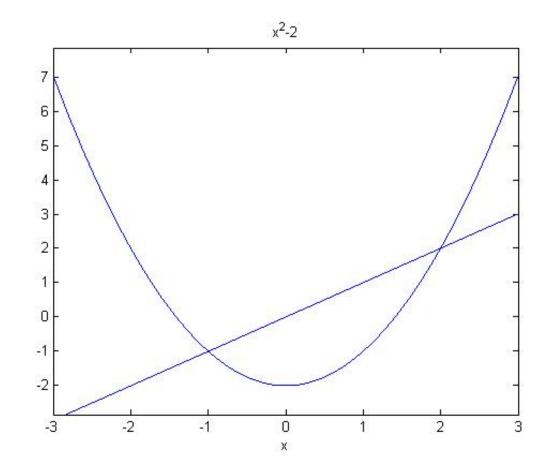
2.2 Fixed-Point Iteration

Example 2.2.1.

Determine the fixed points of the function $g(x) = x^2 - 2$.



Sufficient conditions for existence and uniqueness of a fix point

Theorem 2.3. Existence and Uniqueness Theorem

- a. If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has at least one fixed-point in [a, b]
- b. If, in addition, g'(x) exists on (a, b) and a positive constant k < 1 exists with

 $|g'(x)| \le k$, for all $x \in (a, b)$,

then there is **exactly one** fixed point in [a, b].

Note:

- 1. $g \in C[a, b] g$ is continuous in [a, b]
- 2. $g(x) \in C[a, b] g$ takes values in [a, b]

Example 3. Show that **Theorem 2.3** does not ensure a unique fixed point of $g(x) = 3^{-x}$ on the interval [0, 1], even through a unique fixed point on this interval does exist.

Solution: $g'(x) = -3^{-x} \ln(3)$.

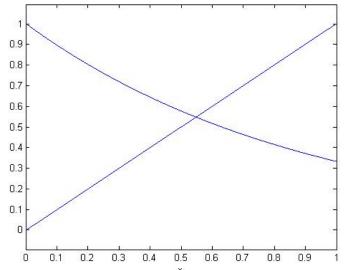
g'(x) < 0 on [0,1]. So g is strictly decreasing on [0,1].

$$g(1) = \frac{1}{3} \le g(x) \le g(0) = 1$$
, for $0 \le x \le 1$.

Part a of Theorem 2.3 ensures there is at least one fixed point.

Since $|g'(0)| = |-\ln(3)|A \approx 1.099$, $|g'(x)| \le 1$ on (0,1).

Since Part b of **Theorem 2.3** is NOT satisfied, **Theorem 2.3** can not determine uniqueness.



Fixed-Point Iteration Algorithm

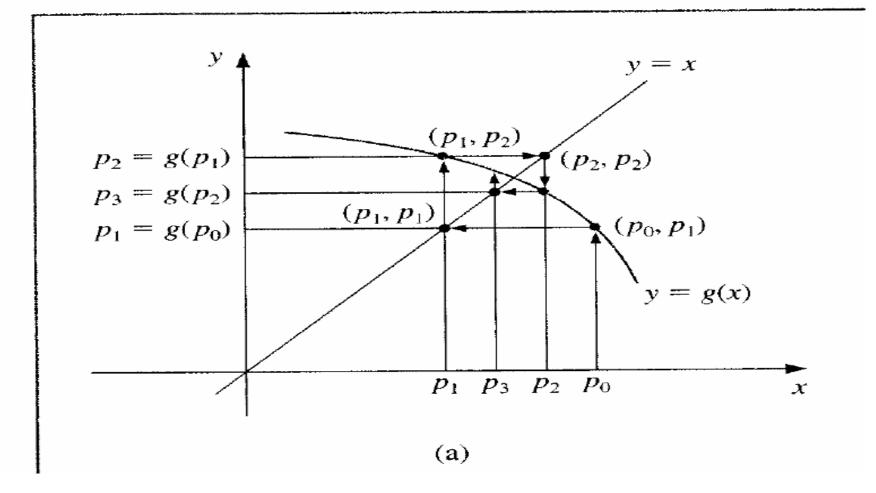
- For initial p_0 , generate sequence $\{p_n\}_{n=0}^{\infty}$ by $p_n = g(p_{n-1})$.
- If the sequence converges to p, then $p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g\left(\lim_{n \to \infty} p_{n-1}\right) = g(p)$

A Fixed-Point Problem

Determine the fixed point of the function $g(x) = \cos(x)$ for $x \in [-0.1, 1.8]$.

Remark: See also the Matlab code.

The Algorithm



INPUT **p0**; tolerance **TOL**; maximum number of iteration **N0**. OUTPUT solution **p** or message of failure STEP1 Set i = 1. // init. counter While i \leq N0 do Steps 3-6 STEP2 STEP3 Set **p**= g(**p0**). STEP4 If **|p-p0| < TOL** then OUTPUT(p); // successfully found the solution STOP. STEP5 Set i = i + 1. STEP6 Set **p0** = **p**. // update **p0** OUTPUT("The method failed after **N0** iterations"); STEP7 STOP.

Convergence

Fixed-Point Theorem 2.4

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all $x \in [a, b]$. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g'(x)| \le k$$
, for all $x \in (a, b)$

Then, for any number p_0 in [a, b], the sequence defined by

$$p_n = g(p_{n-1})$$

converges to the unique fixed point p in [a, b].

Corollary 2.5

If g satisfies the above hypotheses, then bounds for the error involved using p_n to approximating p are given by

$$p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$
$$|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|$$

Illustration Equation $x^3 + 4x^2 - 10 = 0$ has a unique root in [1,2]. Use algebraic manipulation to obtain fixed-point iteration function g to solve this root-finding problem.