers and $x_0 \in X$, then the following statements are equivalent:

2 If the sequence
$$\{x_n\}_{n=1}^{\infty}$$
 in X converges to x_0 , then $\lim_{n\to\infty} f(x_n) = f(x_0)$.

Derivative

Definition

Let f be a functions defined in an open interval containing x_0 . The function f is *differentiable* at x_0 if

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. The number $f'(x_0)$ is called the *derivative* of f at x_0 . A function that has a derivative at each number in a set X is *differentiable* on X.

• Theorem

If the function f is differentiable at x_0 , then f is continuous at x_0 .

C[a, b]: set of all functions continuous on interval [a, b].

Rolle's Theorem

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If f(a) = f(b), then a number c in (a, b) exists with f'(c) = 0.

Mean Value Theorem

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c in (a, b) exists with $f'(c) = \frac{f(b) - f(a)}{b - a}$.

• Extreme Value Theorem

If $f \in C[a, b]$, then $c_1, c_2 \in [a, b]$ exist with $f(c_1) \leq f(x) \leq f(c_2)$ for all $x \in [a, b]$. Additionally, if f is differentiable on (a, b), then the numbers c_1 and c_2 occur either at the endpoints of [a, b] or where f' is zero.

Taylor's Theorem

Suppose $f \in C^n[a, b]$, that $f^{(n+1)}$ exists on [a, b] and $x_0 \in [a, b]$. For every $x \in [a, b]$, there exists a number $\xi(x)$ between x_0 and x with $f(x) = P_n(x) + R_n(x)$,

Where

 $P_n(x)$

$$= f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$

= $\sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!}(x - x_0)^k$

and

$$R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}$$

- $P_n(x)$ nth Taylor polynomial
- $R_n(x)$ remainder term (truncation error)
- When $x_0 = 0$, $P_n(x)$ is also called Maclaurin polynomial

Example 3. Let f(x) = cos(x) and $x_0 = 0$. Determine

- (a) the 2nd Taylor polynomial $P_2(x)$ for f about x_0 , find a bound for the accuracy of the approximation;
- (b) the 3rd Taylor polynomial $P_3(x)$ for f about x_0 , find a bound for the accuracy of the approximation;
- (c) use the third Taylor polynomial and its remainder term found in (b) to approximate $\int_0^{0.1} \cos(x) dx$.

Exercise 1.1.18. Let $f(x) = (1 - x)^{-1}$ and $x_0 = 0$. Find the nth Taylor polynomial $P_n(x)$ for f(x) about x_0 . Find a necessary n for $P_n(x)$ to approximate f(x) to within 10^{-6} on [0, 0.5].