1.3 Algorithms and Convergence

Pseudocode

Example. Compute $\sum_{i=1}^{N} x_i$ INPUT N, x_1, x_2, \dots, x_N . OUTPUT $SUM = \sum_{i=1}^{N} x_i$

Step 1 Set SUM = 0. // Initialize accumulator Step 2 For i = 1, 2, ... N doset $SUM = SUM + x_i$. // add next term Step 3 OUTPUT(SUM); STOP.

Characterizing Algorithms

Error Growth

Suppose $E_0 > 0$ denotes an initial error, and E_n is the error after n subsequent operations.

- 1. If $E_n \approx CnE_0$, where *C* is a const. independent of *n*: the growth of error is **linear**.
- 2. If $E_n \approx C^n E_0$, where C > 1: the growth of error is **exponential.**

Remark: linear growth is unavoidable; exponential growth must be avoided.

Stability

- Stable algorithm: small changes in the initial data produce small changes in the final result
- Unstable or conditionally stable algorithm: small changes in all or some initial data produce large errors

Definition 1.18 Rate of convergence for sequences

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence converging to 0, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to a number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K |\beta_n|,$$
 for large n ,

then $\{\alpha_n\}_{n=1}^{\infty}$ is said to converges to α with rate of convergence $O(\beta_n)$, indicated by $\alpha_n = \alpha + O(\beta_n)$.

Typical
$$\{\beta_n\}_{n=1}^{\infty}$$
:
 $\beta_n = \frac{1}{n^p}$ for some $p > 0$

Definition 1.19 Rate of convergence for functions

Suppose that $\lim_{h\to 0} G(h) = 0$ and $\lim_{h\to 0} F(h) = L$.

If a positive constant K exists with

- $|F(h) L| \le K|G(h)|$, for sufficiently small h,
- then F(h) = L + O(G(h)).

Typical
$$G(h)$$
:
 $G(h) = h^{P}$ for some $p > 0$