
1.2 Round-off Errors and Computer
Arithmetic (binary numbers)

1

• In a computer model, a memory storage unit –
word is used to store a number.

• A word has only a finite number of bits.
• These facts imply:

1. Only a small set of real numbers (rational numbers)
can be accurately represented on computers.

2. (Rounding) errors are inevitable when computer
memory is used to represent real, infinite precision
numbers.

3. Small rounding errors can be amplified with careless
treatment.

So, do not be surprised that (9.4)10= (1001.0110)2

can not be represented exactly on computers.

2

IEEE floating point numbers
• Binary number: (… 𝑏𝑏3𝑏𝑏2𝑏𝑏1𝑏𝑏0.𝑏𝑏−1𝑏𝑏−2𝑏𝑏−3 …)2
• Binary to decimal: (… 𝑏𝑏3𝑏𝑏2𝑏𝑏1𝑏𝑏0.𝑏𝑏−1𝑏𝑏−2𝑏𝑏−3 …)2=

(… 𝑏𝑏323 +𝑏𝑏2 22 + 𝑏𝑏121 + 𝑏𝑏020 + 𝑏𝑏−12−1 + 𝑏𝑏−22−2 + 𝑏𝑏−32−3 …)10
• Double precision (long real) format

– Example: “double” in C
• A 64-bit (binary digit) representation

– 1 sign bit (s), 11 exponent bits – characteristic (c), 52 binary fraction bits –
mantissa (f)

Represented number (Normalized IEEE floating point number):
−1 𝑠𝑠2𝑐𝑐−1023(1 + 𝑓𝑓)

1023 is called exponent bias
3

0 ≤ 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐 ≤ 211 − 1 = 2047
• Smallest normalized positive number on machine has
𝑠𝑠 = 0, 𝑐𝑐 = 1, 𝑓𝑓 = 0: 2−1022 � (1 + 0) ≈ 0.22251 ×
10−307

• Largest normalized positive number on machine has
𝑠𝑠 = 0, 𝑐𝑐 = 2046, 𝑓𝑓 = 1 − 2−52: 21023 � (1 + 1 −
2−52) ≈ 0.17977 × 10309

• Underflow: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 < 2−1022 � (1 + 0)
• Overflow: 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 > 21023 � (2 − 2−52)
• Machine epsilon 𝜖𝜖𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 2−52: this is the

difference between 1 and the smallest machine
floating point number greater than 1.

4

• Positive zero: 𝑠𝑠 = 0, 𝑐𝑐 = 0, 𝑓𝑓 = 0.
• Negative zero: 𝑠𝑠 = 1, 𝑐𝑐 = 0, 𝑓𝑓 = 0.
• Inf: 𝑠𝑠 = 0, 𝑐𝑐 = 2047, 𝑓𝑓 = 0
• NaN: 𝑠𝑠 = 0, 𝑐𝑐 = 2047, 𝑓𝑓 ≠ 0

5

	1.2 Round-off Errors and Computer Arithmetic (binary numbers)
	Slide Number 2
	IEEE floating point numbers
	Slide Number 4
	Slide Number 5

