2.4 Error Analysis for Iterative Methods

Definition

• Order of Convergence

Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p with $p_n \neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda$$

then $\{p_n\}_{n=0}^{\infty}$ is said to converges to p of order α with asymptotic error constant λ .

An iterative technique $p_n = g(p_{n-1})$ is said to be of order α if the sequence $\{p_n\}_{n=0}^{\infty}$ converges to the solution p = g(p) of order α .

- Special cases
 - 1. If $\alpha = 1$ (and $\lambda < 1$), the sequence is **linearly convergent**
 - 2. If $\alpha = 2$, the sequence is **quadratically convergent**
 - 3. If $\alpha < 1$, the sequence is **sub-linearly convergent** (undesirable, very slow)
 - 4. If $\alpha = 1$ and $\lambda = 0$ or $1 < \alpha < 2$, the sequence is **super-linearly convergent**

• Remark:

High order $(\alpha) \implies$ faster convergence (more desirable) λ is less important than the order (α)

Linear vs. Quadratic

Suppose we have two sequences converging to 0 with:

$$\lim_{n \to \infty} \frac{|p_{n+1}|}{|p_n|} = 0.9, \qquad \lim_{n \to \infty} \frac{|q_{n+1}|}{|q_n|^2} = 0.9$$

Roughly we have:

$$\begin{split} |p_n| &\approx 0.9 |p_{n-1}| \approx \cdots \approx 0.9^n |p_0|, \\ |q_n| &\approx 0.9 |q_{n-1}|^2 \approx \cdots \approx 0.9^{2^{n-1}} |q_0|, \\ \text{Assume } p_0 &= q_0 = 1 \end{split}$$

n	<i>p</i> _n	<i>q</i> _n
0	1	1
1	0.9	0.9
2	0.81	0.729
3	0.729	0.4782969
4	0.6561	0.205891132094649
5	0.59049	0.0381520424476946
6	0.531441	0.00131002050863762
7	0.4782969	0.00000154453835975
8	0.43046721	0.0000000000021470

Fixed Point Convergence

• Theorem 2.8

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$ for all $x \in [a, b]$. Suppose g' is continuous on (a, b) and that 0 < k < 1 exists with $|g'(x)| \le k$ for all $x \in (a, b)$. If $g'(p) \ne 0$, then for all number p_0 in [a, b], the sequence $p_n = g(p_{n-1})$ converges only **linearly** to the **unique fixed point** p in [a, b].

• Proof:

 $p_{n+1} - p = g(p_n) - g(p) = g'(\xi_n)(p_n - p), \xi_n \in (p_n, p)$ Since $\{p_n\}_{n=0}^{\infty}$ converges to $p, \{\xi_n\}_{n=0}^{\infty}$ converges to p. Since g' is continuous, $\lim_{n \to \infty} g'(\xi_n) = g'(p)$ $\lim_{n \to \infty} \frac{|p_{n+1}-p|}{|p_n-p|} = \lim_{n \to \infty} \left|g'(\xi_n)\right| = |g'(p)| \Rightarrow \text{linear convergence}$ Speed up Convergence of Fixed Point Iteration

• If we look for faster convergence methods, we must have g'(p) = 0

• Theorem 2.9

Let p be a solution of x = g(x). Suppose g'(p) = 0 and g''is continuous with |g''(x)| < M on an open interval Icontaining p. Then there exists a $\delta > 0$ such that for $p_0 \in$ $[p - \delta, p + \delta]$, the sequence defined by $p_{n+1} = g(p_n)$, when $n \ge 0$, converges **at least quadratically** to p. For sufficiently large n

$$|p_{n+1} - p| < \frac{M}{2} |p_n - p|^2$$

Remark:

Look for quadratically convergent fixed point methods which g(p) = p and g'(p) = 0.

Newton's Method as Fixed-Point Problem

Solve f(x) = 0 by fixed point method. We write the problem as an equivalent fixed point problem:

 $g(x) = x - \phi(x)f(x)$ solve $x = g(x), \phi(x)$ is differentiable

Newton's method can be derived by the above form:

Find differentiable
$$\phi(x)$$
 with $g'(p) = 0$ when $f(p) = 0$.

$$g'(x) = \frac{d}{dx} [x - \phi(x)f(x)] = 1 - \phi'f - \phi f'$$
Use $g'(p) = 0$ when $f(p) = 0$
 $g'(p) = 1 - \phi'(p) \cdot 0 - \phi(p)f'(p) = 0$
 $\phi(p) = 1/f'(p)$

This gives Newton's method

$$p_{n+1} = g(p_n) = p_n - \frac{f(p_n)}{f'(p_n)}$$

Example Fixed-point method and Newton's method are used to solve cos(x) - x = 0 for $x \in [0,1]$, respectively. Compare the order of convergence of these two methods.

Multiple Roots

- How to modify Newton's method when f'(p) = 0. Here p is the root of f(x) = 0.
- Definition 2.10 Multiplicity of a Root

A solution p of f(x) = 0 is a zero of multiplicity m of f if for $x \neq p$, we can write $f(x) = (x - p)^m q(x)$, where $\lim_{x \to p} q(x) \neq 0$.

• Theorem 2.11

 $f \in C^1[a, b]$ has a **simple zero** at p in (a, b) if and only if f(p) = 0, but $f'(p) \neq 0$.

• Theorem 2.12

The function $f \in C^{m}[a, b]$ has a zero of multiplicity m at point p in (a, b) if and only if $0 = f(p) = f'(p) = f''(p) = \cdots = f^{(m-1)}(p)$, but $f^{(m)}(p) \neq 0_{B}^{0}$

Modified Newton's Method for Zeroes of Higher Multiplicity (m > 1)

Define the new function $\mu(x) = \frac{f(x)}{f'(x)}$.

Write
$$f(x) = (x - p)^m q(x)$$
, hence
 $\mu(x) = \frac{f(x)}{f'(x)} = (x - p) \frac{q(x)}{mq(x) + (x - p)q'(x)}$

Note that p is a simple zero of $\mu(x)$.

• Apply Newton's method to $\mu(x) = 0$ to give:

$$x = g(x) \equiv x - \frac{\mu(x)}{\mu'(x)}$$
$$= x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

• Quadratic convergence: $p_{n+1} = p_n - \frac{f(p_n)f'(p_n)}{[f'(p_n)]^2 - f(p_n)f''(p_n)}$

Drawbacks:

- Compute f''(x) is expensive
- Iteration formula is more complicated more expensive to compute
- Roundoff errors in denominator both f'(x)and f(x) approach zero.