
2.4 Error Analysis for Iterative 
Methods
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Definition
• Order of Convergence
Suppose {𝑝𝑝𝑛𝑛}𝑛𝑛=0∞ is a sequence that converges to 𝑝𝑝 with 𝑝𝑝𝑛𝑛 ≠ 𝑝𝑝 for 
all 𝑛𝑛. If positive constants 𝜆𝜆 and 𝛼𝛼 exist with 

lim
𝑛𝑛→∞

|𝑝𝑝𝑛𝑛+1 − 𝑝𝑝|
|𝑝𝑝𝑛𝑛 − 𝑝𝑝|𝛼𝛼

= 𝜆𝜆

then {𝑝𝑝𝑛𝑛}𝑛𝑛=0∞ is said to converges to 𝒑𝒑 of order 𝜶𝜶 with asymptotic 
error constant 𝝀𝝀.
An iterative technique 𝑝𝑝𝑛𝑛 = 𝑔𝑔(𝑝𝑝𝑛𝑛−1) is said to be of order 𝜶𝜶 if the 
sequence {𝑝𝑝𝑛𝑛}𝑛𝑛=0∞ converges to the solution 𝑝𝑝 = 𝑔𝑔(𝑝𝑝) of order 𝜶𝜶.
• Special cases

1. If 𝛼𝛼 = 1 (and 𝜆𝜆 < 1), the sequence is linearly convergent
2. If 𝛼𝛼 = 2, the sequence is quadratically convergent
3. If 𝛼𝛼 < 1, the sequence is sub-linearly convergent (undesirable, very slow)
4. If 𝛼𝛼 = 1 and 𝜆𝜆 = 0 or 1 < 𝛼𝛼 < 2, the sequence is super-linearly convergent 

• Remark: 
High order (𝛼𝛼) ⟹ faster convergence (more desirable)
𝜆𝜆 is less important than the order (𝛼𝛼)
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Linear vs. Quadratic
Suppose we have two sequences converging to 0 with:

lim
𝑛𝑛→∞

|𝑝𝑝𝑛𝑛+1|
|𝑝𝑝𝑛𝑛 |

= 0.9, lim
𝑛𝑛→∞

|𝑞𝑞𝑛𝑛+1|
|𝑞𝑞𝑛𝑛 |2

= 0.9

Roughly we have:
𝑝𝑝𝑛𝑛 ≈ 0.9 𝑝𝑝𝑛𝑛−1 ≈ ⋯ ≈ 0.9𝑛𝑛 𝑝𝑝0 ,

𝑞𝑞𝑛𝑛 ≈ 0.9|𝑞𝑞𝑛𝑛−1|2 ≈ ⋯ ≈ 0.92𝑛𝑛−1 𝑞𝑞0 ,
Assume 𝑝𝑝0 = 𝑞𝑞0 = 1
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Fixed Point Convergence
• Theorem 2.8

Let 𝑔𝑔 ∈ 𝐶𝐶[𝑎𝑎, 𝑏𝑏] be such that 𝑔𝑔 𝑥𝑥 ∈ [𝑎𝑎, 𝑏𝑏] for all 𝑥𝑥 ∈
𝑎𝑎, 𝑏𝑏 . Suppose 𝑔𝑔𝑔 is continuous on (𝑎𝑎, 𝑏𝑏) and that 0 <
𝑘𝑘 < 1 exists with |𝑔𝑔𝑔(𝑥𝑥)| ≤ 𝑘𝑘 for all 𝑥𝑥 ∈ 𝑎𝑎, 𝑏𝑏 .
If 𝑔𝑔𝑔(𝑝𝑝) ≠ 0, then for all number 𝑝𝑝0 in [𝑎𝑎, 𝑏𝑏], the 
sequence 𝑝𝑝𝑛𝑛 = 𝑔𝑔(𝑝𝑝𝑛𝑛−1) converges only linearly to the 
unique fixed point 𝑝𝑝 in 𝑎𝑎, 𝑏𝑏 .

• Proof:
𝑝𝑝𝑛𝑛+1 − 𝑝𝑝 = 𝑔𝑔 𝑝𝑝𝑛𝑛 − 𝑔𝑔 𝑝𝑝 = 𝑔𝑔′ 𝜉𝜉𝑛𝑛 𝑝𝑝𝑛𝑛 − 𝑝𝑝 , 𝜉𝜉𝑛𝑛 ∈ (𝑝𝑝𝑛𝑛,𝑝𝑝)

Since {𝑝𝑝𝑛𝑛}𝑛𝑛=0∞ converges to 𝑝𝑝, {𝜉𝜉𝑛𝑛}𝑛𝑛=0∞ converges to 𝑝𝑝.
Since 𝑔𝑔𝑔 is continuous, lim

𝑛𝑛→∞
𝑔𝑔𝑔(𝜉𝜉𝑛𝑛) = 𝑔𝑔𝑔(𝑝𝑝)

lim
𝑛𝑛→∞

|𝑝𝑝𝑛𝑛+1−𝑝𝑝|
|𝑝𝑝𝑛𝑛 −𝑝𝑝|

= lim𝑛𝑛→∞ 𝑔𝑔′ 𝜉𝜉𝑛𝑛 = |𝑔𝑔𝑔(𝑝𝑝)| ⟹ linear convergence
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Speed up Convergence of Fixed Point Iteration

• If we look for faster convergence methods, we must 
have  𝑔𝑔′ 𝑝𝑝 = 0

• Theorem 2.9
Let 𝑝𝑝 be a solution of 𝑥𝑥 = 𝑔𝑔 𝑥𝑥 . Suppose 𝑔𝑔′ 𝑝𝑝 = 0 and 𝑔𝑔𝑔𝑔
is continuous with 𝑔𝑔′′ 𝑥𝑥 < 𝑀𝑀 on an open interval 𝐼𝐼
containing 𝑝𝑝. Then there exists a 𝛿𝛿 > 0 such that for 𝑝𝑝0 ∈
𝑝𝑝 − 𝛿𝛿, 𝑝𝑝 + 𝛿𝛿 , the sequence defined by 𝑝𝑝𝑛𝑛+1 = 𝑔𝑔 𝑝𝑝𝑛𝑛 , 

when 𝑛𝑛 ≥ 0, converges at least quadratically to 𝑝𝑝. For 
sufficiently large 𝑛𝑛

𝑝𝑝𝑛𝑛+1 − 𝑝𝑝 <
𝑀𝑀
2

|𝑝𝑝𝑛𝑛 − 𝑝𝑝|2

Remark:
Look for quadratically convergent fixed point methods which 
𝑔𝑔 𝑝𝑝 = 𝑝𝑝 and 𝑔𝑔′ 𝑝𝑝 = 0.
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Newton’s Method as Fixed-Point Problem

Solve 𝑓𝑓 𝑥𝑥 = 0 by fixed point method. We write the problem as 
an equivalent fixed point problem:

𝑔𝑔 𝑥𝑥 = 𝑥𝑥 − 𝜙𝜙 𝑥𝑥 𝑓𝑓 𝑥𝑥 solve 𝑥𝑥 = 𝑔𝑔 𝑥𝑥 ,𝜙𝜙 𝑥𝑥 is differentiable

Newton’s method can be derived by the above form:
Find differentiable 𝜙𝜙 𝑥𝑥 with 𝑔𝑔′ 𝑝𝑝 = 0 when 𝑓𝑓 𝑝𝑝 = 0.

𝑔𝑔′ 𝑥𝑥 =
𝑑𝑑
𝑑𝑑𝑑𝑑

𝑥𝑥 − 𝜙𝜙 𝑥𝑥 𝑓𝑓 𝑥𝑥 = 1 − 𝜙𝜙′𝑓𝑓 − 𝜙𝜙𝑓𝑓′

Use 𝑔𝑔′ 𝑝𝑝 = 0 when 𝑓𝑓 𝑝𝑝 = 0
𝑔𝑔′ 𝑝𝑝 = 1 − 𝜙𝜙′ 𝑝𝑝 � 0 − 𝜙𝜙 𝑝𝑝 𝑓𝑓′ 𝑝𝑝 = 0

𝜙𝜙 𝑝𝑝 = 1/𝑓𝑓𝑓(𝑝𝑝)
This gives Newton’s method

𝑝𝑝𝑛𝑛+1 = 𝑔𝑔 𝑝𝑝𝑛𝑛 = 𝑝𝑝𝑛𝑛 −
𝑓𝑓(𝑝𝑝𝑛𝑛)
𝑓𝑓𝑓(𝑝𝑝𝑛𝑛) 6



Example Fixed-point method and Newton’s method 
are used to solve cos 𝑥𝑥 − 𝑥𝑥 = 0 for 𝑥𝑥 ∈ [0,1], 
respectively. Compare the order of convergence of 
these two methods. 
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Multiple Roots
• How to modify Newton’s method when 𝑓𝑓′ 𝑝𝑝 = 0. Here 𝑝𝑝 is 

the root of 𝑓𝑓 𝑥𝑥 = 0.
• Definition 2.10 Multiplicity of a Root

A solution 𝑝𝑝 of 𝑓𝑓 𝑥𝑥 = 0 is a zero of multiplicity 𝑚𝑚 of 𝑓𝑓 if for 
𝑥𝑥 ≠ 𝑝𝑝, we can write 𝑓𝑓 𝑥𝑥 = 𝑥𝑥 − 𝑝𝑝 𝑚𝑚𝑞𝑞 𝑥𝑥 , where 
lim
𝑥𝑥→𝑝𝑝

𝑞𝑞(𝑥𝑥) ≠ 0.

• Theorem 2.11
𝑓𝑓 ∈ 𝐶𝐶1[𝑎𝑎, 𝑏𝑏] has a simple zero at 𝑝𝑝 in (𝑎𝑎, 𝑏𝑏) if and only if 
𝑓𝑓 𝑝𝑝 = 0, but 𝑓𝑓𝑓(𝑝𝑝) ≠ 0.

• Theorem 2.12
The function 𝑓𝑓 ∈ 𝐶𝐶𝑚𝑚[𝑎𝑎, 𝑏𝑏] has a zero of multiplicity 𝑚𝑚 at 
point 𝑝𝑝 in (𝑎𝑎, 𝑏𝑏) if and only if 
0 = 𝑓𝑓 𝑝𝑝 = 𝑓𝑓′ 𝑝𝑝 = 𝑓𝑓′′ 𝑝𝑝 = ⋯ = 𝑓𝑓 𝑚𝑚−1 𝑝𝑝 , but 𝑓𝑓 𝑚𝑚 (𝑝𝑝) ≠ 0
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Modified Newton’s Method for Zeroes of Higher 
Multiplicity (𝒎𝒎 > 𝟏𝟏)

Define the new function 𝜇𝜇 𝑥𝑥 = 𝑓𝑓(𝑥𝑥)
𝑓𝑓𝑓(𝑥𝑥)

.

Write 𝑓𝑓 𝑥𝑥 = 𝑥𝑥 − 𝑝𝑝 𝑚𝑚𝑞𝑞(𝑥𝑥), hence

𝜇𝜇 𝑥𝑥 =
𝑓𝑓(𝑥𝑥)
𝑓𝑓𝑓(𝑥𝑥)

= 𝑥𝑥 − 𝑝𝑝
𝑞𝑞 𝑥𝑥

𝑚𝑚𝑚𝑚 𝑥𝑥 + 𝑥𝑥 − 𝑝𝑝 𝑞𝑞′ 𝑥𝑥
Note that 𝑝𝑝 is a simple zero of 𝜇𝜇 𝑥𝑥 .
• Apply Newton’s method to 𝜇𝜇 𝑥𝑥 = 0 to give:

𝑥𝑥 = 𝑔𝑔 𝑥𝑥 ≡ 𝑥𝑥 −
𝜇𝜇 𝑥𝑥
𝜇𝜇′ 𝑥𝑥

= 𝑥𝑥 −
𝑓𝑓 𝑥𝑥 𝑓𝑓′ 𝑥𝑥

𝑓𝑓′ 𝑥𝑥 2 − 𝑓𝑓 𝑥𝑥 𝑓𝑓′′ 𝑥𝑥

• Quadratic convergence: 𝑝𝑝𝑛𝑛+1 = 𝑝𝑝𝑛𝑛 −
𝑓𝑓 𝑝𝑝𝑛𝑛 𝑓𝑓′ 𝑝𝑝𝑛𝑛

𝑓𝑓′ 𝑝𝑝𝑛𝑛 2−𝑓𝑓 𝑝𝑝𝑛𝑛 𝑓𝑓′′ 𝑝𝑝𝑛𝑛
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Drawbacks:
• Compute 𝑓𝑓𝑓𝑓(𝑥𝑥) is expensive
• Iteration formula is more complicated – more 

expensive to compute
• Roundoff errors in denominator – both 𝑓𝑓𝑓(𝑥𝑥)

and 𝑓𝑓(𝑥𝑥) approach zero. 
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