2.6 Zeros of Polynomials and Horner's Method

Zeros of Polynomials

• **Definition**: Degree of a Polynomial

A **polynomial of degree** *n* has the form

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0, a_n \neq 0$

Where the $a'_i s$ are constants (either real or complex) called the **coefficients** of P(x)

Theorem 2.16 Fundamental Theorem of Algebra

If P(x) is a polynomial of degree $n \ge 1$, with real or complex coefficients, P(x) = 0 has at least one (possibly complex) root.

• Corollary 2.17

There exists unique constants $x_1, x_2, ..., x_k$ and unique positive integers $m_1, m_2, ..., m_k$ such that $\sum_{i=1}^k m_i = n$ and

$$P(x) = a_n (x - x_1)^{m_1} (x - x_2)^{m_2} \dots (x - x_k)^{m_k}$$

Remark:

- 1. Collection of zeros is unique
- 2. m_i are multiplicities of the individual zeros
- 3. A polynomial of degree *n* has exactly *n* zeros, counting multiplicity.

• Corollary 2.18

Let P(x) and Q(x) be polynomials of degree at most n. If $x_1, x_2, ..., x_k$ with k > n are distinct numbers with $P(x_i) = Q(x_i)$ for all i = 1, 2, ..., k, then P(x) = Q(x)for all values of x.

Remark:

If two polynomials of degree n agree at at least (n+1) points, then they must be the same.

Horner's Method

- Horner's method is a technique to evaluate polynomials quickly. Need n multiplications and n additions to evaluate $P(x_0)$.
- Assume $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$. Evaluate $P(x_0)$.

Algorithm:

Let $b_n = a_n$,

Compute $b_k = a_k + b_{k+1}x_0$, for k = (n - 1), (n - 2), ..., 1, 0

To the end, we obtain:

1. Then $b_0 = P(x_0)$.

2. At the same time, we also computed the decomposition: $P(x) = (x - x_0)Q(x) + b_0,$ where $Q(x) = b_n x^{n-1} + b_{n-1}x^{n-2} + \dots + b_2 x + b_1$ 3. $P'(x_0) = Q(x_0),$ Remark:

- 1. $P'(x_0) = Q(x_0)$, which can be computed by using Horner's method in (n-1) multiplications and (n-1) additions.
- 2. Horner's method is nested arithmetic

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $(a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_1) x + a_0$
= $((a_n x^{n-2} + a_{n-1} x^{n-3} + \dots) x + a_1) x + a_0$
= $\underbrace{(\dots ((a_n x + a_{n-1}) x + \dots) x + a_1) x + a_0}_{b_{n-1}}$